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Dress the emu with a fireman outfit

Let’s see it graduating

Figure 1. Emu Edit is a multi-tasking model that combines various editing (left, middle) and vision (right) tasks for precise image editing.

Abstract

Instruction-based image editing holds immense potential
for a variety of applications, as it enables users to per-
form any editing operation using a natural language in-
struction. However, current models in this domain often
struggle with accurately executing user instructions. We
present Emu Edit, a multi-task image editing model which
sets state-of-the-art results in instruction-based image edit-
ing. To develop Emu Edit we train it to multi-task across an
unprecedented range of tasks, such as region-based edit-
ing, free-form editing, and Computer Vision tasks, all of
which are formulated as generative tasks. Additionally, to
enhance Emu Edit’s multi-task learning abilities, we pro-
vide it with learned task embeddings which guide the gen-
eration process towards the correct edit type. Both these
elements are essential for Emu Edit’s outstanding perfor-
mance. Furthermore, we show that Emu Edit can general-
ize to new tasks, such as image inpainting, super-resolution,
and compositions of editing tasks, with just a few labeled
examples. This capability offers a significant advantage in
scenarios where high-quality samples are scarce. Lastly,
to facilitate a more rigorous and informed assessment of
instructable image editing models, we release a new chal-
lenging and versatile benchmark that includes seven differ-
ent image editing tasks. '

Project Page: https://emu-edit.metademolab.com/
*Equal contribution.

1. Introduction

Image editing is a widely-used application that millions en-
gage with every day. Popular image editing tools, how-
ever, either demand considerable expertise and are time-
consuming to use, or are quite limited, providing only a
predefined set of editing operations, such as specific fil-
ters. Instruction-based image editing [2, 25] attempts to
resolve these limitations by allowing users to effortlessly
describe their editing goals using natural language instruc-
tions. For instance, a user can provide a model with an im-
age and instruct it to “Dress the emu with a fireman out-
fit” or “Let’s see it graduating” (see Fig. 1). Nevertheless,
while instruction-based image editing models like Instruct-
Pix2Pix [2] are designed to process any given instruction,
they often struggle to accurately interpret and execute such
instructions. Moreover, their generalization is limited, of-
ten falling short on tasks that deviate slightly from those
they were trained on (see Fig. 3). To address these gaps, we
introduce Emu Edit, the first image editing model trained on
an extensive and diverse set of tasks, including both image
editing and computer vision tasks. Emu Edit provides a sub-
stantial improvement in both compliance with the edit in-
struction and preservation of the visual fidelity of the origi-
nal image. As we show through both automatic metrics [14]
and human judgments on two benchmarks [25], Emu Edit
achieves state-of-the-art results in instruction-based image
editing. The success of Emu Edit stems from two key con-
tributions. First, we train our model to multi-task across six-
teen distinct image editing tasks. These tasks span region-
based editing tasks, free-form editing tasks and computer
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Figure 2. Instruction-based image generation. Each image originates from a previous one with a corresponding instruction. The prior

image for (a) was set to zero.

vision tasks, all formulated as generative tasks. Unlike pre-
vious work, we develop a distinct data generation pipeline
for each task, allowing us to gather a training set that is not
only more diverse but also more precise in its examples. We
find that training a single model on all tasks yields better
results than training expert models on each task indepen-
dently. Additionally, we show that as the number of train-
ing tasks increases, so does the performance of Emu Edit.
Furthermore, we discover that surprisingly, computer vision
tasks such as detection, segmentation, and others, signifi-
cantly enhance editing performance, as validated both by
human raters as well as quantitative measures. Second, to
process this wide array of tasks effectively, we introduce
the concept of learned task embeddings, which are used
to steer the generation process toward the correct genera-
tive task. Concretely, for each task, we learn a unique task
embedding vector, and integrate it into the model through
cross-attention interactions, and by adding it to the timestep
embeddings. We demonstrate that learned task embeddings
significantly enhance the ability of our model to accurately
infer the appropriate edit type from the user instruction and
execute the correct edit. Equipped with a robust model
trained across a broad spectrum of tasks and guided by
learned task embeddings, we explore few-shot adaptation to
unseen tasks via task inversion. In this process, we maintain
the model weights untouched, and solely update a task em-
bedding to fit the new task. Our experiments demonstrate
that Emu Edit can swiftly adapt to new tasks, such as super-
resolution, contour detection, and others. Notably, for some
tasks, fine-tuning the model on just a handful of examples

yields results that nearly match those of an expert model
trained on one hundred thousand examples. This makes
task inversion with Emu Edit particularly advantageous in
scenarios where labeled examples are limited, or when the
compute budget is low. Finally, to support future research
for instruction-based image editing, we publicly release a
diverse and challenging benchmark that includes seven dif-
ferent image editing operations, as well as our model’s gen-
erations on this dataset. In summary, this work addresses
the limitations of instruction-based image editing models in
accurately following user instructions. We demonstrate that
by employing multi-task training across a diverse array of
tasks, including recognition, generation, and editing, we can
enhance our model’s performance. Furthermore, by incor-
porating learned task embeddings into our model’s archi-
tecture, we not only improve its results but also enable effi-
cient few-shot learning for new tasks. With these improve-
ments, our model sets a new standard in the field, offering
significantly more precise and robust instruction-based im-
age editing capabilities than existing models.

2. Related Work

The emergence of high-performing text-to-image diffusion
models [7, 16, 17, 19] facilitated the development of effec-
tive text-based image editing methods. Such methods usu-
ally employ aligned and detailed descriptions of the input
and edited image to perform a specific edit. Prompt-to-
Prompt (P2P) [8] injects the input caption attention maps
to the target caption attentions maps. Null-Text Inver-
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sion [12] inverts an input image using the null-text em-
bedding to support editing of a real image. Plug-and-
Play (PNP) [21] injects spatial features in addition to atten-
tion maps and obtains better performance at global editing.
Imagic [9] finetunes the diffusion model to support com-
plex textual instructions. EDICT [22] suggests an image
inversion based on two noise vectors enabling better image
reconstruction and textual faithfulness. Another class of im-
age editing models, employs an input mask as additional in-
put [1, 23, 24]. Blended Diffusion [ 1] modifies the diffusion
step by blending the input image in the unmasked regions.
Imagen Editor [23] and SmartBrush [24] finetune the text-
to-image model to be conditioned on both the input image
and mask. While the text-based image editing methods de-
tailed above enable humans to edit images, they frequently
exhibit inconsistent performance and require multiple in-
puts, such as aligned and detailed descriptions of both the
input and target images, or at times, input masks.

To offer a more intuitive and user-friendly interface,
and significantly enhance ease of use for humans, Instruct-
Pix2Pix [2] introduced an instructable image editing model.
They developed this model by utilizing both GPT-3 [3]
and Prompt-to-Prompt [8], to generate a large synthetic
dataset for instruction-based image editing, and employed
the dataset to train an instructable image editing model. Un-
like InstructPix2Pix which used a synthetic dataset, Mag-
icBrush [25] developed a manually-annotated instruction-
guided image editing dataset by requesting humans to use
an online image editing tool [13]. Finetuning Instruct-
Pix2Pix on this dataset led to improved image editing ca-
pabilities. However, even though there has been progress
and improvement in instruction-based image editing mod-
els, we show in Sec. 5 that state-of-the-art image editing
models still struggle with accurately interpreting and pre-
cisely executing editing instructions.

In this paper, we drastically narrow such performance
gaps by leveraging multi-task training and a matching ar-
chitecture. Unlike prior work that solely focuses on image
editing [2, 25], we train our model to perform various tasks
and learn a very diverse set of capabilities. The quality and
versatility of our training procedure and dataset, together
with our improved architecture for multi-task learning, en-
ables us to make a big leap in performance and differenti-
ates us from prior work in the field. Fig. 3 include several
challenging editing samples as examples.

3. Multi-Task Dataset for Image Editing

Training a robust and accurate image editing model requires
a highly diverse dataset of input images, editing instruc-
tions, and output edited images. However, manually col-
lecting such examples is impractically time-consuming, ex-
isting sources on the web (e.g. communities and forums on
social media) are limited in size, and publicly available syn-

1. Region-Based Editing

* Local: Substituting one object for another, altering an ob-
ject’s attributes (e.g., “make it smile”).

* Remove: Erasing an object from the image.

* Add: Inserting a new object into the image.

» Texture: Altering an object’s visual characteristics with-
out affecting its structure (e.g., painting over, filling or
covering an object).

* Background: Changing the scene’s background.

2. Free-Form Editing

* Global: Edit instructions that affect the entire image, or
that can not be described using a mask (e.g., “let’s see it
in the summer”).

* Style: Change the style of an image.

» Text Editing: This involves text-related editing tasks
such as adding, removing, swapping text, and altering the
text’s font and color.

3. Vision tasks

* Detect: Identifying and marking a specific object within
the image with a rectangle bounding box.

* Segment: Isolating and marking an object in the image.

* Color: Color adjustments like sharpening and blurring.

* Image-to-Image Translation: Tasks that involve bi-
directional image type conversion, such as sketch-to-
image, depth map-to-image, normal map-to-image, pose-
to-image, segmentation map-to-image, and so on.

Table 1. Description of the tasks forming the Emu Edit dataset.

thetic datasets often lack in diversity or quality. Therefore,
we construct a new dataset that encompasses sixteen distinct
tasks and ten million examples. Each example (cy, cr, x, %)
in our dataset, contains an input image cj, a text instruc-
tion cp, a target image x, and a task index ¢ (out of the
sixteen). The following section outlines the process of the
data construction. In Sec. 3.1 we describe the instruction
generation process, and in Sec. 3.2 the image pairs (cy, )
generation and filtering.

Task Categories. The dataset is composed of tasks which
are divided into three main categories: region-based edit-
ing, free-form editing, and vision tasks. Tab. 1 includes the
full list of tasks, and their distribution in the train set is vi-
sualized in Fig. ??.

3.1. Instruction Generation

To generate editing instructions, we leverage the dialogue-
optimized 70 billion parameter Llama 2 variant [20]. We
observed that using a single agent to generate the instruc-
tions for all tasks leads to a lack of diversity in the dataset.
Notably, the LLM exhibits a bias towards particular tasks
and instruction phrasings. To address this, we utilize in-
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context learning to create a task-specific agent for each task.
Concretely, we provide the LLM with a task description, a
few task-specific exemplars, and a real image caption. To
increase diversity we sample the exemplars and randomize
their order. Given such input, we expect the LLM to output
(1) an editing instruction, (2) an output caption for an ideal
output image, and (3) which objects should be updated or
added to the original image. We refer the readers to supple-
mentary Figs. ??-2? for examples of our prompts. Further
details on instruction generation are provided in the supple-
mentary Sec. 2?.

3.2. Image Pairs Generation

Our aim is to generate pairs of input and edited images that
adhere to the edit instructions and preserve image elements
that should remain intact. A crucial prerequisite when cre-
ating a pair of input and edited images is to guarantee that
the two images differ only in specific elements or locations,
while remaining identical in all other aspects. Previous
instruct-based image editing methods [2] rely on Prompt-
to-Prompt (P2P) to build an image-editing dataset. P2P in-
jects cross-attention maps from the input image generation
to the edited image generation. To support local edits, P2P
additionally approximates a mask of the edited part, based
on the cross-attention maps and constrains the edit to this
local area. P2P relies on word-to-word alignment between
the input image caption and the edited image caption (e.g.
"a cat riding a bicycle" and "a cat riding a car") to produce
editing image pairs. However, when there is no word-to-
word alignment, the resulting mask tends to be imprecise
due to its reliance on cross-attention maps. Furthermore,
as word-to-word alignment is not a practical assumption in
most of the image editing tasks, this approach often fails to
preserve structure and identity. To address this challenge,
we propose a mask extraction method, which is applied be-
fore the editing process. Our approach involves: (i) iden-
tifying the edited areas from the editing instruction via an
LLM and creating corresponding masks before image gen-
eration, and (ii) integrating these masks during the editing
process to ensure seamless fusion of edited regions with the
original image. Distinct editing challenges, such as adding
or removing objects, require tailored solutions. We utilize
various techniques, including dilation and Gaussian blur-
ring, to refine the masks. Further description of the method
can be found at supplementary Sec. ??.

Filtering. We employ a comprehensive filtering approach
to ensure the fidelity of the dataset. This includes: (i) us-
ing the task predictor (Sec. 4.2) to reassign samples with
instructions that should belong to another task, (ii) apply-
ing CLIP filtering metrics [2], (iii) employing structure pre-
serving filtering based on the L1 distance between the depth
map of the input image and the edited image, and (iv) apply-
ing image detectors to validate the presence (in Add task),

the absence (in Remove task) or replacement (in Local task)
of elements, according to the objects specified in the in-
struction. This process filters out 70% of the data, resulting
in a final dataset of ten million samples.

4. Method

Emu Edit is a diffusion model designed to multi-task across
a broad spectrum of editing tasks. As Emu Edit is trained
on various tasks, a crucial aspect is the ability to identify the
semantic edit (e.g., global/local/texture) that needs to be ap-
plied, based on the user instruction. To address this, we use
task-specific embeddings integrated into the model, learned
during training. After training, Emu Edit can quickly adapt
to new tasks by learning a new task embedding through few-
shot learning, without altering the rest of the model. We
follow next with a detailed description of each part of our
method.

4.1. Architecture

Our model builds upon the foundation set by Emu, which
is outlined in [6]. The Emu model is a two-stage approach
that begins with a pre-training phase and concludes with
a quality fine-tuning stage. Emu adapted the latent diffu-
sion model architecture [18] to support high-resolution im-
age generation and incorporated a 16-channel autoencoder
with encoder E and decoder D. In the following section, we
adapt the notation of [2]. A large U-Net, €g, with 2.8 billion
parameters, 6, text embeddings from CLIP ViT-L [14] and
TS5-XXL [15], and a substantial pre-training dataset of 1.1
billion images facilitate the model’s ability to learn com-
plex semantics and finer details, with a noise-offset strat-
egy contributing to high-contrast and aesthetically pleasing
image generation. Given the encoded latent of an image
z = E(x), the diffusion process generates a noisy latent z;
where the noise level increases over timesteps ¢ € T'. To
convert Emu to an instruction-based image editing model,
we condition it on the image to be modified c; and the in-
struction c¢7. Emu Edit is trained to minimize the following
optimization problem,

mein]Ey,eyt[He— eg(zt,uE(c[),cT)Hg] (1

where € € N(0, 1) is the noise added by the diffusion pro-
cess and y = (cr,cr,x) is a triplet of instruction, input
image and target image from the dataset. In practice, we ini-
tialize the weights of Emu Edit with the weights of Emu. To
support the image conditioning, we follow [2] and increase
the number of input channels. New weights are initialized
to zero. During inference, we perform classifier-free guid-
ance on both image and text conditions. In our experiments
we use a scale of vy = 1.5 for the image condition and
~r = 5.0 for the text condition. Furthermore, we apply a
rescaling of the diffusion scheduler to achieve a zero signal-
to-noise ratio (SNR) at the terminal timestamp, as suggested
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Figure 3. Failure cases of baseline instruction-based image editing models.

in [10]. This is crucial in order to avoid any mismatch be-
tween the model’s training and testing phases. For more
implementation details see supplementary Sec. ??.

4.2. Learned Task Embeddings

To guide the generation process toward the correct task, we
learn an embedding vector for each task in the dataset. Dur-
ing training, given a sample from our dataset, we use the
task index, ¢, to fetch the task’s embedding vector, v;, from
an embedding table, and optimize it jointly with the model
weights. We do so by introducing the task embedding v;
as an additional condition to the U-Net, €y. Concretely,
we integrate the task embedding into the U-Net via cross-
attention interactions, and by adding it to the timestep em-
beddings. The optimization problem is updated to

Urlmnvk Ejet [||6 —€o(zt,t, E(cr), cr, vz)||§] 2)
where k is the total number of tasks in our dataset and
9 = (er,er,x,1) is a quadruplet of input image, input in-
struction text, target image, and task index from the dataset.
Task-specific conditioning arises from the observation that
models lacking such conditioning can become perplexed
about the type of edit required, particularly when the in-
structions are complex or the edit type is ambiguous. For

2The samples depicted in this caption were selected by the authors.
They do not cover all scenarios, but are meant to represent some common
scenarios the authors encountered.

instance, as visualized in Fig. 4, (1) a model without task
conditioning might perform a global edit when a texture
edit is required, (2) it might opt for segmentation when a
global edit is necessary, and (3) it could implement a style
edit in situations where a local edit would fit better. In the
inference stage, we predict the task index. Specifically, we
fine-tune a Flan-T5-XL model to identify the task at hand
given the input instruction.

4.3. Task Inversion

To enable few-shot learning of new tasks without losing
the general abilities of Emu Edit, we propose a method for
adapting the model without changing the U-Net weights.
Given a few examples of a new task, we learn a new task
embedding, v,.w. We freeze the model weights, and adapt
it to the task only through the task embedding. Thus, to fit
a new task embedding we solve the following optimization
problem:

minEy . [le — eo(21,t, E(cr) or, vmew) 3] 3)

where vy is the learned task embedding. Note that during
task inversion y is a triplet belonging to the new task.

The model can then be employed for the new task by
conditioning it on the learned task embedding, and it can
still handle its original tasks by relying on the initial task
embeddings. In Sec. 5.3, we demonstrate that our model
effectively generalizes to novel tasks using this method.
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Figure 4. Task embeddings. Model trained without task em-
beddings may get confused about the edit type when the instruc-
tions are complicated or there is ambiguity regarding the edit type:
(1) Global edit (instead of Texture), (2) Segmentation (instead of
Global), (3) Style edit (instead of Local).

Sequential Edit Thresholding. We notice that applying
the model repeatedly, in multi-turn editing scenarios, aggre-
gates reconstruction and numerical errors, which translate
to noticeable artifacts. To mitigate this, we add a per-pixel
thresholding step after each edit-turn. At each step s, we
use the pixel value in the output image, c?”, only if its al-
teration surpasses a specific threshold. Otherwise, we keep
the pixel value from the input image, c7. Specifically, given
an edit turn s, we compute the absolute difference image
d = ||e5™" — ¢3||; over the RGB channel, and apply the
following thresholding:

c5 ifd<a
=9 N @
c7 otherwise.

where, d is obtained after passing d through a low pass fil-
ter, in order to smooth the transition between previous and
current pixels. In practice, we choose o = 0.03. Please re-
fer to supplementary Sec. ?? for a qualitative comparison.
In Fig. 2 we show examples of multi-turn editing.

5. Experiments

Our experiments evaluate the ability of Emu Edit to follow
user instructions faithfully and preserve the visual fidelity
of the original image. First, we evaluate the performance of
our approach on instruction-based image editing tasks. Sec-
ond, we conduct a comprehensive ablation study to assess
the effectiveness of our different contributions. Specifically,

we ablate the contribution of the computer vision tasks to
the model performance on image editing tasks, the impor-
tance of learned task embeddings, and the effect of multi-
task learning on instruction-based image editing. Further
ablation on our data generation pipeline can be found in
the supplementary Sec. ??. Finally, we demonstrate our
model’s ability to learn new tasks via few-shot learning.

Measures. We employ two main measures in our evalu-
ation: edit text alignment and image faithfulness. Specifi-
cally, for each pair of input image and editing instruction,
we use the following automatic metrics: (i) CLIP [14] text-
image direction similarity (CLIP4;.) — measuring agree-
ment between change in captions and the change in images,
(ii) CLIP image similarity (CLIP;,, ) — measuring change
between edited and input image, (iii) CLIP output similar-
ity (CLIP,,;) — measuring edited image similarity with out-
put caption, (iv) L1 pixel-distance between input and edit
image, and (v) DINO [4] similarity between the DINO em-
beddings of input and edited images. With the exception
of the L1 distance, where lower values indicate better per-
formance, higher values in all other measures signify better
results. A low L1 distance translates to small changes in
image’s pixel values. A high DINO and CLIP;,,,, similar-
ity score, suggests semantic similarity between the images.
For region-based edits, high image similarity scores indi-
cate the edits were precise. For free-form edits, high simi-
larity scores indicate image structure preservation. CLIP 4;,-
and CLIP,,; measure how well the model followed the in-
struction. In addition, we asked human raters to evaluate
the text alignment and image faithfulness. In each evalua-
tion scenario, raters are presented with two modified images
alongside the original input image and instruction, and are
presented with two questions: (i) Image Faithfulness: which
image better preserves elements in the input image, and (ii)
Text Alignment: which image best follows the instruction.

5.1. Evaluation

Throughout the paper, we report results on the MagicBrush
test set [25] and the Emu Edit benchmark. In the follow-
ing section, we describe our motivation for creating this
benchmark, and detail its curation process. To date, there
are two main benchmarks for evaluating instruction-based
image editing capabilities. First, the InstructPix2Pix bench-
mark [2], which is intrinsically biased due to its reliance
on generated Stable Diffusion [17] input images, and GPT-
3 [3] generated instructions. Consequently, it is unclear
whether its results will truly mirror the performance on real
input images, with genuine user instructions.

Unlike InstructPix2Pix, the second benchmark, Mag-
icBrush [25], uses a diverse set of authentic input images
from the MS-COCO benchmark [5, 11], and annotator-
defined instructions. Nonetheless, this dataset also suffers
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Table 2. Comparison with image-editing baselines evaluated on Emu Edit test set and MagicBrush test set. For each benchmark we report
CLIP, L1, DINO metrics and human ratings. Human evaluation shows the percentage of raters that prefer the results of Emu Edit.

Emu Edit Test Set

‘ MagicBrush Test Set

Method CLIP;, 1 CLIP;,, 1 CLIP,,, 1+ L1, DINO?

Text Image|CLIPy;,-1T CLIP;,, T CLIP,,;T L1} DINOT| Text Image
align. faith.

align. faith.

InstructPix2Pix [2]  0.078 0.834 0.219 0.121 0.762 |77.33 76.71| 0.115 0.837 0.245 0.093 0.767 |71.79 71.60
MagicBrush [25] 0.090 0.838 0.222  0.100 0.776 |74.50 74.10| 0.123 0.883 0.261 0.058 0.871 |59.54 60.39
PnP [21] 0.028 0.521 0.089 0.304 0.153 |98.95 99.00| 0.025 0.568 0.101  0.289 0.220 [97.24 96.96

Null-Text Inv. [12] ~ 0.101 0.761 0.236 0.075 0.678
Our 0.109 0.859 0.231 0.094 0.819

81.63 85.47| 0.121 0.752 0.263 0.077 0.664 |76.54 85.66

0.135 0.897 0.261  0.052 0.879

from inherent bias. During data collection, annotators were
directed to use the DALLE-2 image editing platform [13] to
generate the edited images. Thus, this benchmark is biased
towards editing instructions that the DALLE-2 editor can
successfully follow, which may compromise both its diver-
sity and complexity.

Emu Edit Benchmark. To collect a dataset with re-
duced bias and of higher diversity, we take a different ap-
proach. We first define seven different categories of poten-
tial image editing operations: background alteration (Back-
ground), comprehensive image changes (Global), style al-
teration (Style), object removal (Remove), object addition
(Add), localized modifications (Local), and color/texture al-
terations (Texture). Then, we utilize the diverse set of in-
put images from the MagicBrush benchmark [25], and for
each editing operation, we task crowd workers to devise
relevant, creative, and challenging instructions. Moreover,
to increase the quality of the collected examples, we ap-
ply a post-verification stage, in which crowd workers filter
examples with irrelevant instructions. Finally, to support
evaluation for methods that require input and output cap-
tions [8, 21], we additionally collect an input caption and
output caption. When doing so, we ask annotators to en-
sure that the captions capture both important elements in
the image, and elements that should change based on the
instruction. See supplementary Sec. ?? for examples of our
benchmark, which we release to support better evaluation.

Baseline Comparisons. We compare our model against
two instruction-based image editing baseline models: In-
structPix2Pix [2], and MagicBrush [25], which is a vari-
ant of InstructPix2Pix that was fine-tuned on the Mag-
icBrush dataset. Additionally, we compare our model
against two text-based image editing methods: PNP [21]
and Null-Text Inversion modification of P2P [8, 12]. Un-
like instruction-based models, these works expect image de-
scriptions. Therefore, we provide them with access to the
input caption and output caption. Note however, provid-
ing these methods with access to the ground-truth captions
could potentially offer an advantage over instruction-based
models, since the automatic metrics also rely on these cap-
tions. Tab. 2 shows our results versus the baselines. The
findings indicate that human raters consistently prefer Emu

Edit over all baselines by a large margin. Furthermore,
apart from Null-Text Inversion, which as explained above,
utilizes the ground-truth captions during inference, our ap-
proach outperforms the existing baselines on the automatic
metrics. We provide qualitative comparisons in Fig. 3. Ad-
ditional comparisons are available in the supplementary:
Fig.??-??, and Fig.??-2?. For performance on vision tasks,
see Sec. ??.

5.2. Ablations

Computer Vision Tasks Enhance Image Editing Tasks.
Here we demonstrate the importance of the vision tasks to
Emu Edit performance on image editing tasks. For this,
we trained two additional models on all tasks except: (i)
detect and segment tasks, and (ii) image-to-image trans-
lation tasks. As we show in Tab. 4, adding the detection
and segmentation tasks improves the model performance in
region-based editing tasks. Additionally, we observe that
image-to-image translation tasks improve the performance
in free-form editing tasks. We hypothesize that the recog-
nition tasks improve the model’s recognition capabilities,
leading to more accurate and precise localized modifica-
tions. Similarly, image-to-image tasks assist the model in
understanding the entire image structure, thereby enhanc-
ing its capabilities for global operations.

Contribution of Learned Task Embeddings. We com-
pare three variants of Emu Edit: (i) conditioned on the
ground-truth task embedding, (ii) conditioned on the task
embedding, as predicted by the task predictor described in
Sec. 4.2, and (iii) without conditioning on the task type.
Tab. 3 shows the results on the validation set of our bench-
mark. As can be seen, conditioning on the task type boosts
the model’s performance. Furthermore, our task predic-
tor closes the gap with the ground-truth conditioned model.
Qualitatively, we observe that without conditioning on the
task type the model may perform the wrong editing opera-
tion (Fig. 4). In supplementary Fig. ??, we demonstrate the
effect of manipulating the task while keeping the instruc-
tion and input image fixed. As can be seen, changing the
task embedding directly influences the task executed by the
model.

3(iii) was trained without learned task embeddings.
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Table 3. Learned task embeddings ablation on our validation set.
We compare variations of Emu Edit: without task type condition,
with predicted task type, and with ground-truth task type.

Method |CLIP4;, 1 CLIP;, T CLIP,,, 1 L1) DINOT

w/o task emb. | 0.104 0.843 0.227  0.109 0.792
with pred. task| 0.117 0.850 0.231 0.103 0.809
with gt task 0.119 0.852 0.231 0.100 0.811

Table 4. Contribution of computer vision tasks. Human evaluation
is shown as a percentage of majority votes in favor of our model.

Region-Based Free-form

Method Text Image

align. faith.

without detect/segment  60.0  60.2 | 52.3 51.5
without im2im translation 50.2 49.0 | 58.0 60.1

Text Image
align. faith.

@
Incorporate,
a bee into
the bag’s
pattern and,
detect it

Emu Edit

Figure 5. Generations on unseen tasks with task inversion. (i)
composition of add and detect tasks, (ii) object contour detection.

Multi-Task versus Expert Models. We show that training
a single model on a diverse range of tasks, leads to enhanced
performance in each individual task, outperforming models
that are specifically trained for a single task. To validate
this, we train an expert model for each task, and compare its
performance to the single one (See supplementary Tab. ??).
Influence of Number of Tasks. Here, we ablate the number
of tasks participating in the multi-task training scheme. In
supplementary Fig. ?? we report the average CLIP4;,- on
the Style and Texture tasks when iteratively excluding other
tasks, and training a model on the new tasks list. As can be
seen, augmenting the model with additional tasks leads to
improved performance, even in tasks which are not directly
associated with the added ones.

5.3. Few-Shot Learning of New Tasks

Finally, we evaluate our model’s ability to generalize by
testing it in a few-shot scenario with previously unseen
tasks. We test its performance across the following tasks:
(i) super-resolution (x4), (ii) object contour detection, (iii)

0.3
— 0.2
-
0.1
[ S 4 ¥ o1 J
0 10° 10! 10? 0 10° 107 102

Number of Samples Number of Samples

(a) Inpainting (b) Add + Detect

Figure 6. Few-shot performance for different tasks over 1, 10,
and 100 samples. Each line represents a different training set-
ting: ’Scratch’ finetune (Blue, (), Emu Edit finetune (Orange,
0), task inversion (Green, A), all compared to an upper-bound
expert trained on 100k samples (Red dashed line, ).

mask-based inpainting, and (iv) a composite task formed by
combining two tasks from our dataset: add and detect. For
each task, we assess the model’s performance when trained
with 0, 1, and 100 examples, with the 0-example case be-
ing equivalent to a zero-shot setting. We compare three
baselines: (i) Scratch — Emu Edit initialized with Emu’s
weights, trained on the examples, (ii) Task Inversion — Emu
Edit with task inversion (Sec. 4.3), and (iii) Finetune — Emu
Edit where we finetune all of the model’s weights on the
examples. As an upper-bound expert, we train the first
baseline on 100,000 examples. Note that, the "Task Inver-
sion" and "Finetune" baselines were trained on the multi-
task dataset whereas the “Scratch” baseline was not. As
can be seen in Fig. 6, fine-tuning with a single example
is enough to significantly enhance the performance, while
training from scratch results in overfitting. Moreover, utiliz-
ing 100 samples nearly achieves expert-level performance,
implying that the model can effectively generalize to novel
tasks. We also observe that task inversion performs simi-
larly to complete fine-tuning, indicating that the model al-
ready contains essential information and can be prompted
with a new task embedding to yield the desired result. For
performance and generation examples on additional tasks

6. Conclusion

Emu Edit presents a step change in instructable image edit-
ing capabilities, primarily due to its unique training on both
recognition and generation tasks. This dual-focus approach
significantly enhances the model’s comprehension of natu-
ral language instructions, enabling it to accurately execute a
wide array of editing operations. Its ability to generalize to
new tasks with minimal examples further demonstrates its
versatility and robustness. Furthermore, our framework has
the potential for further integration with a multimodal LLM
in future projects, particularly for complex editing tasks re-
quiring detailed reasoning from the input image, such as
counting objects or executing intricate tasks.
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