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Abstract

Classifier-Free Guidance (CFG) has been widely used
in text-to-image diffusion models, where the CFG scale
is introduced to control the strength of text guidance on
the whole image space. However, we argue that a global
CFG scale results in spatial inconsistency on varying se-
mantic strengths and suboptimal image quality. To address
this problem, we present a novel approach, Semantic-aware
Classifier-Free Guidance (S-CFG), to customize the guid-
ance degrees for different semantic units in text-to-image
diffusion models. Specifically, we first design a training-
free semantic segmentation method to partition the latent
image into relatively independent semantic regions at each
denoising step. In particular, the cross-attention map in
the denoising U-net backbone is renormalized for assign-
ing each patch to the corresponding token, while the self-
attention map is used to complete the semantic regions.
Then, to balance the amplification of diverse semantic units,
we adaptively adjust the CFG scales across different se-
mantic regions to rescale the text guidance degrees into a
uniform level. Finally, extensive experiments demonstrate
the superiority of S-CFG over the original CFG strategy
on various text-to-image diffusion models, without requir-
ing any extra training cost. our codes are available at
https://github.com/SmilesDZgk/S-CFG.

1. Introduction
Recently, text-to-image generation has witnessed rapid de-
velopment and various applications [29, 30, 32, 33, 45],
where visually stunning images can be created by simply
typing in a text prompt. In particular, after DDPM [7, 12]
succeeded GANs [3, 8], diffusion models [39], such as Sta-
ble Diffusion [33] and DallE-3 [2], have emerged as the new
state-of-the-art family for image-generative models.

The key feature of diffusion models is to approximate the
true data distribution p(x) by reversing the process of per-
turbing the data with noise progressively in a long iterative
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Figure 1. A motivation example. The first line shows images
generated by Stable Diffusion with CFG and S-CFG, where the
prompt is “a photo of an astronaut riding a horse” and the seg-
mentation maps are manually labeled (Ground, Sky, Horse, As-
tronaut). The below line shows the average norm curves of the
estimated classifier score ∇xt log p(c|xt) (solid line) and diffu-
sion score ∇xt log p(xt) (dashed line) in each semantic region.
The Y-axis scale unit is set as the dynamic variance parameter σt

for better illustrations without damaging the conclusion.

chain. To incorporate the text prompt c into the final gen-
eration, it is necessary to enhance the likelihood of c given
the current latent image xt at each reversed diffusion step t.
Instead of training extra classifiers to model p(c|xt) at each
diffusion step t [7], classifier-free guidance (CFG) [11] has
recently been proposed to estimate both the classifier score
∇xt

log p(c|xt) and the diffusion score ∇xt
p(xt) with the

same neural model, such as U-net [34]. In particular, an
empirical CFG scale is introduced to control the strength of
the text guidance on the whole image space.

However, we argue that a global CFG scale results in
spatial inconsistency on varying semantic strengths during
the denoising process and suboptimal quality of the final
image. Figure 1 shows samples generated by Stable Diffu-
sion [33]. The images can be segmented into four semantic
regions corresponding to “astronaut”, “horse”, “sky” and
“ground”. To compare the guidance degrees assigned to
different semantic units, the figures in the second line il-
lustrate the average norm curves of the estimated classifier

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9370



score ∇xt log p(c|xt) and diffusion score ∇xt log p(xt) in
each semantic region at any time step. as for the images
with the original CFG strategy, we can find that the clas-
sifier score norm changes a lot on different semantic units,
while the norms of diffusion scores seem to be closer. Intu-
itively, the larger classifier score implies a greater guidance
degree received by the semantic unit. As a result, the final
generative samples may exhibit spatial inconsistency in im-
age qualities for different semantic units. For instance, the
“astronaut” region, which consistently attains the highest
score ratio, displays intricate and finely detailed structures
that starkly contrast with the “sky” and “ground” regions.

Along this line, in contrast to the previous works, we
propose to set customized CFG scales for different seman-
tic regions of the latent image at each denoising step. In
particular, we assume that the inter-patches in each seman-
tic region serve a similar semantic concept and different re-
gions are relatively independent. In this case, the classifier
scores ∇xt

log p(c|xt) can be approximately deduced into
the combination of that conditioning on all independent se-
mantic regions. Therefore, customized CFG scales can be
safely involved for each semantic region, without the dis-
ruption of relative relations among interdependent patches.
However, it is not trivial to conduct semantic segmentation
on the latent image without accessing the final generated
image. Meanwhile, determining the customized CFG scales
to balance semantic units is another challenge.

To this end, in this paper, we propose a novel approach,
called Semantic-aware Classifier-Free Guidance (S-CFG),
to dynamically and customizedly control the text guidance
degrees in text-to-image diffusion models. Specifically,
when modeling the conditional distribution p(x|c), diffu-
sion models take c as another input with self-attention and
cross-attention layers to mix up the image and text, which
preserves the underlying semantic information. Along this
line, we first design a training-free segmentation method
for the latent images at each denoising step. In particular,
the cross-attention map in the denoising U-net backbone is
renormalized for assigning each patch to the correspond-
ing token, while the self-attention map is used to complete
the semantic regions. Then, to balance the amplification
of diverse semantic information, we rescale the classifier
score ∇xt log p(c|xt) across different semantic regions to
a uniform level with the adaptive CFG scales. Finally, we
conduct qualitative and quantitative analysis based on vari-
ous diffusion models. The results demonstrate that S-CFG
can outperform the original CFG strategy and obtain a ro-
bust improvement without any extra training cost. At first
glance, the right part in Figure 1 demonstrates reduced dis-
parities among the classifier score norms ∇xt log p(c|xt) of
different semantic units in the image with S-CFG. As a re-
sult, more abundant clouds float in the “sky”. The boundary
between the “sky” and the “ground” is clearer.

2. Related Work
2.1. Image Diffusion Generative Models
Recently, diffusion models have emerged as an expressive
and flexible family for image generation with remarkable
image quality and various applications [1, 13, 17, 24, 29,
30, 33]. The general idea is to apply a forward diffu-
sion process that adds tiny noise to the input data, then
learn the reverse process with neural networks to grad-
ually recover the original samples from the noisy data,
step-by-step. Among them, Denoising Diffusion Proba-
bilistic Model (DDPM) [12] is the representative baseline,
which carefully designed the noise schedule on the pixel
space during the forward process and the network archi-
tecture in the reverse process. As a result, diffusion mod-
els achieved better model coverage and training stability
compared to GANs [3, 8, 15]. To further reduce compu-
tational costs, the subsequent study turned to combining
DDPM and VAE [18, 31, 37] by applying diffusion models
to the lower-dimensional latent space of a VAE trained on
large-scale image datasets, such as Stable Diffusion [33]. In
general, diffusion models suffer the downside of low infer-
ence speed compared to other generative models. However,
this problem can be greatly alleviated by advanced sampling
strategies, such as DDIM [40, 49], DPMSolver [22, 23],
PNDM [16], Euler [16], and DEIS [48], which can perform
10X to 100X speedup compared to the original DDPM sam-
pler. Here, we further explore a better way for image gen-
eration based on diffusion models.

2.2. Text-guided Generation
Recently, the text-guided generation in diffusion models has
reached an unprecedented level, like DallE-3 [2]. This gen-
erative power stems from three aspects. First, to repre-
sent the unstructured text, expressive language embedding
models are used to embed each token in the given text,
such as CLIP [27] in Stable Diffusion [33], and T5 [28]
in Imagen [36]. Second, to facilitate the interaction be-
tween text and image information, diffusion models typ-
ically enhance the network backbone, such as the U-net
backbone [34], with the cross-attention mechanism. This
mechanism involves utilizing the image embedding as the
query and the key and value embeddings derived from the
text. Third, Classifier-Free Guidance (CFG) [11] has re-
cently been widely involved as a lightweight and robust
technique to encourage text prompt adherence in genera-
tions. Instead of training extra classifiers [7, 21], CFG
mixes the score estimates of the diffusion model with or
without the conditional prompt. Some other works [14, 20]
further separate a prompt into multiple concepts and gener-
ate an image by combining a set of diffusion models with
each of them conditioning on a certain concept component.
Here, we further emphasize the importance of varying CFG
scales across different image semantic regions and design
the semantic-ware CFG strategy to improve image quality.
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2.3. Applications with Cross-Attention Maps
Cross-attention maps in the diffusion U-net Backbone are
derived to represent the spatial relation between image
patches and prompt tokens. They provide valuable se-
mantic information for image segmentation and can con-
tribute to various applications. For example, some works [5,
6, 44, 50] introduce layout control in image generation
by minimizing the difference between the cross-attention-
based semantic segmentation and the given layout con-
ditions. Prompt2Prompt [10] achieves image editing by
simply replacing, adding, or re-weighting cross-attention
maps. Attend-and-Excite [4] improves the text alignment
by optimizing the cross-attention maps during the infer-
ence process. Subsequent works further extend those ideas
for image-to-image translation [26], text-driven image edit-
ing [9, 42], and compositional image generation [43]. In
this paper, we further use cross-attention maps to improve
image quality by segmenting latent images and customizing
the guidance degrees of different semantic regions.

3. Preliminary
3.1. Diffusion Models
Given the image data space X , diffusion models define a
Markov Chain, known as the forward process, to corrupt the
real data x0 ∈ X by progressively adding Gaussian noise
from time steps 0 to T :

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where {βt}t=1:T denotes the variance for each noise step,
set as constant usually. Taking advantage of the properties
of the Gaussian distribution, we can obtain xt at an arbitrary
time step t using the following closed form:

xt =
√
αtx0 +

√
1− αtϵt, ϵt ∼ N (0, I), (2)

where αt = 1− βt and αt =
∏t

s=1 αs. xT will degrade to
standard Gaussian noise with αT ≈ 0.

The reverse denoising process aims to approximate the
true posterior of each forward step via a time-dependent
neural network parameterized by θ:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)I), (3)

which can be used to generate image x0 ∼ pθ(x0) by sam-
pling Gaussian noise xT ∼ N (0, I) first and denoising step-
by-step from xT−1 to x0. In practice, to simplify the model
training, σθ(xt, t) is set as constant σt [7] and µθ(xt, t) is
parameterized as follows:

µθ(xt, t) =
1

√
αt

(
xt −

βt

1− αt
ϵθ(xt, t)

)
, (4)

where the neural model ϵθ, such as U-net [34], is trained
to predict the noise ϵt added in each forward step, which
also mirrors the denoising score-matching, i.e, ϵθ(xt, t) ≈
−σt∇xt

log p(xt).

3.2. Classifier-free Guidance
The vanilla diffusion model described above is an uncondi-
tional generative model pθ(x0) to approximate the true data
distribution q(x0). However, in practical scenarios, there is
a growing demand to condition the generation on a label or
text prompt c [46]. To address this requirement, classifier-
guidance [7] incorporates an auxiliary classifier pϕ(c|xt) to
guide the sampling in each reverse denoising step, thereby
increasing the likelihood of c given xt. Specifically, the dif-
fusion score is modified as follows:

ϵ̂θ(xt.c, t) = ϵθ(xt, t)− γσt∇xt log pϕ(c|xt)

≈ −σt∇xt log(p(xt)p
γ
ϕ(c|xt)),

(5)

where γ is a scalar parameter to regulate the strength of the
classifier guidance. While this method has demonstrated
some performance improvements, training a robust classi-
fier for all reverse steps, particularly for the highly noisy
input at the initial step, poses a significant challenge and
incurs additional training costs.

To avoid training a separate classifier model, classifier-
free guidance [11] takes c as another input of the denois-
ing neural network to model the conditional diffusion score,
i.e., ϵθ(xt, c, t) ≈ −σt∇xt

log p(xt|c), while the uncondi-
tional score ϵθ(xt, t) is jointly estimated by randomly drop-
ping the text prompt with a certain probability at each train-
ing iteration. Then the gradients for the classifier pϕ(c|xt)
can be estimated as:

∇xt
log p(c|xt) = ∇xt

log pθ(xt|y)−∇xt
log pθ(xt)

= − 1

σt
(ϵθ(xt, c, t)− ϵθ(xt, t)).

(6)

Along this line, the corresponding diffusion score in Equa-
tion 5 can be derived as:

ϵ̂θ(xt.c, t) = ϵθ(xt, t) + γ(ϵθ(xt, c, t)− ϵθ(xt, t)), (7)

where γ is also usually set as a global scalar parameter to
control the guidance degree of the condition. However, in
this paper, we argue that the CFG scale should be spatially
adaptive, allowing for balancing the inconsistency of se-
mantic strengths for diverse semantic units in the image.

4. Methods
In this section, we introduce the technical details of
Semantic-aware Classifier-Free Guidance (S-CFG). where
the overview of the framework is shown in Figure 2. At
each denoising step in diffusion models, the current latent
image is fed into the U-net backbone to estimate both dif-
fusion score and conditional diffusion score without or with
text prompt input. With the extracted attention maps, we
can derive region masks for the relatively independent se-
mantic units. In particular, the cross-attention map is renor-
malized for assigning each patch to the corresponding to-
ken, while the self-attention map is used to complete the
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Figure 2. The overall framework of our S-CFG method. At each denoising step in diffusion models, the U-net backbone estimates both
diffusion score ∇xt log p(xt) and conditional diffusion score ∇xt log p(xt|c) without or with text prompt input, which can further infer
the classifier score ∇xt log p(c|xt). By extracting and exploiting self-attention map Sk

t and cross-attention map Ck
t in each attention layer

of U-net, we can obtain the region masks mt,i for each prompt token i. With the goal of unifying the classifier score norm in different
regions, the CFG scale map can be determined to control the semantic strengths spatially in the following step.

semantic regions. Then, to balance the amplification of di-
verse semantic information, we set adaptive CFG scales on
diverse region masks and obtain the scale map to rescale
their classifier scores into a uniform level.

4.1. Segmantic Map Generation
To customizedly control the amplification of diverse seman-
tic units, we need to segment the latent image once using the
CFG strategy defined in Equation 7, i.e., at each denoising
step. However, this task is not trivial because the final image
can not be accessed during the generation process. Fortu-
nately, the attention layers in the U-net backbone have been
reported to contain valuable semantic information for cap-
turing relationships between image and text prompts [4, 41],
which can be leveraged to efficiently extract semantic units.

Specifically, for most text-to-image diffusion models, the
interaction between the text prompt and the generation im-
age is performed using cross-attention mechanisms. In gen-
eral, the denoising U-net network consists of self-attention
layers followed by cross-attention layers at certain resolu-
tions. For example, SD puts 16 self- and cross-attention
layers at the resolution of 64, 32, 16, 8. In the k-th at-
tention layer, a self-attention map Sk

t ∈ RHW×HW and
a cross-attention map Ck

t ∈ RHW×L are calculated over
linear projections of the intermediate image spatial feature
zkt ∈ RHW×C or text embedding e ∈ RL×D,

Sk
t = Softmax

(
Qs(z

k
t )Ks(z

k
t )

T

√
d

)
,

Ck
t = Softmax

(
Qc(z

k
t )Kc(e)

T

√
d

)
,

(8)

where H and W are the current resolutions, L is the number
of text tokens, C is the image feature channel, D is the to-

ken embedding dimension, and Q∗(·) and K∗(·) are linear
projections with the dimension of output as d.

4.1.1 Cross-Attention-based Semantic Segmentation
Intuitively, at each denoising step t, each row in Ck

t de-
fines the distribution over the text tokens, which is used
to augment with the most relevant textual token for each
patch. Therefore, a higher probability Ck

t [s, i] indicates
a closer relationship between the current patch s and the
corresponding token wi. Along this line, we propose to
segment the latent image xt as the set of regions masked
by {mt,1, ...,mt,L}, which i-th masked region mt,i ∈
{0, 1}HW corresponds to the semantic token wi.

Specifically, we first employ a fusion process to obtain
the final cross-attention map Ct ∈ RHW×L. This fusion
involves averaging the cross-attention layers and heads with
the smallest two resolutions, as these have been shown to
contain the most substantial semantic information [10]. In
particular, all attention maps are upsampled into the same
size. Then, Ct is renormalized along the spatial dimension,
and the argmax operation is applied on the token dimension
to determine the activation of the current patch, denoted as:

Ĉt[s, i] =
Ct[s, i]∑HW

s′=1 Ct[s′, i]
,

is = argmax
i

Ĉt[s, i],

(9)

where Ĉt[s, i] estimates the possibility assigned to the patch
s for the token wi. The corresponding region mask mt,i

can be derived by setting the element in the patch set {s :
is = i} as 1, and 0 for others. Note that the renormalization
in the above equation plays a crucial role in aligning the
token with the image patch in our practice. Without the
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Figure 3. The latent image segmentation based on attention
maps at different denoising steps. The first column shows the
predicted image x0 based on the current latent image xt and noise
estimation ϵθ with Equation 2. The following three columns show
the semantic segmentation maps with different strategies. Regions
labeled by different colors correspond to different tokens. The last
column shows the foreground mask detected by our approach.

renormalization, Ct would tend to concentrate most of the
attention on a single token, such as the START token, for all
patches, damaging the semantic segmentation.

The second column in Figure 3 shows an example re-
sult of the above semantic segmentation, we can find that
the semantic maps could successfully detect the rough lo-
cations of several important tokens, such as “astronaut” and
“horse”. However, it is worth noting that they often exhibit
unclear object boundaries and may contain internal holes,
particularly during the initial denoising steps. To alleviate
this problem, we propose to refine and complete the seman-
tic map with self-attention maps in the following section.

4.1.2 Self-Attention-based Segmentation Completion
Specifically, we follow [41] and refine each cross-attention
map Ck

t by multiplying it with the corresponding self-
attention maps at each attention layer. The hidden logic
is rooted in the ability of self-attention maps to estimate
the correlation between patches, enabling cross-attention to
compensate for incomplete activation regions and perform
region completion. Meanwhile, note that Sk

t can be inter-
preted as a transition matrix among all patches, where each
element is nonnegative and the sum of each row equals 1.
We can also enhance the region completion by transmitting
semantic information among patches following the idea of
feature propagation in graph [19]. Therefore, same as [51],
we refine the cross-attention map Ck

t as follows:

C
k

t =
1

R

R∑
r=1

(Sk
t )

rCk
t , (10)

where R is a hyper-parameter and set as 4 in our experi-
ments. Combining Eqaution 10, a refined version of cross-
attention map, i..e, Ct, would be computed, which would
be put into Equation 9 for deriving refined segmentation
masks. The fourth column in Figure 3 shows the corre-
sponding results, where segmentation maps become bet-
ter with clearer object boundaries and fewer internal holes,
even better than the third column which sets R = 1.

4.2. Semantic-Aware CFG
At each denoising step t, given the semantic units with
masks {mt,1, ...,mt,M}, we turn to design the semantic-
aware CFG strategy to control the strength of each semantic
unit separately. In particular, note that the image patches
in the different semantic units usually have a more distant
relationship than that among the same semantic unit. To
simplify the discussion, we assume that different semantic
units are independent of each other at any time step. Based
on this assumption, we can derive the following expres-
sions about the classifier p(c|xt):

p(c|xt) =

L∏
i=1

p(wi|mt,i ⊙ xt),

∇xt
log p(wi|mt,i ⊙ xt) = mt,i ⊙∇xt

log p(c|xt),

(11)

where mt,i is interpolated and reshaped to the same size as
xt and ⊙ is the element-wise product. (The detailed deriva-
tion can be found in the Appendix.) Then, instead of using a
single scalar to control the guidance degrees of all semantic
units, like that in Equation 5 and 7, we define the composed
diffusion score function as follows:

ϵ̂θ(xt,c, t) = ϵθ(xt, t)

+

M∑
i=1

γt,imt,i ⊙ (ϵθ(xt, c, t)− ϵθ(xt, t)),
(12)

where each term in the sum operation is the estimation of
log-density for each semantic token wi, and γt,i is the scalar
parameter to strengthen the corresponding semantic infor-
mation. In particular, when all parameter γt,i is set as the
same as γ, the above equation reduces into the same as the
original CFG strategy in Equation 7.

4.2.1 Adaptive CFG Scale γt,i

Here, we further propose an approach to adaptively set the
CFG scale γt,i. The primary objective is to achieve a bal-
anced amplification of diverse semantic units during each
denoising step. To achieve this, an intuitive idea is to rescale
the classifier scores in different semantic regions to a bench-
mark scale. This ensures that all semantic units undergo a
comparable magnitude of change throughout the denoising
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(a) SD-v1.5 (b) SD-v2.1 (c) DeepFloyd IF

Figure 4. The qualitative evaluation results on the trade-off curve of FID-30K VS CLIP Score.

process. Specifically, γt,i is defined as follows:

ηt = ∥ϵθ(xt, c, t)− ϵθ(xt, t)∥2 ∈ RHW ,

γt,i = γ
|mt,b ⊙ ηt|
|mt,i ⊙ ηt|

|mt,i|
|mt,b|

,
(13)

where ∥ · ∥2 is the 2-norm operator of vectors used on the
last dimension of a tensor, and | · | is the sum operator of a
vector or matrix. γ is a hyper-parameter shared for all sam-
ples and time steps, like that in the original CFG strategy.
In particular, the mask mt,b ∈ {0, 1}HW is introduced to
assign the benchmarking region. For example, when set-
ting mt,b as 1 for any patch, the average patch norm of the
current latent image is the benchmark scale. Here we also
introduce another benchmark region for better performance,
i.e., the foreground region, such as the union of the regions
of “astronaut” and “horse” in Figure 1.

Specifically, when estimating the unconditional score
∇xt log p(xt), an empty prompt ∅ is fed into the model,
i.e, ϵθ(xt, ∅, t), where ∅ is usually represented as a list
of padding tokens with a start token. Based on our ap-
proach in Section 4.1, we can detect the semantic region of
the START token mt,START, which effectively indicates the
background area in our implementation (see the last column
in Figure 3). Therefore, we can align the benchmarking re-
gion with the foreground region by setting:

mt,b = 1−mt,START. (14)

5. Experiments
Benchmark Models. We include two diffusion models as
base models: Stable diffusion (SD) [33], which operates in
the latent image space, and DeepFloyd IF (IF) [38], which
operates in the image pixel space. Specifically, we consider
two versions of SD: SD-v1.5 and SD-v2.1, which differ in
terms of model sizes and generative qualities. For the IF
model, we use the middle-scale version, IF-M, which is
constructed using multiple diffusion models. To maintain
simplicity, two model stages are used, where the base diffu-
sion model produces low-resolution samples and an upscale

diffusion model boosts them to a higher resolution. Both
stages can benefit from the CFG or S-CFG strategy. Addi-
tionally, the IF model uses the T5XXL as the text encoder
without using the start token. Therefore, instead of assign-
ing the foreground region based on the start token, we set
the benchmarking mask mt,b in Equation 13 as 1 for any
patch. All three models are publicly accessible.

Meanwhile, two samplers are discussed for all three
models, i.e., DDIM [41] and DPMSolver++ [23], which
are both the most widely used in practice. Specifically, for
DDIM, we follow [33] and set the number of sampling steps
as 250 for SD models with the noise variance parameter as
0. Regarding the IF model, which employs learnable noise
variance parameters, we adhere to the original noise settings
and conduct DDIM sampling with 50 steps. As for DPM-
Solver++, we set the number of sampling steps as 50.

5.1. Quantitative Evaluation
We compare the benchmark models with CFG and S-CFG
on the MSCOCO 256× 256 dataset. Two qualitative met-
rics are used: 1) FID-30K: zero-shot Frechet Inception Dis-
tance with 30K images and the corresponding captions,
which measures the quality and diversity of images. 2)
CLIP Score [27]: which randomly selects 5K captions as
prompts and uses the CLIP model to assess the alignments
between the generated images and their corresponding text
prompts. In particular, the trade-off between FID and
CLIP scores has been widely reported with varying CFG
scales [25]. Therefore, we present the trade-off curve across
a range of the global scale γ ∈ [2.0, 3.0, 5.0, 7.5, 10.0].

Based on the results presented in Figure 4, it is evident
that our S-CFG strategy consistently outperforms the origi-
nal CFG strategy across most experimental settings, where
the trade-off curve of S-CFG consistently favors a position
towards the bottom right of that of the original CFG strategy
in each setting (See Appendix for a full detailed table). This
phenomenon demonstrates the effectiveness and robustness
of S-CFG, establishing its applicability in both latent im-
age space and pixel space for diffusion models with differ-
ent model sizes. In addition, we can find that the diffusion
sampler may be crucial for the generative quality, specifi-
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Figure 5. Samples generated by different base models with CFG (left) or S-CFG (right).

Table 1. Human-level evaluation results.

Image Quality Image-Text
CFG S-CFG CFG S-CFG

SD-v1.5 26.78% 73.22% 23.20% 76.80%
SD-v2.1 28.16% 71.84 % 31.85% 68.15%
IF 32.39% 67.61% 29.17% 70.83%

cally for the pixel space model, i.e., IF, where a significant
performance gap is observed for DDIM and DPMSolver++.
However, S-CFG also achieve performance improvement.

5.2. Human-Level Evaluation
Here, 80 prompts are randomly selected from MSCOCO
validation dataset for generative images with CFG and S-
CFG. Then, we asked 5 participants to assess both the image
quality and image-text alignment. Human raters are asked
to select the superior respectively from the given two syn-
thesized images, one from the original CFG strategy, and
another from our S-CFG strategy. For fairness, we use the
same random seed for generating both images. The voting
results are summarised in Table 1. The majority of votes go
to our S-CFG strategy for all base models, demonstrating
superiority in both evaluated aspects.

5.3. Qualitative Evaluation
In Figure 5, we show some samples generated by different
models with CFG and S-CFG. For fairness, we use the same
setting and random seed for different strategies. The results
exhibit a notable enhancement in the model’s generative ca-
pacity from the aspects of semantic expressiveness and en-

Figure 6. The ablation analysis by evaluating the performance
of different components in S-CFG.
tity portrayal. For example, when given the prompt “A boy
is playing Pokemon”, S-CFG improves SD-v1.5 by ensur-
ing the boy’s appearance in a normal manner. In the case
of “A person petting a small elephant statue”, S-CFG elim-
inates the irregular elephant’s trunk. Similar improvement
in fine-grained structure completion can also be observed
for SD-v2.1 and IF in the first two rows. Furthermore, for
scenarios in the last rows, such as “A cat sitting ... on a park
bench”, “A plate of meat topped ...” and “A man in a suit
with a blue tie ...”, S-CFG helps models generate images
that accurately represent the semantic descriptions.

5.4. Ablation Analysis
Here, three variants of S-CFG are introduced: 1) S-CFG-
mean sets the benchmarking mask mt,b as 1 for all patches.
2) S-CFG w/o sa is the variant without the segmentation
completion based on self-attention maps. 3) S-CFG-sa is
the variant with R = 1 in Equation 10.
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Table 2. Performance comparisons of ControlNet with CFG
and S-CFG, where the base model is SD-v1.5, the parameter γ =
3.0 and that sampler is DPMSolver++ with 50 steps.

FID CLIP Score
CFG S-CFG CFG S-CFG

Canny 8.670 8.382 0.3006 0.3019
Segmentation 9.595 9.549 0.3004 0.3017

The results in Figure 6 based on SD-v1.5 demonstrate
that all variants of S-CFG consistently outperform the orig-
inal CFG strategy. This observation strongly supports our
core idea of setting customized CFG scales for different
semantic regions throughout the denoising process. In ad-
dition, when compared to other variants, S-CFG-mean ex-
hibits increased performance instability and fails to achieve
the optimal CLIP Score at the lowest FID score. It veri-
fies the advantage of using the foreground region described
in Equation 14 as the benchmarking region. Meanwhile,
S-CFG w/o sa falls short in outperforming S-CFG-sa and
S-CFG, albeit by a relatively small margin. This out-
come highlights the effectiveness of self-attention-based
segmentation completion. Furthermore, while S-CFG-sa
and S-CFG demonstrate similar performance levels, Fig-
ure 3 shows that S-CFG exhibits superior segmentation ca-
pability, which should result in more accurate image gener-
ation. However, these improvements may not be fully cap-
tured by the current evaluation metrics.

5.5. Downstream tasks
Here, we extend the evaluations from foundational image
generation to more specialized downstream tasks.

First, we incorporate S-CFG into ControlNet [47], which
is a neural network architecture for adding various spa-
tial conditioning controls to text-to-image diffusion mod-
els. Specifically, we utilize SD-v1.5 as the base model, in-
corporating image canny edge and image segmentation as
the spatial conditions. Table 2 presents a performance com-
parison between CFG and S-CFG. The results demonstrate
consistent improvement with the incorporation of S-CFG.
Some examples are illustrated in Figure 7, showcasing no-
table improvements in image realism. Specifically, in the
canny case of the duck toy, S-CFG enhances the structure
of the duck’s mouth and rectifies color imbalances around
the tail. Likewise, in the segmentation case of the house,
the ControlNet with CFG fails to synthesize the background
sky, whereas S-CFG successfully addresses this issue.

We have also integrated S-CFG into DreamBooth [35],
which enables the personalization of text-to-image diffu-
sion models with specific subjects using only a few subject
images. The examples presented in Figure 8 highlight the
improvements in image quality and text-image alignment
achieved by S-CFG. For instance, S-CFG enhances the ap-
pearance of the dog’s mouth and brings the length of the
toy’s legs closer to the input images. Notably, in the second

Figure 7. Samples generated by ControlNet with CFG (middle)
or S-CFG (right).

Figure 8. Samples generated by DreamBooth with CFG (mid-
dle) or S-CFG (right). The token “sks” represents the shared
subject among the input images.

row, DreamBooth with CFG fails to align the image with
the text prompt “river”, whereas S-CFG succeeds.

6. Conclusion
This paper argues that classifier-free guidance (CFG) in
text-to-image diffusion models suffers from spatial incon-
sistency in semantic strengths and suboptimal image qual-
ity. To this end, we proposed Semantic-aware CFG (S-
CFG), customizing the guidance degrees for different se-
mantic units. Specifically, we first design a training-free
semantic segmentation method to partition the latent image
into relatively independent semantic regions at each denois-
ing step. Then, the CFG scales across regions are adaptively
adjusted to rescale the classifier scores into a uniform level.
Experiments on multiple diffusion models demonstrated the
superiority of S-CFG.
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