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Abstract

Implicit Neural Representation (INR) as a mighty rep-
resentation paradigm has achieved success in various com-
puter vision tasks recently. Due to the low-frequency bias is-
sue of vanilla multi-layer perceptron (MLP), existing meth-
ods have investigated advanced techniques, such as posi-
tional encoding and periodic activation function, to improve
the accuracy of INR. In this paper, we connect the network
training bias with the reparameterization technique and
theoretically prove that weight reparameterization could
provide us a chance to alleviate the spectral bias of MLP.
Based on our theoretical analysis, we propose a Fourier
reparameterization method which learns coefficient matrix
of fixed Fourier bases to compose the weights of MLP. We
evaluate the proposed Fourier reparameterization method
on different INR tasks with various MLP architectures, in-
cluding vanilla MLP, MLP with positional encoding and
MLP with advanced activation function, etc. The superi-
ority approximation results on different MLP architectures
clearly validate the advantage of our proposed method.
Armed with our Fourier reparameterization method, better
INR with more textures and less artifacts can be learned
from the training data. The codes are available at https:
//github.com/LabShuHangGU/FR-INR.

1. Introduction
Recently, a novel signal representation paradigm called

implicit neural representation (INR) has gained great atten-
tion in the field of computer vision and graphics. The main
idea of INR is using multi-layer perceptron (MLP) to pa-
rameterize continuous and differentiable functions in an im-
plicit manner. For example, given a gray scale image, INR
takes the coordinates of the pixels as inputs to MLP and
trains it to output the exact gray values using gradient-based
optimization methods. Benefiting from the continuity na-
ture and the expressive power of MLP, a more versatile con-
tinuous representation can be learned than traditional dis-
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Figure 1. A conceptual illustration of our Fourier reparameteri-
zation method. We reparameterize the linear weight W with a
trainable coefficient matrix Λ and a fixed Fourier basis matrix
B. More balanced eigenvalue distribution of neural tangent ker-
nel (NTK) matrix implies that our method is able to alleviate the
low-frequency bias of deep neural network, and therefore leads to
better implicit neural representation.

crete grid-based methods. Consequently, INR has achieved
state-of-the-art performance across a variety of tasks such
as signal representation [34, 35], 3D shape reconstruction
[3, 6, 30] and novel view synthesis [26, 28, 37].

Despite the universal approximation capabilities of MLP
which have been proved in [16], obtaining highly accurate
INR is not trivial. Specifically, MLP with ReLU activation
function often fails to represent the high-frequency compo-
nents of the signal such as the complex texture information
in images and the intricate geometric shapes involved in 3D
shape reconstruction. Such tendency of MLP to learn sim-
ple patterns of the target function is referred to as spectral
bias [31] or low-frequency bias [43]. To improve the per-
formance of INR, great efforts have been made to alleviate
or circumvent the spectral bias of MLP. One main category
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of approaches find that the difficulty of learning high fre-
quencies becomes easier by increasing the complexity of
the input data manifold [31] and explicitly extracting high-
frequency features (for example, positional encoding [26])
to deal with the spectral bias issue. While, inspired by the
pioneer work of [35], another main class of approaches ex-
ploit advanced activation functions [13, 34, 45] for pursuing
more accurate approximation.

In this paper, we dive into details of the spectral bias is-
sue and prove that reparameterizing weights of MLP with
appropriate bases could provide us with a chance to nar-
row the gap between the magnitude of low-frequency and
high-frequency loss, i.e. to alleviate the spectral bias dur-
ing the training of deep neural networks. We propose a
Fourier reparameterization strategy (see Fig. 1) and eval-
uate our method on simple 1D function approximation task
and several real-world vision applications. Experimental re-
sults clearly validate our advantages in alleviating the low-
frequency bias issue for improving approximation accuracy.
Our study provides the literature with a practical reparam-
eterization solution for improving the approximation accu-
racy of MLP without modifying its network architecture,
previously, which so far has only been studied for the con-
volutional architectures. Moreover, our theoretical analysis
sheds new light on the advantage of reparameterized train-
ing by connecting it with the spectral bias issue. We hope
our study could inspire future works in improving training
dynamics of deep neural networks with sophisticated repa-
rameterization methods.

Our contributions are summarized as follows:
• We connect network training bias with reparameterization

technique and theoretically prove that appropriate repa-
rameterization could alleviate the spectral bias issue by
altering the magnitude of gradients from different fre-
quencies.

• We propose a practical reparameterization method for
multi-layer perceptron, i.e. the Fourier reparameteriza-
tion scheme, which could effectively improve the approx-
imation accuracy of implicit neural representation with-
out modifying its network architecture.

• We provide detailed experimental analysis on a wide
range of implicit neural representation tasks. Our Fourier
reparameterization method allows the improvement of
commonly used network architectures and provides an
representation with more high-frequency details.

2. Related Work
Implicit neural representation. The novel signal rep-
resentation paradigm representing a signal as an implicit
continuous function by neural networks has gained lots
of attention. Recent works have demonstrated the re-
markable performance and memory-efficient property in
many representation tasks such as 2D image representa-

tion [13, 22, 32, 34, 35], occupancy volume representation
[7, 24, 30, 36], view synthesis [4, 25, 26, 28, 37, 40] and
virtual reality [8]. However, the popular activation func-
tion ReLU empirically can’t achieve the satisfactory perfor-
mance with vanilla MLP. Therefore, various modifications
have been studied. The mainstream modifications can be
classified into two aspects. The first aspect focuses on the
input domain. Rahaman et al. [31] show that learning high
frequency components gets easier with the increasing of the
complexity of the input data manifold. Inspired by this phe-
nomenon, Mildenhall et al. [26] use the positional encoding
which adopts the sinusoidal mapping of the input features as
the new input in the view synthesis and achieve remarkable
performance. Zhong et al. [47] also use this method to re-
construct more accurate continuous distributions of 3D pro-
tein structure. Recent studies [19, 23, 38] propose to encode
input coordinates by learned features. Inspired by this, Xie
et al. [42] rearrange the order of input coordinates and ob-
tain more low-frequency components, avoiding confronta-
tion with spectral bias. The second aspect focuses on the
activation function. Sitzmann et al. [35] find that using peri-
odic functions, such as the sinusoidal function, as activation
functions can achieve remarkable performance in signal fit-
ting. Sinusoidal functions are also explored by Fathony et
al. [13] in multiplicative filter networks. Yüce et al. [45]
explain the success of the usage of periodic function from a
structured dictionary perspective. Inspired by this perspec-
tive, Saragadam et al. [35] use a complex Gabor wavelet
activation and achieve robust and accurate representations.

Spectral bias. The term spectral bias [31] also known as
the low-frequency bias [43] implies that MLP tends to learn
simple patterns of the real data [2] or the low-frequency
components of the target function [43]. Arpit et al. [2]
first find this phenomenon which has attracted lots of fol-
low up studies. Rahaman et al. [31] exploit the structure
of ReLU networks to evaluate its Fourier spectrum and es-
timate the relationships between the spectral norm of MLP
weights and the amplitude of the output of MLP at differ-
ent frequencies. Xu [43] builds a theoretical framework by
Fourier Analysis to decompose gradients in the frequency
domain and discusses the distributions of the absolute gra-
dients of the parameters at different frequencies. From the
perspective of the neural tangent kernel (NTK) theory [18],
components of the target function corresponding to larger
kernel eigenvalues will be learned faster [5, 33]. Therefore,
Tancik et al. [39] propose to leverage the eigenvalues of the
NTK matrix to analyze the spectral bias of MLP. In this
paper, we dive into details of the low-frequency bias issue
and find that network reparameterization could provide us
a chance to alleviate the bias in network training. We ana-
lyze our proposed method with the frequency decomposed
loss, gradient [43] and NTK theory [39]. Our experimen-
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tal results validate our idea of improving spectral bias with
weight reparameterization.

Weight reparameterization. In order to reduce the infer-
ence cost of deep learning models [15, 17], weight reparam-
eterization method is proposed by Zagoruyko et al. [46].
Inspired by this work, various reparameterization methods
have been explored to train networks with mergeable aux-
iliary structures [9–11, 27, 29, 41]. Recently, there are still
researches which exploit the idea of reparameterization to
design network optimizer for advanced training [12]. In
this paper, we adopt the idea of weight reparameterization
to improve the approximation accuracy of MLP. For the
first time, we link the reparameterization technique with
network training bias and theoretically prove the possibil-
ity of mitigating frequency-bias with reparameterized train-
ing. We hope our theoretical analysis could shed new light
on network reparameterization and inspire future studies on
advanced reparameterization method.

3. Methodology
3.1. The formulation of INR

The task of INR is to approximate a target function with a
multi-layer perceptron (MLP): fΘ(x) ≈ g(x); where g(x) :
Rd0 7→ RdN is the target function which defines a mapping
from a d0-dimensional real space to a dN -dimensional real
space, and fΘ(x) is a N-layer MLP with the learnable pa-
rameters set Θ. Denote the output of n-th layer as:

y(n) = σ(W(n)y(n−1) + b(n)), (1)

where σ is an element-wise nonlinear activation function;
W(n) ∈ Rdn×dn−1 and b(n) ∈ Rdn are the weight and
bias for the n-th layer; y(n) ∈ Rdn and y(n−1) ∈ Rdn−1

are the output and input of the n-th layer, respectively. For
n = N , we have that y(N) = W(N)y(N−1) + b(N). The
MLP parameters set Θ = {W(i),b(i)}i=1,...,N is learned
by minimizing the loss with gradient-based methods.

The above idea of INR is memory efficient, and the con-
tinuous nature of MLP allows INR to model fine detail
that is not limited by the grid resolution. However, dur-
ing the practical optimization process, gradients of param-
eters are dominated by the error of low-frequency compo-
nents. Such a spectral bias hinders the accurate learning
pace of MLP. Various modifications, including input feature
adjustments [39, 42] and activation function adjustments
[13, 32, 34, 35], have been exploited for alleviating the
spectral bias issue. In this paper, we show that appropriate
reparameterization of MLP is also beneficial for narrowing
the gap between the gradient magnitude of high-frequency
components and low-frequency components.

3.2. Fourier reparameterization

As we have introduced in the previous subsection, the
weight matrix in the n-th layer of MLP is denoted as
W(n) ∈ Rdn×dn−1 . Instead of directly calculating the gra-
dient of W(n) respect to the loss function, we reparameter-
ize each row of W(n) as a weighted combination of fixed
Fourier bases:

W(n) = Λ(n)B(n), (2)

where Λ(n) ∈ Rdn×M are the coefficient matrix, and
B(n) ∈ RM×dn−1 are M Fourier bases. Each Fourier basis
is achieved by changing the frequency ω and phase φ of a
cosine function cos(ωz + φ):

bij = cos(ωizj + φi), for i = 1, . . . ,M ; j = 1, . . . , dn−1,
(3)

where z = {zj}j=1,...,dn−1 is the sampling position se-
quence. More details will be introduced in section 5.4.3.
Generally, we have M ≥ dn−1 which means that we repa-
rameterize the weight matrix with over complete bases.

Please note that in Eq. 2, each basis is with the same
dimension as the input feature y(n−1), which means that
our reparameterization scheme firstly projects the input fea-
tures onto a series of Fourier bases and weighted combines
the projection coefficients:

y(n) = σ(Λ(n)B(n)y(n−1) + b(n)). (4)

In the above equation, B(n) is fixed and we only learn Λ(n)

during the training phase. After training, we combine Λ(n)

and B(n) to form the weight matrix W(n) in the inference.
Therefore, our reparameterization approach only adjusts the
training dynamic and will not affect the inference process
of INR. Moreover, the proposed Fourier reparameterization
approach does not affect the input feature space as well as
nonlinear activation functions. Our method is compatible
with existing techniques, including but not limited to posi-
tional encoding [39] and periodic activation functions [35].

3.3. Discussion

In this subsection, we analyze our reparameterization
scheme in the frequency domain. By carefully analyz-
ing the gradients of learning parameters respect to differ-
ent frequencies, we show that appropriate weight reparam-
eterization provides us with a chance to alleviate the low-
frequency bias in the network training.

We start our analysis with the definition of some basic
concepts [43]. We denote the Fourier Transform of the
target function and the MLP representation of INR at fre-
quency k as: F [g](k) and F [fΘ](k), respectively. Then,
the approximation error at frequency k can be naturally
achieved by E(k) = F [g](k) − F [fΘ](k). We further
define the following notations: E(k) = A(k)eiθ(k) and
L(k) = |E(k)|2; where A(k) and θ(k) ∈ [π, π] indicate the
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amplitude and phase of E(k); L(k) is the loss component
of frequency k; | · | is the norm of the complex number.

Based on the above definitions, Xu [43] shows that the
spectral bias can be reflected on the absolute gradient values
of parameters at different frequencies:

Theorem 1. (Theorem 1 in [43]) Consider a MLP with
one hidden layer using tanh function σ(x) as the activa-
tion function. For any frequencies k1 and k2 such that
k1 > k2 > 0 and there exist c1, c2, such that A(k1) >
c1 > 0, A(k1) < c2 < ∞, we have

lim
δ→0

µ({wj : |∂L(k2)
∂Θjl

| > |∂L(k1)
∂Θjl

|for all j, l} ∩Bδ)

µ(Bδ)
= 1,

(5)
where Bδ is a ball with radius δ centered at the origin and
µ(·) is the Lebesgue measure of a set and Θjl is a leanrable
parameter in the parameters set.

Generally, Theorem 1 shows that in the case of one hid-
den layer MLP, the gradient respect to low-frequency loss
L(k2) is almost always larger than the one respect to high-
frequency part. Although the condition of one hidden layer
MLP is not appliable in most of practical cases, based on
recent observations of low-frequency bias [2, 18, 31, 43],
the above Theorem 1 inspires us to assume such relation-
ship to MLP with more hidden layers. Then, we could have
the following Theorem 2:

Theorem 2. Given a MLP with multiple hidden layers,
reparameterize the weight matrix W ∈ Rd×d of one hid-
den layer with a trainable coefficient matrix Λ ∈ Rd×M

and the fixed basis matrix B ∈ RM×d. For any frequencies
k1 and k2 such that k1 > k2 > 0, given any ϵ ≥ 0 and
fixed i, for j = 1, 2, . . . ,M , there must exist a set of basis
matrices such that

|
∂L(k1)

∂λij

/
∂L(k2)

∂λij

| ≥ max{|
∂L(k1)

∂wi1

/
∂L(k2)

∂wi1

|, . . . , |
∂L(k1)

∂wid

/
∂L(k2)

∂wid

|} − ϵ,

(6)

where W(i, j) = wij and Λ(i, j) = λij .
The detailed proof of Theorem 2 can be found in our

supplementary file. Theorem 2 implies that reparameteriz-
ing MLP weights with appropriate bases is able to enlarge
the portion of high-frequency loss components in compari-
son to low-frequency components, i.e. improving the spec-
tral bias in training MLP. Although the optimal basis for
frequency-bias adjustment is related to the training data and
we are not able to achieve the optimal basis with negligi-
ble efforts, we experimentally find that fixed Fourier basis
is able to improve the low-frequency bias and provide better
INR for various function approximation tasks.

3.4. Implementation details

Basis construction. As we have introduced in section 3.2,
we establish Fourier bases with various frequencies and

phase parameters. We adopt P different phases and 2F
different frequencies. Concretely, the φ in Eq. 3 varies
from 0 to 2π(P − 1)/P with step length 2π/P ; for each
phase value, we have a group of low-frequency bases with
ω = {1/F, 2/F, . . . , 1} and a group of high-frequency
bases with ω = {1, 2, . . . , F}. Based on the above basis
construction scheme, we could obtain M = 2FP bases.
Details of the selected F and P values for different settings
will be introduced in the experimental section. We also pro-
vide ablation experiments in our supplementary field to an-
alyze the effects of different design choices of F and P .

Sampling strategy. The cosine basis function used in
Eq. 3 is a continuous function. We need to sample val-
ues from the continuous function to achieve discrete basis
for weight reparameterization. As the number of sampling
points is determined by the neuron number of input fea-
ture, the only key hyper-parameter during the sampling pro-
cess is the range of sampling. To reflect characteristics of
different frequency bases, we choose the maximum period
(Tmax = 2πF ) of the adopted Fourier Bases as the sam-
pling range. To maintain the periodicity of bases, uniform
sampling is employed. Due to the symmetry of bases, we
set the sampling interval as [− 1

2Tmax,
1
2Tmax]. The length

of interval will be discussed in our ablation studies.

Initialization scheme. Initialization techniques are one of
the prerequisites for successfully training a deep neural net-
work. The basic idea of the existing popular initialization
strategies [14, 15] is to let the network start in a regime
with constant variance between inputs and outputs. While
our method reparameterizes the network weights as the
fixed Fourier bases and trainable coefficients, initializing
the learnable coefficients Λ with existing initialization tech-
niques will deactivate the constant variance requirement.
We therefore adjust the initialization strategy for Λ. For
ReLU activation function [15], we initialize the trainable
coefficient matrix Λ(n) using the following equation:

λ
(n)
ij ∼ U(−

√√√√ 6

M
∑dn−1

t=1 b
(n)
jt

2 ,

√√√√ 6

M
∑dn−1

t=1 b
(n)
jt

2 ), (7)

where λ
(n)
ij , b

(n)
ij is in the i-th row and j-th column of

Λ(n) ∈ Rdn×M and B(n) ∈ RM×dn−1 , respectively. For
SIREN [35], we have the similar initialization scheme. The
detailed derivation can be found in our supplementary file.

4. Experimental Analysis on Simple Function
Approximation

We firstly conduct experiments on the simple function
approximation task. Thanks to the simplicity of the target
function, the behaviour of MLP can be analyzed with vari-
ous techniques. In the remaining of this section, we firstly
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can be seen as carrying prior information about the data.164
This work shows the feasibility and the potential of the re-165
parameterization method which introduce the fixed special166
matrix.167

3. Methodology168

3.1. The formulation of INRs169

The task of INR is to approximate a target function with a170
multi-layer perceptron (MLP): F✓(x) ⇡ g(x); where g(x) :171
Rd0 7! RdN is the target function which defines a mapping172
from a d0-dimensional real space to a dN -dimensional real173
space, and f✓(x) is a N-layer MLP with learnable parame-174
ters ✓. Denote the output of n-th layer as:175

yn = �(Wnyn�1 + bn), (1)176

where � is the nonlinear activation function, Wn, bn are177
weights and biases for the n-th layer, yn 2 Rdn and178
yn�1 2 Rdn�1 are the input and output of the n-th layer, re-179
spectively. The MLP parameters ✓ = {W (i), b(i)}i=1,...,N180
are learned by minimizing the approximation error with181
gradient-based methods.182

The above idea of INR is memory efficient, and the con-183
tinuous nature of MLP allows INR to model fine detail that184
is not limited by the grid resolution. However, during the185
practical optimization process, gradients of parameters are186
dominated by the error of low-frequency component, such187
a spectral bias hinders the accurate learning pace of MLPs.188
Various modifications, including input feature adjustment189
and activation function adjustment, have been exploited for190
alleviating the low-frequency bias issue. In this paper, we191
show that appropriate reparameterization of MLP is also192
beneficial for narrowing the gap between the gradient mag-193
nitude of high-frequency components and low-frequency194
components.195

3.2. Fourier re-parameterization196

As we have introduced in the previous subsection, the197
weight matrix in the n-th layer of MLP is denote as Wn 2198
Rdn⇥dn�1 . Instead of directly calculate the gradient of Wn199
respect to the loss function, we re-parameterize each row of200
Wn as a weighted combination of Fourier basis:201

Wn = ⇤nBn, (2)202

where ⇤n 2 Rdn⇥M are the coefficient matrix, and Bn 2203
RM⇥dn�1 are M Fourier basis. Each Fourier basis is204
achieved by changing the frequency ! and phase ' of a co-205
sine function cos(!z + '):206

bi,j = cos(!izj +'i), for i = 1, . . . , M ; j = 1, . . . , dn�1,
(3)207

where z = {zj}j=1,...,dn�1
is the sampling positions, more208

implementation details will be introduced in section xxxxx.209

Generally, we have M � dn�1 which means we reparame- 210
terize the weight matrix with over complete Basis. 211

Please note that in Eq. ??, each basis are with the same 212
dimension as input features yn�1, which means our re- 213
parameterization scheme firstly project the input features 214
onto a seriers of Fourier basis and weighted combine the 215
projection coefficients to generate the feature of next layer: 216

yn = �(⇤nBnyn�1 + bn). (4) 217

In the above equation, Bn is fixed and we only learn ⇤n 218
during the training phase. After training, we combine ⇤n 219
and Bn to form the weight matrix Wn in the inference. 220
Therefore, our reprameterization approach only adjust the 221
training dynamic and will not affect the inference process 222
of INR. Moreover, the proposed Fourier reparameterization 223
approach does not affect the input feature space as well as 224
nonlinear activation functions, our method is able to work 225
together with existing techniques of positional encoding and 226
periodic activation functions. 227

3.3. Discussion 228

In this subsection, we analyze our re-parameterization 229
scheme in the frequency domain. By carefully analyze the 230
gradient of learning parameters respect to gradients from 231
different frequencies, we show that appropriate weight re- 232
parameterization provide us a chance to alleviating the low- 233
frequency bias in network training. 234

We start our analysis with the definition of some basic 235
concepts. We denote the Fourier transform of the target 236
function and the MLP representation of INR at frequency 237
k as: F [g](k) and F [f⇥](k). Then, the approximation er- 238
ror at frequency k can be naturally achieved by E(k) = 239
F [g](k) � F [f ](k). With E(k), we further define the fol- 240
lowing notations: E(k) = A(k)ei✓(k) and L(k) = |E(k)|2; 241
where A(k) and ✓(k) 2 [⇡, ⇡] indicate the amplitude and 242
phase of E(k), L(k) is the loss component of frequency k, 243
| . |is the norm of the complex number. 244

Based on the above definitions, xxx et al. shows that the 245
spectral bias can be reflected on the absolute gradients val- 246
ued of parameters at different frequencies with the follow- 247
ing Theorem 1 [] 248

Theorem 1. (Theorem 1 in [? ]) Consider a MLP with 249
one hidden layer using tanh function �(x) as the activation 250
function. For any frequencies k1 and k2 such that k2 > 251
k1 > 0 and there exist c1, c2, such that A(k2) > c1 > 252
0, A(k2) < c2 < 1, we have 253

lim
�!0

µ({wj : |@L(k1)
@⇥jl

| > |@L(k2)
@⇥jl

|for all j, l} \ B�)

µ(B�)
= 1

(5) 254
where B� is a ball with radius � centered at the origin and 255
µ(·) is the Lebesgue measure of a set. 256
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main paper, for example, we can refer to ??;705
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8. Appendix714

Recall the section ??, the loss function at frequency k is715
defined as:716

L(k) = |F [g](k) � F [f ](k)|2 (11)717

We define the loss function L in the time domian as:718

L =
X

x

(g(x) � f(x))2 (12)719

Proof. (Proof of Thm 2)720

The proof is devided into three steps.721

First, the equivalence of frequency domain derivatives722
and time domain derivatives will be demonstrated.723

Note that according to Parseval’s theorem and equation724
11 and 12, the following relationships holds true:725

C
X

k

L(k) = L (13)726

where C is a constant. Then, the gradient derived from the727
frequency domain and time domain has the following rela-728
tionship:729

Cr✓L(k) = r✓L (14)730

✓ denotes the parameters of the MLP. As C is a positive con-731
stant, it’s trival for the equivalence during the gradient de-732
scent. So the equivalence of frequency domain derivatives733
and time domain derivatives has been proved.734

Second, the reparameterization in any hidden layer of the735
MLP is expressed as follows:736

W = ⇤B (15)737

where 738

W =

2
664

w11, w12, . . . , w1n

w21, w22, . . . , w2n

· · ·
wm1, wm2, . . . , wmn

3
775 (16) 739

and 740

⇤ =

2
664

�11, �12, . . . , �1L

�21, �22, . . . , �2L

· · ·
�m1, �m2, . . . , �mL

3
775 (17) 741

and 742

B =

2
664

b11, b12, . . . , b1n

b21, b22, . . . , b2n

· · ·
bL1, bL2, . . . , bLn

3
775 (18) 743

By the matrix multiplication,the follow equation holds true: 744

wij =
⇥
�i1, �i2, . . . , �iL

⇤

2
6664

b1j

b2j

...
bLj

3
7775 (19) 745

Regarding wi1, . . . , win as the latent variable related with 746
�ij , by the chain rule for differentiation, the following equa- 747
tion holds true, for i = 1, 2, . . . , m; j = 1, 2, . . . , L: 748

@L

@�ij
=

nX

t=1

bjt
@L

@wit
(20) 749

According to the result of the first step and the pointwise- 750
differentiability of function series, the following result 751
holds true: for any i = 1, 2, . . . , m; j = 1, 2, . . . , L: 752

@L(k)

@�ij
=

nX

t=1
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7. Rationale701

Having the supplementary compiled together with the main702
paper means that:703

• The supplementary can back-reference sections of the704
main paper, for example, we can refer to ??;705

• The main paper can forward reference sub-sections706
within the supplementary explicitly (e.g. referring to a707
particular experiment);708

• When submitted to arXiv, the supplementary will already709
included at the end of the paper.710

To split the supplementary pages from the main paper, you711
can use Preview (on macOS), Adobe Acrobat (on all OSs),712
as well as command line tools.713

8. Appendix714

Recall the section ??, the loss function at frequency k is715
defined as:716

L(k) = |F [g](k) � F [f ](k)|2 (11)717

We define the loss function L in the time domian as:718

L =
X

x

(g(x) � f(x))2 (12)719

Proof. (Proof of Thm 2)720

The proof is devided into three steps.721

First, the equivalence of frequency domain derivatives722
and time domain derivatives will be demonstrated.723

Note that according to Parseval’s theorem and equation724
11 and 12, the following relationships holds true:725

C
X

k

L(k) = L (13)726

where C is a constant. Then, the gradient derived from the727
frequency domain and time domain has the following rela-728
tionship:729

Cr✓L(k) = r✓L (14)730

✓ denotes the parameters of the MLP. As C is a positive con-731
stant, it’s trival for the equivalence during the gradient de-732
scent. So the equivalence of frequency domain derivatives733
and time domain derivatives has been proved.734

Second, the reparameterization in any hidden layer of the735
MLP is expressed as follows:736

W = ⇤B (15)737

where 738

W =

2
664

w11, w12, . . . , w1n

w21, w22, . . . , w2n

· · ·
wm1, wm2, . . . , wmn

3
775 (16) 739

and 740

⇤ =

2
664

�11, �12, . . . , �1L

�21, �22, . . . , �2L

· · ·
�m1, �m2, . . . , �mL

3
775 (17) 741

and 742

B =

2
664

b11, b12, . . . , b1n

b21, b22, . . . , b2n

· · ·
bL1, bL2, . . . , bLn

3
775 (18) 743

By the matrix multiplication,the follow equation holds true: 744

wij =
⇥
�i1, �i2, . . . , �iL

⇤

2
6664

b1j

b2j

...
bLj

3
7775 (19) 745
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�ij , by the chain rule for differentiation, the following equa- 747
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can be seen as carrying prior information about the data.164
This work shows the feasibility and the potential of the re-165
parameterization method which introduce the fixed special166
matrix.167

3. Methodology168

3.1. The formulation of INRs169

The task of INR is to approximate a target function with a170
multi-layer perceptron (MLP): F✓(x) ⇡ g(x); where g(x) :171
Rd0 7! RdN is the target function which defines a mapping172
from a d0-dimensional real space to a dN -dimensional real173
space, and f✓(x) is a N-layer MLP with learnable parame-174
ters ✓. Denote the output of n-th layer as:175

yn = �(Wnyn�1 + bn), (1)176

where � is the nonlinear activation function, Wn, bn are177
weights and biases for the n-th layer, yn 2 Rdn and178
yn�1 2 Rdn�1 are the input and output of the n-th layer, re-179
spectively. The MLP parameters ✓ = {W (i), b(i)}i=1,...,N180
are learned by minimizing the approximation error with181
gradient-based methods.182

The above idea of INR is memory efficient, and the con-183
tinuous nature of MLP allows INR to model fine detail that184
is not limited by the grid resolution. However, during the185
practical optimization process, gradients of parameters are186
dominated by the error of low-frequency component, such187
a spectral bias hinders the accurate learning pace of MLPs.188
Various modifications, including input feature adjustment189
and activation function adjustment, have been exploited for190
alleviating the low-frequency bias issue. In this paper, we191
show that appropriate reparameterization of MLP is also192
beneficial for narrowing the gap between the gradient mag-193
nitude of high-frequency components and low-frequency194
components.195

3.2. Fourier re-parameterization196

As we have introduced in the previous subsection, the197
weight matrix in the n-th layer of MLP is denote as Wn 2198
Rdn⇥dn�1 . Instead of directly calculate the gradient of Wn199
respect to the loss function, we re-parameterize each row of200
Wn as a weighted combination of Fourier basis:201

Wn = ⇤nBn, (2)202

where ⇤n 2 Rdn⇥M are the coefficient matrix, and Bn 2203
RM⇥dn�1 are M Fourier basis. Each Fourier basis is204
achieved by changing the frequency ! and phase ' of a co-205
sine function cos(!z + '):206

bi,j = cos(!izj +'i), for i = 1, . . . , M ; j = 1, . . . , dn�1,
(3)207

where z = {zj}j=1,...,dn�1
is the sampling positions, more208

implementation details will be introduced in section xxxxx.209

Generally, we have M � dn�1 which means we reparame- 210
terize the weight matrix with over complete Basis. 211

Please note that in Eq. ??, each basis are with the same 212
dimension as input features yn�1, which means our re- 213
parameterization scheme firstly project the input features 214
onto a seriers of Fourier basis and weighted combine the 215
projection coefficients to generate the feature of next layer: 216

yn = �(⇤nBnyn�1 + bn). (4) 217

In the above equation, Bn is fixed and we only learn ⇤n 218
during the training phase. After training, we combine ⇤n 219
and Bn to form the weight matrix Wn in the inference. 220
Therefore, our reprameterization approach only adjust the 221
training dynamic and will not affect the inference process 222
of INR. Moreover, the proposed Fourier reparameterization 223
approach does not affect the input feature space as well as 224
nonlinear activation functions, our method is able to work 225
together with existing techniques of positional encoding and 226
periodic activation functions. 227

3.3. Discussion 228

In this subsection, we analyze our re-parameterization 229
scheme in the frequency domain. By carefully analyze the 230
gradient of learning parameters respect to gradients from 231
different frequencies, we show that appropriate weight re- 232
parameterization provide us a chance to alleviating the low- 233
frequency bias in network training. 234

We start our analysis with the definition of some basic 235
concepts. We denote the Fourier transform of the target 236
function and the MLP representation of INR at frequency 237
k as: F [g](k) and F [f⇥](k). Then, the approximation er- 238
ror at frequency k can be naturally achieved by E(k) = 239
F [g](k) � F [f ](k). With E(k), we further define the fol- 240
lowing notations: E(k) = A(k)ei✓(k) and L(k) = |E(k)|2; 241
where A(k) and ✓(k) 2 [⇡, ⇡] indicate the amplitude and 242
phase of E(k), L(k) is the loss component of frequency k, 243
| . |is the norm of the complex number. 244

Based on the above definitions, xxx et al. shows that the 245
spectral bias can be reflected on the absolute gradients val- 246
ued of parameters at different frequencies with the follow- 247
ing Theorem 1 [] 248

Theorem 1. (Theorem 1 in [? ]) Consider a MLP with 249
one hidden layer using tanh function �(x) as the activation 250
function. For any frequencies k1 and k2 such that k2 > 251
k1 > 0 and there exist c1, c2, such that A(k2) > c1 > 252
0, A(k2) < c2 < 1, we have 253

lim
�!0

µ({wj : |@L(k1)
@⇥jl

| > |@L(k2)
@⇥jl

|for all j, l} \ B�)

µ(B�)
= 1

(5) 254
where B� is a ball with radius � centered at the origin and 255
µ(·) is the Lebesgue measure of a set. 256

3

Figure 2. Visualization of simple function. The left side of the
first row displays the visualization of the 1D simple function on
the x − y coordinate axis. The left side of the second row shows
the amplitude of the function in the frequency domain. The right
side presents the average loss curve with the shaded area indicating
the fluctuation from 100 repetitions.

introduce our experimental settings and then analyze the
property of our proposed Fourier reparameterization (FR).

4.1. Experimental settings

In order to thoroughly analyze the advantage of FR, we
establish a 1D function g(x) by combining sine functions
of different frequencies:

2R(
sin(3πx)+sin(5πx)+sin(7πx)+sin(9πx)

2
), (8)

where R(·) is the rounding function for increasing the com-
plexity of approximation. A similar rounded periodic func-
tion has been adopted in [43] to analyze the spectral-bias
of MLP. A visualization of our adopted 1D function and its
spectrum can be found in the first column of Fig. 2. As de-
signed by purpose, four distinct peaks marked by red dots
can be observed in the stem plot of the spectrum.

We utilize a four-hidden-layer MLP to approximate the
g(x) with 300 discrete values uniformly sampled in the in-
terval [−1, 1], where each hidden layer consists of 128 neu-
rons. We conduct experiments on both the ReLU and the
periodic activation function Sin. The ω0 in Sin activation
function is set as 5 for the pursuit of fast convergence [35].
For our reparameterization approach, we reparameterize the
weight matrices between consecutive hidden layers and set
F = 64 and P = 16. Therefore, we have M = 2048
bases in total. The four comparison methods are denoted as:
MLP+ReLU, MLP+ReLU+FR, MLP+Sin, MLP+Sin+FR.
All the methods are trained with Adam optimizer [21] for
10000 iterations with a learning rate 1e-6 and full-batch.

4.2. Approximation results and analysis

The convergence curves by different methods can be
found in Fig. 2. For both the ReLU and Sin activation
function cases, Our FR approach improves the convergence

speed as well as approximation error of vanilla MLP. Espe-
cially for the naive MLP+ReLU case, training network with
our proposed reparameterization method could improve the
original training paradigm by a large margin.

Frequency-specific error analysis. In [43], using Discrete
Fourier Transform, Xu et al. compute the relative difference
∆k between the target signal and the output of MLP at fre-
quency k and empirically show the low-frequency bias of
MLP:

∆k =
|FD[g](k)−FD[fΘ](k)|

|FD[g](k)| , (9)

where FD denotes the Discrete Fourier Transform. We fol-
low [43] and use Eq. 9 to analyze the frequency-specific ap-
proximation error after different numbers of iterations. As
can be found in Fig. 3, the evolution of frequency-specific
error clearly shows the low-frequency bias in network train-
ing: the error of low-frequency components generally re-
duces much faster than that of high-frequency components.
The proposed FR method narrows the gap in dropping speed
of low-frequency error and high-frequency error, thereby
leading to overall faster convergence speed.

Neural tangent kernel. Neural tangent kernel (NTK) [18]
is a theory to analyze the dynamic training process of neu-
ral networks. Tancik et al. [39] have shown that compo-
nents of the target function that correspond to larger kernel
eigenvalues will be learned faster and adopt kernel eigenval-
ues [5, 33, 39] to analyze the spectral bias. Since the con-
ditions of the standard NTK theorey are not applicable to
commonly used networks, we follow [1, 45] and utilize the
following empirical NTK to analyze the training dynamics
of different networks:

k′NTK(xi, xj) = JfΘ(xi)JfΘ(xj)
T , (10)

where JfΘ(xi) denotes the Jacobian matrix of the function
fΘ at the i-th sample xi and k′NTK(xi, xj) is the element in
the i-th row and j-th column of the empirical NTK matrix.

The first four and the summation of the remaining eigen-
values by different methods are shown in Fig. 4. Consis-
tent with the conclusion of [39], the eigenvalues of MLP +
ReLU decay rapidly, which means the model suffers severe
spectral bias during training. While, our FR scheme is able
to reduce the percentage of the first eigenvalue and enlarge
the other eigenvalues of the empirical NTK matrix, leading
to more balanced eigenvalue distribution during training.

5. Experimental Results on Vision Applications
Implicit neural representation has been utilized in dif-

ferent vision applications. In this section, we evaluate the
proposed FR method on different vision applications.
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Figure 3. Evolution of frequency-specific approximation error with training iterations of four different methods (x-axis for training step,
y-axis for frequency and colormap for relative approximation error).

Figure 4. The distribution of different NTK eigenvalues. ’First’
denotes the percentage of the largest eigenvalue, and so on. ’Re-
main’ refers to the percentage of the summation of remaining
eigenvalues.

5.1. 2D Color image approximation

Natural images are extremely complex functions which
simultaneously encompass rich low- and high-frequency
components [20]. Single image fitting has become an ideal
test bed [34, 35, 42] to evaluate the capability of implicit
neural representation. In our experiments, we attempt to
parameterize a function ϕ : R2 7→ R3, x 7→ ϕ(x) that rep-
resents a given discrete image in a continuous fashion.

We establish MLP with four hidden layers and each hid-
den layer contains 256 neurons. We conduct experiments
on three MLP architectures, i.e. (1) MLP with RLU as the
activation function (MLP+ReLU), (2) MLP + ReLU with
Fourier positional encoding (MLP+ReLU+PE) [39], and
(3) MLP with Periodic Sin activation function (MLP+Sin)
[35]. MLP+ReLU+PE and MLP+Sin represent two impor-
tant categories of techniques in INR. Experimental results
on more activation functions and other input adjustments
can be found in our supplementary file. For each MLP ar-
chitecture, we train baseline model which trains network
parameters directly with the standard back-propagation ap-
proach and (+FR) model which utilizes our proposed FR
scheme in the training phase. We reparameterize the weight
matrices between consecutive hidden layers and set F =
128, P = 32 for all the images in the experiment. We use
Adam optimizer to minimize the ℓ2 loss between ground
truth pixel values and INR approximations. The MLPs are
trained with an initial learning rate of 10−4 for 3000 itera-
tions, and then we drop the learning rate to 10−5 for another

Figure 5. Visual examples of the 2D color image approximation
results (PSNR) by different methods. Detailed experimental set-
tings can be found in section 5.1.

7000 iterations. Full-batch training is adopted.
In Table 1, we report the PSNR values achieved by dif-

ferent INRs for approximating the first 8 images in the Ko-
dak 24 dataset. More evaluation metrics can be found in our
supplementary file. Our FR method is able to improve the
approximation accuracy for all the three network architec-
tures. Some visual examples of the learned approximations
can be found in Fig. 5. Our FR method enables the network
to capture more fine details.

5.2. Representing shapes with signed distance func-
tions

Representing shapes with differentiable signed distance
functions (SDFs) has the advantage of modeling arbitrary
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Table 1. Peak signal to noise ratio (PSNR) of 2D color image approximation results by different methods. Detailed experimental settings
can be found in section 5.1.

Method Kodim 01 Kodim 02 Kodim 03 Kodim 04 Kodim 05 Kodim 06 Kodim 07 Kodim 08 Average

MLP + ReLU 19.37 26.12 25.11 24.57 17.31 21.69 20.79 15.68 21.33
MLP + ReLU + FR 20.34 26.58 27.21 25.72 18.33 22.25 22.47 16.64 22.44

MLP + ReLU + PE 24.47 31.41 31.53 30.16 22.87 26.54 29.33 21.14 27.18
MLP + ReLU + PE + FR 27.64 33.92 34.45 33.23 26.78 29.83 34.13 24.70 30.59

MLP + Sin 31.59 36.55 39.59 36.66 33.05 34.10 39.96 31.00 35.31
MLP + Sin + FR 33.45 38.68 39.58 37.96 34.64 34.45 39.76 32.16 36.34

Figure 6. Visual examples of the shape representation results (IOU) by different methods. More experimental details can be found in
section 5.2.

topologies [35]. In this section, we evaluate the proposed
FR method on the shape representation task. We follow the
experimental setting of [34], which sample points over a
512 × 512 × 512 grid. We establish MLP with two hid-
den layers and each hidden layer contains 256 neurons.
We reparameterize the weight matrices between consecu-
tive hidden layers and set F = 256, P = 8. We use Adam
optimizer to minimize the ℓ2 loss between sampled voxel
values and INR approximations. We train all the networks
for 200 epoches with an initial learning rate of 5 × 10−3.
The learning rate is reduced exponentially to 5× 10−4 .

In Fig. 6, we visualize the shape representation results by
different methods, the intersection over union (IOU) metrics
are also provided for reference. FR method represents intri-
cate geometric shape with less artifacts and more details.

5.3. Learning neural radiance fields

Learning neural radience fields for view synthesis is also
a main application of INR [26, 28, 37]. The main process
of the view synthesis task is to reconstruct 3D representa-
tion of an object from the given 2D images taken at various
given angles. In this section, we evaluate our FR method
in this task. The original NeRF and two recent SOTAs by
neural networks, i.e. the InstantNGP [28] and the DVGO
[37], are adopted. We follow the experimental settings of
these works and train the models on the all objects of the

Blender dataset [26] with 800 × 800 resolutions. For the
original NeRF, we reparameterize the weight matrices of
last three hidden layers with F = 128, P = 32 and the
“NeRF-pytorch” codebase [44] is used. The complete re-
sults for the InstantNGP and DVGO can be found in our
supplementary file.

In Fig. 7, we show some view synthesis results of the
original NeRF. With our proposed FR, the INR is able to
capture more details of the complex texture, also represent-
ing the more accurate reflection of light.

5.4. Ablation study

In this part, we conduct ablation studies to analyze our
design choices. All the ablation experiments are conducted
on the first three images of the Kodak 24 dataset, and the
structure of the 2D image fitting task is adopted.
5.4.1 Weight reparameterization with Fourier basis

In Theorem 2, we show that appropriate bases selection
could alleviate the low-frequency bias issue. In this paper,
we select fixed Fourier bases to reparameterize our MLP
and show its superiority approximation accuracy on sev-
eral applications. In this section, we conduct experiments
to show that the selection of basis plays a crucial role in
our approach. We generate random basis from a uniform
distribution and denote the model as random reparameteri-
zation (RR). Moreover, we also adopt a similar strategy as
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MLP+ReLU+PE (32.92dB) MLP+ReLU+PE+FR (33.07dB) MLP+ReLU+PE (25.06dB) MLP+ReLU+PE+FR (25.12dB)

Figure 7. Visual examples of the view synthesis results (PSNR) by learning neural radiance field with the original NeRF [26].

Table 2. Ablation experiments on the reparameterization bases.
Our Fourier bases achieve the average appriximation results
(PSNR) on all the three network architectures. Detailed experi-
mental results can be found in Section 5.4.1.

Method Kodim 01 Kodim 02 Kodim 03 Average

MLP+ReLU+RR 19.64 26.19 25.66 23.83
MLP+ReLU+RIR 20.22 26.48 26.67 24.46
MLP+ReLU+FR 20.34 26.58 27.21 24.71

MLP+ReLU+PE+RR 27.05 32.16 33.38 30.86
MLP+ReLU+PE+RIR 26.91 32.04 32.85 30.60
MLP+ReLU+PE+FR 27.64 33.92 34.45 32.00

MLP+Sin+RR 34.28 37.84 30.48 34.20
MLP+Sin+RIR 25.19 28.61 27.12 26.97
MLP+Sin+FR 33.45 38.68 39.58 37.24

the existing reparameterization works [11] which updates
all the random initialized parameters instead of fixed basis
during the training phase, and denote the model as randomly
initializaed reparameterization (RIR). The average approx-
imation results by different reparameterization schemes are
shown in Table 2. The results clearly show that bases play
a pivotal role in reparameterized training, and our selected
Fourier bases have advantages in 2D image fitting.

5.4.2 Training speed

As shown in Fig. 2, in terms of learning iterations, our
FR accelerates the convergence speed of network training.
While, since our FR will lead to more computations in each
training step, we present the detailed training time by dif-
ferent methods. In Table 3, we show the average per epoch
training time by different methods in the simple function
approximation experiment. The additional time introduced
by our FR is not significant. Although it takes an additional
17.3% time (from 2.89× 10−3 seconds to 3.31× 10−3 sec-
onds) for training a MLP + ReLu architecture, our FR could
lead to 86% improvement on accuracy.

5.4.3 Sampling interval analysis

Another important hyper-parameter for our method is
our sampling interval. In this section, we conduct experi-

Table 3. Average per epoch training time by different methods
in the simple function approximation experiment. Detaild experi-
mental results can be found in Section 4.1 and Section 5.4.1.

Method MLP+ReLU MLP+ReLU+FR MLP+Sin MLP+Sin+FR

Time (ms) 2.89 3.31 3.50 3.59

Table 4. Ablation experiments on sampling intervals. Our method
could achieve good results (PSNR) on a wide range of sampling
intervals. More experimental details can be found in section 5.4.3.

Length (×Tmax) 0.1 0.25 0.5 1 2 4 10

Average 23.34 24.07 24.38 24.62 24.71 24.53 23.14

ments to analyze the effect of different sampling intervals.
Denote the maximum period of the adopted Fourier func-
tion as Tmax. We vary the sampling interval from 0.1Tmax

to 10Tmax. The approximation accuracy with different
sampling intervals can be found in Table 4. Our method
could achieve good results with a wide range of sampling
intervals, i.e. 0.5Tmax to 4Tmax. While sampling points
from a very small range fails to represent an entire period
for many bases and leads to a performance drop.

6. Conclusions
In this paper, we proposed a novel FR method for ad-

vanced INR. We theoretically analyzed the low-frequency
bias issue of MLP for INR and show that appropriate
network reparameterization is able to alleviate the low-
frequency bias in training MLP. Based on our theoretical
analysis, we proposed our FR method which learns coef-
ficient matrix of fixed Fourier bases to compose network
weights instead of directly learning them from training data.
Experiments were conducted on simple function task and
real-world vision applications. Our method improved the
representation accuracy for a wide range of commonly used
INR network architectures. We hope our initial study could
inspire future works in adjusting the learning bias of net-
work by advanced network reparameterization.
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