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Abstract

Existing fine-tuning methods for computer vision tasks
primarily focus on re-weighting the knowledge learned from
the source domain during pre-training. They aim to retain
beneficial knowledge for the target domain while suppress-
ing unfavorable knowledge. During the pre-training and
fine-tuning stages, there is a notable disparity in the data
scale. Consequently, it is theoretically necessary to employ
a model with reduced complexity to mitigate the potential
structural risk. However, our empirical investigation in this
paper reveals that models fine-tuned using existing meth-
ods still manifest a high level of model complexity inherited
from the pre-training stage, leading to a suboptimal stability
and generalization ability. This phenomenon indicates an
issue that has been overlooked in fine-tuning: Structural
Risk Minimization. To address this issue caused by data
scale disparity during the fine-tuning stage, we propose a
simple yet effective approach called Tuning Stable Rank
Shrinkage (TSRS). TSRS mitigates the structural risk during
the fine-tuning stage by constraining the noise sensitivity
of the target model based on stable rank theories. Through
extensive experiments, we demonstrate that incorporating
TSRS into fine-tuning methods leads to improved general-
ization ability on various tasks, regardless of whether the
neural networks are based on convolution or transformer
architectures. Additionally, empirical analysis reveals that
TSRS enhances the robustness, convexity, and smoothness of
the loss landscapes in fine-tuned models. Code is available
at https://github.com/WitGotFlg/TSRS.

1. Introduction
Recently, deep learning has garnered remarkable perfor-
mance in numerous computer vision tasks but its efficacy
heavily hinges on the availability of substantial training data,
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a challenge that arises in various scenarios due to the ex-
orbitant costs associated with annotation and privacy con-
cerns [63]. Consequently, transfer learning has emerged as
a proposed solution to tackle this challenge [64]. Among
transfer learning methods, fine-tuning stands out as a popu-
lar approach that allows for the direct utilization of learned
feature representations from a large-scale source data corpus
[18, 19]. By leveraging pre-trained neural networks (NNs),
fine-tuning enables satisfactory performance on target tasks,
even when confronted with limited amounts of training data.

Hitherto, many methods have been proposed to improve
vanilla fine-tuning by either retaining the valuable knowl-
edge or suppressing the unfavorable one to the target task
[8, 27, 33, 37, 50, 57, 60]. These methods mainly focus on
re-weighting the prior knowledge of the source domain to
reduce the empirical risk of the target model. However, ac-
cording to the theory of structural risk minimization (SRM),
a model with good generalization ability needs to exhibit
both low empirical risk and low model complexity [51]. In
the pre-training stage, a NN needs to have a large complexity
to fit a large amount of source data, whereas in the fine-
tuning stage, it necessitates a lower complexity congruous
with the small amount of the target data to minimize the
structural risk [4, 21, 32]. Hence, directly inheriting the pre-
trained model from the source domain inevitably introduces
redundant model complexity, which subsequently increases
the structural risk of the model in the target domain and
diminishes its generalization ability. Mainstream fine-tuning
methods primarily concentrate on knowledge re-weighting
and do not effectively address the issue of model complexity
(see Fig. 1a). Our empirical investigations show that even if
the fine-tuned model fits plausibly well in the target domain,
its model complexity remains largely unchanged. There-
fore, in addition to knowledge re-weighting, considering the
model complexity is crucial for mitigating the structural risk
of the target model during the fine-tuning process.

An intuitive approach to reducing the complexity of the
fine-tuned model is to adjust its weights. However, this
approach may not provide an optimal solution for transfer
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(a) (b)

Figure 1. (a) Fine-tuning cannot effectively decrease the pre-trained model complexity for a smaller target dataset. (b) Illustration of Tuning
Stable Rank Shrinkage (TSRS). η: noise, x: input, fd: the feature outputted from the d th block, f ′

d: the feature added with noise, D: the
number of network blocks, Ld

TSRS : the noise sensitivity loss of the dth block, α: weighting hyper-parameter. LTSRS is added to the
objective loss to optimize the model in the direction of having lower noise sensitivity, i.e. lower stable rank and lower model complexity.

learning since determining the appropriate degree of con-
straint on the weights can be challenging [33]. For instance,
considering L2 normalization, inadequate weight constraints
can fail to reduce the model’s complexity, resulting in nega-
tive transfer [50]. Conversely, excessive weight constraints
can lead to the loss of previously acquired knowledge from
the source domain, leading to catastrophic forgetting [27].
Thus, there is a pressing need to investigate a more appropri-
ate and convenient method for effectively constraining the
complexity of models during the fine-tuning process.

Focusing on SRM in fine-tuning, we pointed out that
attention should not only be paid to the source knowledge
re-weighting but also to the complexity of the target model,
which is ignored by existing fine-tuning methods. We design
a simple yet effective approach called Tuning Stable Rank
Shrinkage (TSRS) to reduce the structural risk of the fine-
tuned model by constraining its noise sensitivity, which is
theoretically the upper bound of the stable rank of NNs. The
results demonstrate that TSRS yields promising outcomes
and complements knowledge-reweighting-based fine-tuning
methods for both convolution-based and transformer-based
neural networks. Additionally, empirical analysis reveals
that TSRS enhances the robustness, convexity, and smooth-
ness of the loss landscapes in fine-tuned models. Our contri-
butions are summarized as follows:
• We point out the importance of considering the structural

risk of the target model in the fine-tuning process, which
is often overlooked in current fine-tuning methods.

• We design Tuning Stable Rank Shrinkage (TSRS), a
straightforward yet effective approach for reducing the
structural risk of the fine-tuned model by constraining its
noise sensitivity.

• Extensive experiments and analyses demonstrate the effec-
tiveness and generality of TSRS.

2. Related Work

In computer vision, Fine-tuning [11, 18, 19] is a widely used
transfer learning [64] approach to help a NN converge and
perform better on the target tasks [7, 14]. During the fine-
tuning process, many researchers have made improvements
to the baseline fine-tuning to reduce generalization error on
the target domain [1]. Recent works on fine-tuning mainly
focus on how to better re-weight different parts of knowledge
of pre-trained models, i.e. how to retain the parts conducive
to the target domain [27, 33, 37, 57, 60] or suppress the
detrimental ones [8, 50]. Approaches such as DELTA [33],
Co-Tuning [60], UOTS [37], and BSS [8] have been pro-
posed to achieve these goals by incorporating feature map
constraints, task layer preservation, optimal transport selec-
tion, and spectral shrinkage strategies, respectively. These
approaches that involve knowledge re-weighting fundamen-
tally aim to reduce empirical risk [52], which is a focus of
research in the field of deep learning for enhancing model
performance [12, 39, 62]. Despite the success of existing
methods in reducing empirical risk through re-weighting
pre-trained knowledge, we find that structural risk minimiza-
tion (SRM) in transfer learning is also critical, which has
been ignored by these methods [51]. In fact, through ex-
periments, we show that the complexity of the fine-tuned
models, i.e. structural risk, using these methods is still high,
revealing that ignoring SRM has resulted in a suboptimal
generalization ability in fine-tuning.

The SRM principle selects the model by balancing the
model complexity against its success at fitting the training
data [1, 51]. SRM has been discussed in pruning [16, 35, 36],
knowledge distillation [20]. These applications involve ad-
justing the network structure after training, and their main
goal is to achieve efficient inference rather than better gen-
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eralization ability. Nevertheless, SRM has the potential to
improve the model’s generalization ability [3]. To explore
SRM in NLP fine-tuning, Hua et al. [23] constrain the noise
perturbation of the language model to stabilize the BERT
[25] fine-tuning. Stable rank [47] is used in several areas of
mathematics such as algebraic K-theory, operator algebras,
and algebraic geometry [53]. Recently, Sanyal et al. [48]
first propose to use stable rank to constrain structural risk,
demonstrating that constraining the stable rank can improve
the model’s generalization ability. But their method only
constrained the structural risk of the final classification layer
through an iterative mode. In fact, there is a strong correla-
tion between the noise sensitivity and the stable rank of a
NN [3]. Inspired by the aforementioned work, we propose
TSRS, which uses noise sensitivity to estimate the stable
rank of the entire NN in order to reduce the structural risk of
the fine-tuned model that other fine-tune methods overlook.

3. Neglection of Structural Risk Minimization
(SRM) in Fine-tuning

To facilitate later analysis, let us first formulate the concept
of model structural risk during fine-tuning. M , wt denote the
model and its target weights. Ds = {(xis, yis)}

ms
i=1 and Dt =

{(xit, yit)}
mt
i=1 denote the source domain data and the target

domain data. Denote the empirical risk and the penalty loss
on model complexity by Remp, Lsrm, the structural risk is
formularized as:

Rsrm = Remp + Lsrm. (1)

3.1. Revisiting existing fine-tuning methods

In fine-tuning, the empirical risk can be divided into two
parts: one is the empirical risk of newly learned knowledge
in the target domain Dt, denoted as Lemp, and the other is
the empirical risk of inherited knowledge from the source
domain, denoted as Ltemp, which is formularized as:

Remp = Lemp (xt, yt, wt) + Ltemp (xt, yt, wt, ws) , (2)

Lemp =
1

mt

mt∑
i=1

L
(
M

(
xit, wt

)
, yit

)
, (3)

where L(·) denotes the loss function.
Existing fine-tuning methods focus on two aspects for

improvement. Firstly, some of them aim to prevent catas-
trophic forgetting [8, 27] by retaining beneficial knowledge
obtained from the source domain. DELTA forces the align-
ment of the feature maps of the fine-tuned model and the
pre-trained model. Secondly, the other methods aim to avoid
negative knowledge transfer [50] by suppressing unfavorable
knowledge obtained by the pre-trained model. For instance,
BSS suppresses small feature components during fine-tuning.

Both aspects form a Ltemp to better optimize Remp and can
be unified under the concept of knowledge re-weighting.
Detailed formulations are given in the supplement.

3.2. Estimation of sRM in fine-tuning

The aforementioned methods mainly focus on re-weighting
knowledge of the source domain to reduce the empirical risk
Remp associated with the target model. However, the model
selected merely by empirical risk minimization may be sub-
optimal. According to the SRM principle, complex tasks
require large models with large complexity, while simple
tasks require models with low complexity [51]. In the pre-
training stage, a NN needs to have a large model complexity
to accommodate the extensive data samples. However, dur-
ing the fine-tuning stage, where the target data is limited, it
is theoretically essential to employ a model with reduced
complexity to mitigate the potential structural risk. Regret-
tably, existing fine-tuning methods do not explicitly consider
the SRM principle. Empirical analysis shows that the model
complexity of these existing methods remains almost un-
changed during the fine-tuning process.

3.2.1 Stable rank and noise sensibility

Proper model complexity estimation is essential. Re-
cent research has proposed norm-based methods [34] and
sensitivity-based methods [40, 43] for complexity estima-
tion. However, these methods are limited in their ability
to estimate the complexity of large models such as ResNet
[17] and ViT [13], as they are primarily designed for simpler
neural networks with fewer layers [22]. For NNs with fixed
architectures, their complexity is mainly reflected in the co-
efficient levels of their weight matrices, making the rank
of weight matrices a potential tool for model complexity
estimation. Unfortunately, the exact rank is unstable under
small perturbations, and commonly used network structures,
such as residual connections, have permutation symmetry-
breaking capacity, which leads to a high exact rank even
for sparse weight matrices [43]. Therefore, the exact rank
is not suitable for estimating the complexity of the model.
To address this issue, we introduce stable rank here, which
is defined as the square of the ratio between the Frobenius
norm and the spectral norm of a matrix W:

srank(W) =
∥W∥2F
∥W∥22

=

∑k
i=1 σ

2
i (W)

σ2
1(W)

. (4)

Stable rank is a stable relaxation of rank [47]. Specifically,
stable rank is smaller than the exact rank and less sensitive
to small perturbations. Furthermore, its value is highly posi-
tively correlated with the sparsity of the matrix, even when
the exact rank of the model is high.

However, directly computing the stable rank of the weight
matrix of an entire NN is difficult. Therefore, we propose to
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use noise sensitivity as an approximation of the stable rank
for estimating the model complexity. As shown by Arora
et al. [3], there is a strong correlation between the noise
sensitivity and the stable rank of a model. Concretely, a low
noise sensitivity corresponds to a weight matrix having some
large singular values, i.e. having a lower stable rank. Given a
Gaussian noise η with noise intensity ϕ, the noise sensitivity
of a model M with weight w is defined as:

ψ(M,x) = E
η∈N

[
∥M(x+ η∥x∥, w)−M(x,w)∥2

∥M(x,w)∥2

]
.

(5)
Given η ∈ N (0, ϕ2), we have the following guarantee:
srank(w) ≤ O (ψ(M,x)w). Therefore, the noise sensitivity
is the upper bound of stable rank [3], i.e. the model complex-
ity can be estimated by the noise sensitivity. Detailed proof
is given in the supplementary. Based on the aforementioned
reasons, we use noise sensitivity to estimate the upper bound
of the stable rank and further evaluate its model complexity.

3.2.2 Empirical analysis

The above theories indicate that we can use noise sensi-
tivity to analyze the structural risk of a NN. In Fig. 2, we
display the noise sensitivity curves of ResNet50 on the CUB-
200-2011 (CUB) [55] dataset before and after fine-tuning.
The Figure exhibits two phenomena: (1) Before fine-tuning,
the noise in the input is amplified with loading pre-trained
weights (line “WP”) compared with random weight initial-
ization (line “WOP”), which reflects the high noise sensi-
tivity of the pre-trained model in the target domain. This
phenomenon proves the significant redundancy in the com-
plexity of pre-trained models. (2) Even after fine-tuning,
the problem of high noise sensitivity of loading pre-trained
weights has not been suppressed (line “WP+”). This indi-
cates that the model cannot reduce noise sensitivity solely
through fine-tuning. We further found that other improved
fine-tuning methods cannot reduce noise sensitivity either
(please refer to Sec. 5.2 and Fig. 3 for detailed results).

4. Method
The above analysis verifies the excess structural risk in the
fine-tuning scenario. Moreover, relying solely on the model’s
optimization during fine-tuning cannot effectively constrain
the complexity of the fine-tuned model. To address this issue,
a possible solution is to use stable rank as the constraint
to reduce the mode complexity during fine-tuning. The
generalization boundary of NNs is related to the stable rank
of the weight matrices as follows:

O


√√√√ D∏

i=1

∥Wi∥22
D∑
i=1

srank (Wi)

 , (6)

Figure 2. The noise sensitivity of the ResNet50 model fine-tuned
on the CUB dataset. X-axis: the index of bottlenecks. Y-axis: noise
sensitivity ψ. “WP”: loading pre-trained weights. “WOP”: random
weight initialization. “+”: after fine-tuning. Noise η with ϕ being
10% of ∥x∥ is added to x in the first layer. The noise sensitivity of
each bottleneck is calculated using Eq. (9).

where D refers to the number of weight matrices [41]. In
other words, reducing the stable rank is equivalent to con-
straining the generalization boundary, which can improve
the generalization ability of NNs. Considering previous theo-
retical analysis, reducing the stable rank via noise sensitivity
constraint may reduce model complexity effectively.

Tuning Stable Rank Shrinkage (TSRS). We propose
a new regularization method called Tuning Stable Rank
Shrinkage (TSRS), which limits the upper bound of stable
rank by reducing noise sensitivity and thus suppressing the
redundant model complexity in fine-tuning. As illustrated in
Fig. 1b, TSRS has the following steps. (1) In each forward
propagation, sample a noise η ∈ N (0, ϕ2) and add it to the
input x. (2) Calculate the sum of the noise sensitivity loss
Ld
TSRS of each block d starting from the l th block, as shown

in Eq. (7), where α refers to a weighting hyper-parameter, fd
refers to the feature outputted from the d th block, f ′d refers
to the feature added with noise, and D refers to the total
number of blocks. In this paper, we use the term "block" to
denote the fundamental repeating unit in neural networks.
Specifically, in the ResNet architecture, a block corresponds
to a stage stacked by several bottleneck architectures, while
in the case of ViT, a block refers to a transformer unit. (3)
Add LTSRS to the optimization objective and optimize the
model in the direction of having lower noise sensitivity, i.e.
lower stable rank and lower model complexity.

LTSRS = α

D∑
d=l

∥f ′d − fd∥22
∥fd∥22

≥ srank(W). (7)

Models with TSRS. Many current fine-tuning methods
focus on minimizing empirical risk Remp of transfer learn-
ing, without considering the principle of structural risk mini-
mization (SRM). TSRS is a new regularization method pro-
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posed from the perspective of reducing structural risk, which
limits the upper bound of stable rank by decreasing noise
sensitivity. TSRS is a straightforward and flexible method
that can be embedded into existing fine-tuning methods. The
incorporation of TSRS into the objective of SRM can be
expressed as:

Rsrm = Remp + Lsrm = Remp + LTSRS . (8)

5. Experiments
We conducted comprehensive experiments to evaluate the
effectiveness of our proposed TSRS. We integrated TSRS
into several representative fine-tuning methods, namely BSS,
DELTA, Co-Tuning, and UOTS. The performance of these
methods was evaluated on various visual recognition bench-
marks. To assess the universality of our approach, we tested
the fine-tuning methods on both convolutional neural net-
works (CNNs), which are commonly used in prior work,
and transformers that heavily rely on large-scale pre-trained
datasets. Additionally, we conducted experiments to demon-
strate the impact of TSRS on the robustness, convexity, and
smoothness of loss landscapes in fine-tuned models. These
experiments provided empirical evidence of the advantages
of incorporating TSRS into the fine-tuning process.

5.1. Setup

In our experiments, we followed the established procedures
outlined in the TLlib 1 as presented by Jiang et al. [24]. We
conducted experiments using both CNN and Transformer
models pre-trained on the ImageNet dataset. Specifically, we
used ResNet50 for the CNN architecture and ViT-B for the
Transformer architecture. During the fine-tuning process, we
trained the final task layer from scratch, with its learning rate
set to 10 times that of the pre-trained layers, as suggested by
Yosinski et al. [59]. We used the CUB [55], Stanford Cars
(Cars) [28], and FGVC Aircraft (Aircraft) [38] datasets for
experiments, which were widely studied in transfer learning
[60]. Experiments were conducted with different sampling
rates of training examples per category: 15%, 30%, 50%, and
100%, following Chen et al. [8]. All models were optimized
by SGD with 0.9 momentum and 0.0005 weight decay for
20 epochs. The learning rates were reduced by a factor of 1/10

in the 12th epoch. Please refer to the supplement for more
detailed implementation and hyper-parameters.

5.2. Results and analysis

Tab. 1 shows the experimental results for different model
architectures, datasets, and sampling rates. In all cases, the
methods embedded with TSRS exhibited improved perfor-
mance, highlighting the synergistic benefits of employing
TSRS. Notably, on the Cars and Aircraft datasets, TSRS

1https://github.com/thuml/Transfer-Learning-Library

yielded even greater improvements, particularly in scenarios
where data was limited. This observation suggests that as the
availability of data decreases, the redundancy in model com-
plexity becomes more prominent, and our proposed method
effectively addresses this issue, leading to enhanced opti-
mization. Despite necessitating an extra forward pass for
training, increasing the training time of one epoch from 145s
to 187s on CUB, TSRS’s inference time remains unchanged.
This trade-off is reasonable given the benefits it offers.

Fig. 3 illustrates the noise sensitivity curves with differ-
ent fine-tuning methods on the CUB dataset. The noise
sensitivity of models fine-tuned using the original meth-
ods (red solid line) shows nearly no decrease compared to
the pre-fine-tuning stage (blue solid line). However, em-
bedding TSRS (red dashed line) significantly reduces the
noise sensitivity. Notably, the noise sensitivity of DELTA
(Fig. 3c) was even higher than before fine-tuning, which can
be attributed to its retention of the behavioral characteris-
tics of the source network. To validate this hypothesis, we
calculated the noise sensitivity using ImageNet-1k as the
test input x on the model fine-tuned by the original DELTA
(blue dashed line). It was observed that the noise sensitivity
tested on ImageNet-1k closely matched the noise sensitivity
curve of the model fine-tuned by the original DELTA (red
solid line), thus confirming the hypothesis. Similarly, UOTS
(Fig. 3d) also exhibited a similar phenomenon as it uses a
large amount of source data in fine-tuning.

5.3. Comparison with other regularization methods

Currently, there are several regularization methods designed
for general circumstances to constrain model complexity
during the training process. However, these methods fail to
address the excess structural risk that emerges in fine-tuning
scenarios, leading to negative transfer. To demonstrate this,
we conducted comparative experiments on the Cars dataset
using 15% of the training data, directly comparing TSRS
with some representative regularization methods. This ex-
periment employs an ImageNet pre-trained Resnet50 model
and uses BSS without any regularization as the baseline.
Please note that L2 regularization is the default regulariza-
tion method used in BSS. The results are listed in Tab. 2,
which shows that TSRS outperforms other regularization
methods. This superiority is because other methods, such
as L2 regularization, might have already been used during
pre-training, or they solely focus on model sparsity (such as
ART) without considering the differences between source
and target domains in transfer learning.

5.4. Ablation studies

Hyper-parameters. We conducted an investigation into
the hyper-parameters of our method on the CUB dataset. Ex-
periments are conducted with 15% sampling rates of training
examples per category. As shown in Fig. 4a, the perfor-
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Table 1. Top-1 accuracy (%) of several methods with or without TSRS, including vanilla fine-tuning (Baseline), DELTA (2019) [33], BSS
(2019) [8], Co-Tuning (2020) [60], and UOTS (2022) [37], fine-tuning on the CUB-200-2011 (CUB) [55], Stanford Cars (Cars) [28], and
FGVC Aircraft (Aircraft) [38]. "Arch." refers to "Architecture". The bold marks the highest accuracy under the corresponding dataset.

Arch. Method CUB Cars Aircraft

15% 30% 50% 100% 15% 30% 50% 100% 15% 30% 50% 100%

ResNet50

Baseline 45.25±0.12 59.68±0.21 70.12±0.29 78.01±0.16 36.77±0.12 60.63±0.18 75.10±0.21 87.20±0.19 39.57±0.20 57.46±0.12 67.93±0.28 81.13±0.21

Baseline+TSRS 52.76±0.21 65.22±0.18 75.16±0.07 81.96±0.07 44.15±0.13 68.36±0.39 79.68±0.10 88.81±0.23 44.40±0.32 61.18±0.16 71.83±0.32 82.33±0.17

BSS 53.49±0.19 66.69±0.09 75.03±0.07 81.77±0.09 44.00±0.32 67.44±0.04 79.18±0.14 88.22±0.11 43.59±0.04 60.28±0.12 69.61±0.09 82.24±0.16

BSS+TSRS 54.18±0.15 68.10±0.39 76.68±0.14 82.72±0.12 47.22±0.23 70.59±0.37 80.86±0.17 88.88±0.03 46.98±0.16 63.61±0.21 72.43±0.13 83.02±0.05

Co-Tuning 57.78±0.06 70.50±0.10 77.30±0.07 82.76±0.15 47.94±0.02 70.75±0.07 81.46±0.12 89.03±0.07 45.00±0.04 60.49±0.15 70.78±0.15 82.27±0.10

Co-Tuning+TSRS 58.20±0.09 70.68±0.25 77.84±0.26 83.12±0.09 51.98±0.11 73.65±0.29 82.71±0.17 89.38±0.11 47.62±0.12 64.75±0.53 73.75±0.06 84.79±0.39

DELTA 54.95±0.01 67.40±0.07 76.03±0.05 82.36±0.13 44.66±0.24 68.83±0.20 79.69±0.12 88.21±0.06 44.97±0.18 61.27±0.02 71.53±0.04 82.72±0.21

DELTA+TSRS 55.04±0.22 67.71±0.05 76.53±0.15 82.64±0.07 47.52±0.14 70.78±0.12 81.52±0.14 88.87±0.25 47.32±0.24 64.21±0.15 73.27±0.15 83.74±0.19

UOT 55.17±0.14 66.90±0.21 74.99±0.12 81.16±0.27 42.85±0.54 67.26±0.46 79.89±0.33 89.67±0.19 39.29±0.39 56.07±0.32 67.32±0.40 80.77±0.18

UOT+TSRS 56.18±0.46 67.94±0.12 75.78±0.20 82.20±0.22 46.09±0.32 69.80±0.67 80.81±0.43 90.17±0.21 41.22±0.42 58.63±0.37 69.75±0.13 82.60±0.26

ViT-B

Baseline 64.96±0.10 77.13±0.05 81.02±0.04 85.38±0.07 43.50±0.12 66.22±0.05 77.86±0.06 88.06±0.03 38.67±0.08 56.32±0.01 65.86±0.06 77.47±0.06

Baseline+TSRS 70.76±0.04 78.44±0.11 82.02±0.13 86.40±0.10 43.88±0.06 67.52±0.05 79.01±0.05 88.10±0.08 39.24±0.03 56.74±0.05 66.94±0.09 77.80±0.12

BSS 69.80±0.24 78.91±0.34 82.88±0.18 86.80±0.07 47.83±0.07 72.02±0.07 81.30±0.10 88.19±0.06 41.91±0.25 59.05±0.10 69.64±0.64 79.72±0.32

BSS+TSRS 72.21±0.47 79.32±0.19 83.05±0.12 87.28±0.04 49.72±0.42 72.20±0.29 81.31±0.09 88.45±0.07 43.95±0.13 61.15±0.21 70.48±0.13 79.84±0.20

Co-Tuning 76.03±0.18 82.03±0.03 84.93±0.10 87.09±0.02 44.71±0.07 69.16±0.04 80.14±0.01 88.53±0.19 39.48±0.15 57.10±0.10 66.82±0.07 77.50±0.16

Co-Tuning+TSRS 76.51±0.15 82.38±0.06 85.23±0.11 87.68±0.14 46.64±0.20 69.89±0.12 80.14±0.17 88.72±0.09 41.82±0.39 58.21±0.07 68.05±0.15 78.04±0.09

DELTA 76.63±0.04 82.21±0.65 85.52±0.09 88.25±0.12 47.66±0.07 68.39±0.12 79.14±0.17 89.82±0.08 40.35±0.11 56.71±0.16 67.69±0.06 78.70±0.21

DELTA+TSRS 76.94±0.03 83.12±0.22 86.18±0.07 88.45±0.10 47.77±0.24 69.64±0.03 79.19±0.19 89.96±0.14 41.31±0.15 57.88±0.20 68.20±0.08 79.36±0.35

UOT 73.92±0.61 81.60±0.22 85.32±0.47 88.35±0.35 46.20±0.37 67.83±0.71 78.03±0.61 88.48±0.39 40.59±0.30 56.77±0.47 67.18±0.24 77.71±0.52

UOT+TSRS 74.07±0.56 82.12±0.37 85.66±0.48 88.54±0.15 46.55±0.23 68.26±0.14 78.74±0.31 88.58±0.27 41.22±0.11 56.92±0.11 67.39±0.13 78.13±0.44

(a) BSS (b) Co-Tuning (c) DELTA (d) UOTS

Figure 3. The noise sensitivity before and after fine-tuning ViT-B with different methods on the CUB dataset with ϕ being 10% of ∥x∥.
X-axis: the index of transformer blocks. The Blue dashed line represents the noise sensitivity tested on the ImageNet-1k, indicating the noise
sensitivity on the source domain. Other curves are tested on the CUB dataset.

Table 2. Comparison for fine-tuning Resnet50 with other regulariza-
tion methods on the Cars dataset using 15% training data. Baseline:
BSS without any regularization (1st column).

Regularization - L1 [54] L2 [42] SRN [48] Dynamic [56] ART [15] TSRS
Accuracy(%) 43.17 42.96 44.00 44.20 43.30 43.83 46.30

mance of the model gradually improved as the noise inten-
sity increased, indicating the effectiveness of regularization.
However, when the noise intensity became too high, the ex-
cessive disruption of information led to a decrease in model
performance. A similar trend was observed for the weighting
hyper-parameter α (Fig. 4b).

Fig. 4c shows the experiment of changing l , the starting
block of the applied constraint, after which all blocks of the

model are constrained. The performance of the model ini-
tially improved and then stabilized as the constraint starting
block shifted from shallow to deep. This is because adding
noise to the input is essentially an input divergence. Then,
in the blocks with LTSRS , all outputs of the diverged inputs
are constrained to the same point, which is substantially a
compression and clustering of the data space. Please refer to
the supplement for a detailed description. The scatter plots
in Fig. 5 demonstrate this point well. Specifically, at the
shallow blocks, due to insufficient feature extraction, the
distance between intra-class features may be larger than that
of inter-class features. This causes the LTSRS constraint
added in the shallow blocks to force the features of different
classes’ samples to cluster together, ultimately impairing the
model’s performance.

Model Size. We used the pre-trained ResNet family as
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(a) Effect of ϕ (b) Effect of α (c) Effect of l

Figure 4. Effect of noise intensity (ϕ), weighting hyper-
parameter(α) and the starting block (l ) on the validation perfor-
mance for fine-tuned ResNet50, and ViT-B on the CUB dataset.

Figure 5. The t-SNE visualizations on the output of each block of
ResNet50 fine-tuned with varied hyper-parameter l , on the CUB
dataset [29]. Baseline refers to standard fine-tuning. The colored
dots represent data points of different classes. Small l hampers
the model’s ability to distinguish features at low levels due to
insufficient feature extraction.

an example to explore the fine-tuning performance gains of
TSRS on models with varying numbers of parameters using
BSS as a baseline on the Cars dataset using 15% training
data, with the results presented in Tab. 3. It is observed that
the larger a model is, the more significant the improvement
brought by TSRS. This effect can be attributed to the increase
in the number of parameters, which in turn elevates the
structural risk during fine-tuning. TSRS effectively reduces
this structural risk, leading to an increase in corresponding
benefits. Importantly, in cases where TSRS is not utilized,
the largest model, ResNet152, inherently exhibits superior
fine-tuning performance. Yet, the integration of TSRS in
these scenarios results in even higher benefits.

5.5. More scenarios

We validated the efficacy of TSRS across a broader range of
computer vision tasks in the fine-tuning scenario.

Segmentation. We incorporated TSRS into the Tran-
sUNet [6] model, using vanilla fine-tuning as a baseline,
and evaluated the performance on three datasets: Synapse

Table 3. Experiments on Resnets of varying sizes using BSS as a
baseline on the Cars dataset using 15% training data.

Model Top-1 Accuracy(%)

BSS BSS+TSRS ∆

Resnet18 38.23±0.14 38.73±0.17 +0.50
Resnet50 44.00±0.32 47.22±0.23 +3.22

Resnet152 46.31±0.26 51.12±0.07 +4.81

Table 4. TSRS embedded into TransUNet using vanilla fine-tuning
as the baseline for segmentation. Metric: DSC, HD.

Method Synapse multi-organ ISIC2018 Spine

DSC↑ HD↓ DSC↑ HD↓ DSC↑ HD↓

TransUNetbase 77.16 33.17 88.35 16.07 59.52 5.64
TransUNetbase+TSRS 78.30 29.28 88.86 15.18 60.23 5.24

Table 5. TSRS embedded into DETR using vanilla fine-tuning as
the baseline for object detection. Metric: AP.

Method LIDC training data sampling rate
15% 30% 50% 100%

DETRbase 53.26 60.26 65.88 69.53
DETRbase+TSRS 57.02 63.91 68.16 71.33

multi-organ2, ISIC2018 [10], and MRSpineSeg3, in terms of
Dice Similarity Coefficient (DSC) and Hausdorff Distance
(HD). Tab. 4 displays the average segmentation results for
the three datasets. It is observed that TSRS also promotes
the performance of fine-tuning in image segmentation tasks.

Detection. Object detection is another common computer
vision task. We used the LIDC dataset [2] and adopted
vanilla fine-tuning DETR [5] pre-trained on COCO as the
baseline, to investigate the impact of TSRS on fine-tuning for
object detection tasks. The other experimental settings were
consistent with the main experiment. Tab. 5 presents the
results at different training set proportions using the average
precision (AP) as the metric. The table revealed that TSRS
can enhance fine-tuning performance in object detection
tasks, particularly in scenarios with limited training data.

5.6. A case study and discussions

Rifai et al. [46] have conducted a study that showed that
adding noise only (ANO) to the input can serve as a form
of regularization. To better comprehend the performance
enhancement brought about by TSRS, we performed ex-
periments to analyze the changes in model robustness and

2https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
3https://aistudio.baidu.com/datasetdetail/81211
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Figure 6. The Lipschitz constant of the MNIST dataset trained on
a 3-layer MLP. X-axis: the input domain radius. TSRS has the
lowest Lipschitz bound, implying better robustness.

(a) Before Fine-tuning (b) After Fine-tuning

Figure 7. Hessian max eigenvalue spectra under three conditions:
baseline, ANO, and TSRS. Specifically, we calculated the top-5
largest eigenvalues in each mini-batch.

convexity before and after the application of regularization.
These changes are usually observed in the first-order and
second-order gradients of the model weights.

Robustness. To investigate the model’s robustness, we
introduce the concept of the Lipschitz constant, which rep-
resents the upper bound of the first-order gradient of the
model. Generally, a smaller Lipschitz constant indicates
better robustness and generalization of the model. To esti-
mate the Lipschitz constant of the model, we adopted the
calculation method proposed by et al. [49]. We conducted
experiments on a 3-layer MLP using the MNIST dataset
[30], and Fig. 6 shows the calculated Lipschitz constant of
the models obtained by the baseline, ANO, and TSRS under
different input domain radius. Both ANO and TSRS reduced
the Lipschitz constant of the model, but our method achieved
a lower Lipschitz bound, especially when the input domain
radius was large. This indicates that our method can obtain
a more robust model.

Convexity and Smoothness. We use the eigenvalues of
the Hessian matrix as an indicator to analyze the convexity
and smoothness of the model. The Hessian matrix represents
the second-order gradient matrix of the model. A positive
eigenvalue of the Hessian matrix indicates convexity, while a

negative eigenvalue indicates non-convexity. The smaller the
value of the Hessian matrix, the smoother the loss landscape,
and the better the performance and generalization of the
model [9, 26, 31]. To conduct our experiments, we fine-
tuned the ViT-B model on the CUB dataset using weights pre-
trained on ImageNet and computed the Hessian eigenvalues
using the method proposed by Park et al. [44]. We compared
the vanilla fine-tuning, ANO, and TSRS in Fig. 7.

Fig. 7 illustrates the density of the top-5 largest Hessian
eigenvalue in each mini-batch. Before fine-tuning, nega-
tive Hessian eigenvalues were present, indicating a non-
convex loss landscape, consistent with the findings of Park
et al. [45]. After fine-tuning, negative eigenvalues were
suppressed. However, an increase in the eigenvalues of
the Hessian is induced, indicating a sharper loss landscape,
which can hinder the optimization and generalization of
the model. When noise was added to the input, although
large Hessian eigenvalues were suppressed, some negative
eigenvalues were still retained, suggesting a non-convex loss
landscape. This implies that the model may be optimized to a
saddle point. In contrast, our fine-tuning method effectively
suppressed both large and negative Hessian eigenvalues, in-
dicating improved convexity and smoothness of the loss
landscape, leading to better model performance.

6. Conclusion
In this paper, we conduct an analysis of the fine-tuning task
through the lens of structural risk minimization (SRM). We
recognize the inherent need for a neural network to have a
high complexity to accommodate the large-scale pre-training
source data while requiring a lower complexity to align with
the limited amount of target data in order to minimize struc-
tural risk. However, conventional fine-tuning methods fail to
effectively reduce the complexity of the pre-trained model,
resulting in an increase in structural risk and a negative im-
pact on generalization ability. Based on these insights, we
propose a simple yet effective regularization approach, Tun-
ing Stable Rank Shrinkage (TSRS), to effectively constrain
the model complexity during fine-tuning. By addressing the
previously overlooked aspect of SRM in fine-tuning, TSRS
can be seamlessly embedded into existing fine-tuning tech-
niques, leading to additional performance improvements.
This work serves as an inspiration for researchers aiming
to leverage pre-trained large models for target tasks with
limited data. However, in scenarios where the volume of
the source and target domains are similar, our method may
not yield significant improvements since there is no need to
constrain the structural risk.
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