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Abstract

Sequence-to-sequence vision-language models are
showing promise, but their applicability is limited by
their inference latency due to their autoregressive way of
generating predictions. We propose a parallel decoding
sequence-to-sequence vision-language model, trained
with a Query-CTC loss, that marginalizes over multiple
inference paths in the decoder. This allows us to model
the joint distribution of tokens, rather than restricting to
conditional distribution as in an autoregressive model. The
resulting model, NARVL, achieves performance on-par
with its state-of-the-art autoregressive counterpart, but is
faster at inference time, reducing from the linear complexity
associated with the sequential generation of tokens to a
paradigm of constant time joint inference.

1. Introduction

Sequence-to-sequence autoregressive Transformers [12, 34,
42] are deep neural network architectures that map a se-
quence of tokens, each representing a segment of text as
a vector, onto another sequence, typically representing the
same sequence shifted forward by one. Such models can
handle a variety of tasks [24, 33, 34], whereby the input
(query) text could be a sentence in natural language, and
the output (target) the same sentence in a different language
(translation), or the answer to a question expressed in the
input (question-answering, QA), the name of an entity or
class, etc. The Transformer architecture’s versatile and uni-
fied design has led to the development of all-in-one (AIO)
models, such that multiple tasks can be approached as a
sequence-to-sequence translation problem.
Vision-Language AIO Models [29, 44, 48], including
sequence-to-sequence, have proven successful at mapping
multimodal inputs, typically images and strings of text, to
textual outputs that encode tasks expressible as a string
of text, such as visual question answering (VQA), visual
grounding (VG), visual entailment (VE), and image cap-
tioning (IC). These auto-regressive sequence-to-sequence
models face the inference cost issue, since they tend to be
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Figure 1. Comparison of inference speed and performance be-
tween NARVL (non-autoregressive) and its autoregressive coun-
terpart on four vision-language tasks: Visual entailment (VE), Vi-
sual grounding (VE), Visual Question Answering (VQA), and Im-
age captioning (IC). From (a), we see that NARVL speeds up the
inference of AR by a factor between 1.4 and 12.7, while achieving
on-par performance.

unwieldy and need to be executed 7' times to generate an
output sequence of length 7T'.

Non-autoregressive methods are proposed in some re-

cent Visual-language AIO models [22], which formu-
late sequence-to-sequence mapping as a bipartite match-
ing problem. This approach excels in tasks where visual
information is key, such as object grounding and detec-
tion. However, it’s less effective of handling language-
focused tasks like Visual Question Answering and Image
Captioning. This discrepancy may stem from the nature
of the tasks: in object detection/grounding, tokens are or-
derless and each token correlates to distinct objects or
boxes, leading to a weaker inter-object correlation com-
pared to the stronger inter-word correlation in sentences
where tokens are ordered. Consequently, the set-to-set,
order-independent translation method is more suitable for
visual tasks than for language-oriented ones.
Main hypothesis: We hypothesize that a transformer-based
architecture could leverage the homogeneity of the input
and output spaces, while enabling more flexible output
spaces. In particular, we are interested in the possibility
of performing joint decoding of a sequence in one step,
rather than step-by-step. We test whether such an archi-
tecture could achieve performance comparable to the auto-
regressive baseline at significantly reduced inference cost.
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To test this hypothesis, we develop a new Visual-
language AIO model, turning a Transformer-based autore-
gressive one-step prediction model into a joint predictor
of the target tokens, as explained in Sect. 3. In Sect. 4
we show that such a model, which we name NARVL, can
be used for the multiple visual-language tasks of interest
(VQA, captioning, entailment, grounding). As shown in Fig
1, NARVL achieves comparable performance to a state-of-
the-art autoregressive model, with significant speed advan-
tage ranging from 1.4 to 12.7 times.

NARVL is made possible by re-purposing of the decoder
of an autoregressive Transformer model, and the model has
a layer of learnable query tokens (LQT) that are fixed at
inference time and learned during fine-tuning. NARVL is
enabled by Query-CTC (Q-CTC) loss, a variant of the CTC
loss used in audio and language [ 15] but never applied to the
visual domain, where the ordinary empirical cross-entropy
loss (CE) is marginalized with respect to generative vari-
ability in the prediction. Whereas in the language domain
the multiple decoding hypotheses stem from the output of
the encoder, in vision this is limiting, since input and output
spaces are heterogeneous. Therefore, we modify the CTC
loss to marginalize not with respect to decoding paths, but
with respect to paths from the sequential learnable query
tokens of order indexes to the predicted tokens.

Our key contributions can therefore be summarized as
follows: (i) we propose a new sequence-to-sequence non-
autoregressive all-in-one vision language model, that gen-
erates sequences in-parallel. (ii) We introduce Query-CTC
loss to train this architecture, inspired by the CTC loss used
in audio recognition and language, that leverages the se-
quential learnable query tokens to generate multiple gen-
erative paths, and marginalizes the resulting population in
the ordinary cross-entropy loss. We show that (iii) the re-
sulting architecture is competitive with state-of-the-art auto-
regressive architecture in multiple vision-language tasks, at
a significantly reduced inference time, since the model is
executed once at inference time, rather than sequentially for
as many steps as tokens in the output layer.

2. Related Work

Sequence to Sequence Generation. Many NLP tasks share
a common problem setting where the input consists of se-
quences of words with the output being targeted sequences.
Therefore, the sequence to sequence formulation becomes
a prototypical setting for many tasks in NLP [41], which
can be readily solved by an autoregressive (AR) model.
Beyond recurrent neural networks (RNNs), the decoder in
Transformers [42] also adopts the autoregressive strategy
in both training and prediction. On the vision side, con-
sidering an image as a sequence of tokens was popularized
by the Vision Transformer (ViT) [10]. Transformers [42]
based approaches pix2seq [5, 6] formulate object detection,

instance segmentation, and human poses as sequence gen-
eration problem, which differs a lot from approaches de-
signed specifically for individual tasks [4, 9, 23]. Further-
more, [44, 52] unify more tasks with seq2seq models. Re-
cently, vision-language tasks have received increasing at-
tention [30], including visual questioning and answering
[2], and visual grounding [49] that have also been tackled
by AR models for sequence to sequence generation.
Non-autoregressive Sequence Generation. [17] proposes
non-autoregressive (NAR) Transformer model for machine
translation that generates the translated sequence in paral-
lel. The main challenge in NAR is to capture the inter-token
dependency [16] since the predictions are made condition-
ally independent. To improve inter-token dependency, in
[18, 38-40, 43, 47], the model architectures are modified
to conduct local NAR only, or light AR layers are added at
the end of the decoder. In [1, 3, 21, 35, 37], hand-crafted
or learnable latent variables are incorporated. Knowledge
distillation [53] has proven effective to reduce complexity
of training and increase robustness. In [14, 28], curriculum
learning has been applied to simplify the learning task.
Set-to-Set Prediction. In the seminal Detection Transform-
ers (DETR) [4], a set of object queries are turned into a
set of detected objects. A key component is the Hungarian
matching step that deterministically assigns object queries
to the ground-truth objects in training. Broadly speaking,
we can also view the decoder in DETR as performing non-
autoregressive set generation, which works well for order-
less objects but may not be directly applicable to text se-
quence generation in vision-language models.
Non-autogressive Vision-Language Models. Inspired
by [17], we develop NARVL, a non-autogressive vision-
language model and illustrate the effectiveness of NARVL
on a recent autogressive model, OFA [44]. The Connection-
ist Temporal Classification (CTC) loss [15] and knowledge
distillation [53] have been adopted in NARVL to implement
a NAR solution. CTC is designed to align the two sequences
with different lengths, and it marginalizes over all possi-
ble monotonic alignments. It assumes output always longer
than target, and the final output is decoded by collapsing
repetitive tokens. The variant of the CTC loss we introduce
is formalized in Eq. 1, and NARVL described in Sect. 3.

3. Method

We co-opt a pre-trained sequence-to-sequence autoregres-
sive model (OFA [44]) and turn it from a one-step predictor
(AR) encoding of p(y¢t1|®1,... 27, y1,. .. y:) to a flexible
task-dependent joint encoding of the target query given het-
erogeneous inputs p(y1, . . ., yn|x1, ... x7; q), where z; are
token embeddings of images and text and y are output to-
ken embeddings. The overview of the proposed NARVL is
shown in Figure 2.

Specifically, we embed an image with a convolutional
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Figure 2. The overview of NARVL. NARVL borrows the encoder from OFA [44], where the embedding sequence of input text and
image CNN (ResNet) feature are concatenated in the input token sequence. Unlike the standard transformer decoder that generates outputs
sequentially, conditioning on the generated sequence, our non-autoregressive decoder takes a sequence of tokens that are learnable weights,
and generates outputs for all tokens in parallel. As the output sequence length is unknown, we set the number of of learnable query tokens
to a value (hyperparameter) larger than the largest target sequence length. The loss used, Q-CTC, is described in Eq. 1.

backbone and obtain an activation map with D channels,
which we represent as W x H tokens of dimension D, each
representing one among the W x H pixels, along with a po-
sitional encoding. We concatenate visual tokens with tex-
tual tokens, obtained from the input string with BPE tok-
enization [36], to form the input to the encoder, which is
identical to [44]. The decoder, however, is different from
OFA [44], although it shares the overall structure, thus en-
abling us to leverage its pre-trained weights to fine-tune.

3.1. Parallel Transformer Decoder

The OFA decoder is an auto-regressive predictor that takes
as input the output of the encoder and a sequence of T'
consecutive input tokens, and produces as output the same
sequence shifted forward by one, limiting the hypothesis
space to the range of the T + 1 token, and forcing repeated
execution 7' times at inference time, to produce the single
last token (see Figure 3(a)). Our NARVL decoder also takes
as input the output of the encoder, but it replaces the in-
put sequence with a fixed-length and constant sequence of
tokens, representing the task-specific hypothesis space im-
plicit in the training data (see Figure 3(c)).

This constant layer of Learnable Query Tokens (LQT),
is chosen during training as the output of a module with
learnable parameters, including the number of tokens, as a
hyperparameter, bounded from below by a function of the
length of the ground truth output sequence (target tokens)
in the training set.

Discussion The design of NARVL decoder is different from
the existing non-autoregressive Transformer decoder pro-
posed in Natural Language processing [16—18] (see Figure
3(b)), which utilizes the outputs of the encoder as the inputs
to the decoder. However, unlike translation, the sequence
lengths of input and output sequences are not strongly cor-
related in vision-language tasks. The NARVL encoder-
decoder design is also different from set-to-set decoders

[4, 22], and our learnable queries for the decoder is a se-
quence rather than a set. For each learnable query, we add
absolute position embeddings in the bias of attention layers,
to force the structure of output sequences.

3.2. NARVL with Query Connectionist Temporal
Classification Loss

NARVL is trained with a variant of the CTC loss [15] used
in audio and language, which consists of a cross-entropy
marginalized over a distribution of predictions. In our case,
the distribution of prediction corresponds to multiple in-
ference paths in the decoder from the redundant learnable
query tokens, to the smaller sequence of output tokens.

3.2.1 Q-CTC for Visual-Language Translation

Suppose we have a training set of n image-text pairs D =
{(I;, T;,Y;)}? where I, T, Y specify the input images, in-
put texts and target outputs, respectively. Note that the out-
put sequences can be text sequences or location sequences.
The model generates Y according to the inputs I and T.
In order to formalize the expression of the Q-CTC loss,we
call the Learnable Query Tokens (LQT) ¢ € RP*N | the
outputs of the encoder z € RP*L the output tokens are
z € RP*N and the ground truth tokens y € RP*T', where
N > T. Let the decoder vocabulary denote D, containing
d possible target tokens including the whole valid vocabu-
lary tokens and one blank token —.

Let 2;(x; q) denote the “path” from the query set to the
output token, meaning the value of z as a (deterministic)
function of the encoding x for a given set of LQTs q. We
denote the ensemble of paths p(z|z;q) = d(z — 2(x;q)),
where ¢ is Dirac function and ¢ are learnable parame-
ters. The ordinary cross-entropy loss would be Log(6) =
- log% where f, . (-) computes the logits of ;
J e

on target token class y;, and 6 are the learnable parameters
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Figure 3. Comparison of various design of Transformer decoder. (a) Standard Auto-regressive Transformer decoder; (b) The existing non-
autoregressive Transformer decoders for audio and language tasks; (c) The proposed non-autoregressive Transformer decoder in NARVL.
During training, an AR decoder (a) uses teacher forcing with causal masks, where tokens can only attend to previous tokens, while all
tokens can attend to each other in the decoders of (b) and (c). NARVL decoder has dedicated query tokens inputs, instead of using the
outputs of the encoder as inputs in (b). This design avoids the large latency of the decoder due to the long output sequence from the encoder.

of the encoder that produces z, and of the decoder that pro-
duces z given x.

Given the vocabulary size d and output sequence length
N, there are N possible output sequences. Among all
output sequences, the Q-CTC selects the valid output se-
quences, and maximizes the probability over all valid paths.
Collapse operation, denoted as B, removes all blank to-
kens —, and merge continuous repetitive tokens between
two blank tokens. For example, B(— a bag on a table) =
B(a — bag bag — on a a table —) = a bag on a table. There
are many possible sequences that can be collapsed to the
correct target sequence, which are valid alignments. When
we calculate the loss, we marginalize over the set of valid
paths. We denote the collapsed valid sequences as p(z|x; q).

Before x is instantiated at inference time, z; are random
variables, functions of x, which we need to marginalize in
the loss, obtaining

efvi (zi(zk39)

Lece@®a)==3, 3. Il rrroy
J

kozinp(zlewi)
(1

, Where k is the number of all training samples. Note that
this loss is different from the CTC loss, where the marginal-
ization only depends on x, not q. Our loss is a function of
0 as well as the learnable parameters used to produce ¢, in
addition to any other hyperparameters shared with the ordi-
nary autoregressive model.

3.2.2 Knowledge Distillation

Optimising Q-CTC is more challenging in visual-language
domain than language domain, because the image-text in-
put sequence has less structure than pure language inputs,
and the model is required to generate well-structured se-

quences from less order sequences. Due to the large solu-
tion space and the lack of inter-token dependency between
decoder tokens, non-autoregressive models can have lower
performance compared to auto-regressive models. To re-
duce the solution space in model training, we exploit two
simple knowledge distillation mechanisms[19] in training.
Specifically, we train a standard Transformer with an auto-
regressive loss, and set this model as the teacher model,
which has significantly less variations in ground-truth and
makes learning targets more deterministic. We observe
that this knowledge distillation benefits the task of long
sequence outputs such as image captioning, and the de-
tailed discussion is in Section 4.3. We also observe that the
model initialization weights are non-trivial for training Q-
CTC loss, and we use OFA pretrained weights to initialize
NARVL and finetune it in various down-stream tasks.

3.2.3 Model inference

During the inference, for each output token, we use the text
token in the vocabulary with the largest probability as pre-
diction. We follow the same path collapse rules used in
training to remove - and repetitive tokens to obtain the fi-
nal predicted sequence.

4. Experiments

We perform experiments on various vision-language tasks,
and make performance and speed comparisons to the state-
of-the-art models to show the effectiveness of the proposed
method. Figure 4 summarizes the tasks we experiment on.

4.1. Implementation details

We implement NARVL starting from the official OFA[44]
code, which is written in the fairseq library [32]. To make a

13606



Task Model Inputs Model Outputs
Image Language
VQA How many people are in 2
the image?
VG The skateboarder who [x,y, W, h]
wears a hat.
IC What does the image Two men are playing
describe? skateboards.
VE Three people are running. Contradiction
Figure 4. We test the proposed NARVL on various vison-

language tasks, including Visual Question Answering (VQA), Vi-
sual grounding (VG), Image Captioning (IC) and Visual Entail-
ment (VE). The inputs and outputs of each tasks are illustrated
here, and all types outputs are unified within the sequence formu-
lation.

fair comparison to the autoregressive OFA model, we keep
most hyper-parameters and training schedule the same and
this helps us to understand the effect of switching decoder
paradigm. Some OFA models are reproduced to get the
weights for speed benchmarking purpose, and are noted
in the result tables. We use the same OFA encoder task
prompts, but don’t use decoder prompts, as the NARVL de-
coder doesn’t do conditional token generation.

Q-CTC loss is used in the final model of all tasks, and
knowledge distillation is only used in Image Captioning
and VQA tasks. We follow the model size settings used
in [44]. We benchmark our model speed on Tesla V100-
SXM2-16GB GPU with a batch size of 1, and take the av-
erage over the test samples. As the GPU needs to ramp up,
the first image tends to be much slower than other images,
and we remove the first sample inference time in all calcu-
lations. Gradient accumulation is used at training time to
increase the batch size of the below experiments.
Referring Expression Grounding RefCOCO[49],
RefCOCO+[49], RefCOCOg[31] datasets are created
based from the COCO dataset, where a piece of text
(referring expression) that describes a unique object in the
image is given and the model is asked to find the object.

In both RefCOCO and RefCOCO+, testA only contains
people and testB only contains non-people objects. We feed
the referring expression text sequence and image to the en-
coder, and let the decoder predict the fixed length output
sequence of bounding box position tokens.

When benchmarking the model speed, we take the aver-
age inference time on the entire validation or test set. On
RefCOCO and RefCOCOplus, we average the inference
time of val, testA and test B subsets and only report the
average inference time for simplicity. Similarly we average
over val and test subsets for RefCOCOg dataset. We train
NARVL for 10 epochs with effective batch size of 128, and
we set the number of decoder learnable query input tokens
to 5.

Visual Entailment SNLI-VE dataset is built off SNLI and

Flickr30K datasets, and the task requires the model to rea-
son relationship (entailment, contradiction and neutral) be-
tween an image premise and text sentence hypothesis. Im-
age premise and text sequence hypothesis are fed into the
NARVL encoder, and the decoder predicts the sequence of
one token that is one of the relationship words. We use a
batch size of 256 and train our model for 5 epochs, and the
number of decoder input learnable query tokens is set to 2.
Knowledge distillation is not adopted given the simplicity
of the output sequence of this task.

Visual Question Answering Visual Question Answering is
a task that requires cross-modal reasoning that the model is
asked to answer question by looking at image. The number
of decoder input tokens is set to 6, and the model is trained
with 10 epochs with a batch size of 512. We don’t use any
candidate answer set based constraint on the generated an-
swer sequence. We found the default OFA model that uses
all-candidate inference is quite slow, and we additionally
benchmark and report the faster beam-search version that
was released in the OFA github repository. Speed is bench-
marked on the validation set, and the accuracy numbers are
obtained from the official evaluation server.

MSCOCO Image Captioning Image captioning requires
models to generate a fluent and meaningful natural language
sentence that describes the image. We use batch size of 128
and train 5 epochs with decoder input sequence length of
20. Each image in the caption dataset has 5 captions writ-
ten independently from 5 annotators, which increases the
difficulty for NARVL training which might merge possi-
ble captions and generate captions that are not fluent, and
knowledge distillation is adopted to simplify the training
captions.

4.2. NAR vs AR

We compare accuracy and speed between AR (autoregres-
sive) and our proposed NAR (non-autoregressive) models
on various vision- language tasks and results are shown in
Table 1. It shows that the NAR model consistently out-
performs the AR model on visual grounding and has sig-
nificantly higher execution speed (with 2.4 to 12.7 times
speed up on various tasks). As visual entailment requires
shorter output sequences, the speedup is smaller than for
other tasks. The significant speedups are on VQA and Cap-
tioning datasets, because the length of output sequence is
longer than that of the grounding task. We will analyse the
accuracy and inference speed for each downstream tasks in
next section.

4.3. Benchmark Performance

RefCOCO, RefCOCO+, RefCOCOg results. Following
the metric used previous works, we report Acc@0.5 num-
bers. We compare NARVL to other methods in Table 2.
Our proposed NARVL model achieves state-of-the art per-
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Table 1. Accuracy and speed comparisons of AR (autoregressive) and our proposed NAR (non-autoregressive) models on various vision-
language tasks. Our NAR model is trained under the exact same settings of model size, parameters and training schedule as the AR model
for fair comparison. The NAR model consistently outperforms the AR model on visual grounding and has significantly higher execution
speed. As visual entailment requires shorter output sequences, the speedup is smaller than for other tasks. We observe significant speedups
on VQA and Captioning datasets, but with a measurable performance drop. Beam search is used in all AR models and greedy decoding is
used in NAR models (beam search can be applied and are studied in 10, but not adopted due to its sequential nature.). All models reported

here are in base size. Inference wall clock time is measured in ms.

(a) Visual Grounding

RefCOCO RefCOCO+ RefCOCOg

Method Val TestA TestB Time Val TestA TestB Time Val Test Time
AR 88.15 90.08 83.45 133.6/1x 81.67 86.40 74.49 133.1/1x 81.92 82.02 132.8/1x
NAR 88.78 90.63 84.67 54.8/2.4x 82.35 87.15 74.74 54.6/2.4x | 82.27 82.69 54.8/2.4x

(b) Visual Entailment (c) Visual Question Answer (d) Image Captioning

Method | Dev Test Time Test-dev Test-std Time BLEU@4 METEOR CIDEr SPICE Time
AR 89.0 89.0 68.0/1x 77.48 77.58 645.1/1x 41.0 30.9 138.2 24.2 366.0/1x
NAR 89.0 89.0 48.7/1.4x 75.69 75.75  50.7/12.7x 36.4 28.7 123.1 22.5  51.2/7.2%

Table 2. Results on visual grouding datasets: RefCOCO, Ref-
COCO+ and RefCOCOg, and comparisons to previous works. *
Weights are not released and the model was reproduced by us us-
ing the official released training scripts. Difference to the reported
results in [44] might due to randomness in checkpoint picking. We
do not perform knowledge distillation for this task.

RefCOCO
Method Val TestA TestB  Speed (ms)
UNITER[7] 81.41 87.04 74.17 -
VILLA[13] 82.39 87.48 74.84 -
MDETR[22] 86.75 89.58 81.41 73.5
UNICORN[48] 88.29 90.42 83.06 266.4
OFA*[44] 91.24 9341 87.16 284.9
NARVL;;y,y(ours) 80.40 84.64 73.8 30.7
NARVL,sc(ours) 88.78 90.63 84.67 54.9
NARVLy,gec(ours) 918  94.24 88.01 150.8
RefCOCO+ RefCOCOg
Method Val TestA  TestB Val Test
UNITER[7] 7590 81.45 66.70 74.86 75.77
VILLAJ13] 76.17 81.54 66.84 76.18 76.71
MDETR[22] 79.52 84.09 70.62 81.64 80.89
UNICORN[48] 80.30 85.05 71.88 83.44 83.93
OFA* [44] 86.93 91.37 80.51 86.38 87.70
NARVL;,sc(ours) 8235 87.15 74.74 82.27 82.69
NARVLgc(ours) 87.90 92.18 81.2 87.7 88.42

formance on all subsets of RefCOCO, RefCOCO+ and Re-
fCOCOg datasets. As shown in Table 1, our NAR model
consistently outperforms the AR model on all subsets of
the three datasets and has significantly faster speed. Take
RefCOCO dataset as an example, our NAR model has on
average 0.83 higher accuracy compared to the AR model,
and is 2.4 times faster (54.8 ms vs 133.6 ms). The speedup
is introduced by the parallel nature of NARVL decoder, and
we argue the accuracy improvements come from the bidi-
rectional attention of our parallel decoder, as opposed to
uni-directional attention in autoregressive decoder, where
the later generated coordinate tokens are not available in at-

tention operation of the early token generation.

Table 3. SNLI-VE visual entailment results. NARVL shows on par
performance to previous state-of-the-art. Knowledge distillation is
not used in this task.

Method dev  test
UNITER[7] 73.8 74.0
VinVL[51] 76.5 76.6
UNIMO[26] 75.0 753
ALBEF[25] 75.8 76.0
METER[11] 777 77.6
VLMo[45] 79.9 80.0
SimVLM[46] 80.0 80.3
Florence[50] 80.2 804
OFA [44] 91.0 91.2
NARVLy,sc(ours) 89.0 89.0

NARVL},gc(ours)  91.1  91.1

SNLI-VE results We compare our NAR model and AR
model in Table 3. Our model has average inference time of
48.73 ms, which is 1.4 times faster than the AR model with
68.03 ms. The effective target sequence excluding EOS has
only 1 token, which means decoder attention in essence is
the same for NAR and AR model, and we see exactly the
same performance. As the output sequence (label-EOS) for
this dataset is shorter than other dataest, the relative speedup
from NAR model is smaller. Our NARVL shows on par
performance as the current state-of-art OFA model on both
validation and test set, as shown in Table 3 along with com-
parisons to other previous methods.

VQA results Comparisons to the AR model on VQA are
shown in 1. NAR model performance is on average 1.81
lower than the AR model, while it has gigantic speed up of
12.7 times (50.7 ms vs 645.1 ms). Our model shows com-
petitive results and more comparisons to previous methods
can be found in Table 4. The default OFA model uses a slow
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all-candidate decoding method, and we additionally report
the results with beam search decoding. It is noteworthy that
OFA-VQA was trained with trie-based auto-regressive de-
coding that predicts next node on a Trie in each step, and the
speedup would be smaller over standard AR models. In this
task, one question might have multiple valid answers e.g.
”What’s the color of the shirt?”” can be answered with “Red
and White” or "White and Red”.This might create confu-
sions for NARVL, which leads to incorrect predictions like
”White and White”, and here we use knowledge distillation
from an AR model of the same size to make the answers
used in training more deterministic.

Table 4. Results on VQA. We report base version of NARVL with
knowledge distillation. *beam search version is released in the
official OFA github that is much faster than the original allcnd
version reported in the OFA paper, and we present results from
both models here.

Method test-dev test-std Speed (ms)
UNITER[7] 73.8 74.0 -
UNIMOI26] 75.0 75.3 -
ALBEF[25] 75.8 76.0 -
METER[11] 77.7 77.6 -
VLMol[45] 79.9 80.0 -
SimVLM[46] 80.0 80.3 -
Florence[50] 80.2 80.4 -
OFA j,yge Allcan[44] 82.0 82.0 -
OFAy,sc Beam Search*[44] 77.48 77.58 645.1
OFApse Allcan[44] 78.0 78.1 15415.3
NARVL-KDy e (Ours) 75.59  75.75 50.76
NARVL-KDj,4e (Ours) 79.59 79.39 81.53

MSCOCO Image Captioning results. Comparisons in Ta-
ble 9 demonstrate the superiority of the Q-CTC loss func-
tion in the context of NARVL, where we observe a huge
improvement on all metrics with Q-CTC loss. On top of the
Q-CTC version of model, we utilize knowledge distillation
from AR model and obtained another set of massive perfor-
mance boost, as shown in Tab 9. Comparison results of our
NAR model to the AR model are shown in Tab 1, and we see
huge speed advantage of the NAR model and performance
advantage of the AR model. More comparisons to previous
methods are shown in Table 5, where all models shown are
trained without CIDEr reinforcement learning optimization,
and NARVL shows competitive results.

S. Ablation experiments

Sequential learnable queries in decoder We proposed the
learnable query token as the decoder input, which is shown
in Figure 3. This design differs from the existing non-
autoregressive Transformer for sequence generation, which
uses the outputs of the encoder as the inputs for the decoder
[16]. We compare these two designs on RefCOCO dataset
and MSCOCO Image Captioning dataset, and the results
are shown in Table 6 and Table 7, respectively. We observe

Table 5. Results on MSCOCO Image Captioning Karpathy test
split. All the models are trained without CIDER reinforcement
learning.

Method BLEU@4 METEOR CIDEr SPICE Speed (ms)
VL-T5[8] 34.5 28.7 116.5 21.9

OSCAR([27] 37.4 30.7 127.8 23.5
UNICORN/[48] 35.8 28.4 119.1 21.5

VinVL[51] 38.5 30.4 130.8 23.4

LEMON[20] 415 30.8 139.1 24.1

SimVLM[46] 40.6 33.7 143.3 254 -
OFA[44] 43.9 31.8 145.3 24.8 545.1
NARVL-KDjqse (0urs) 36.4 28.7 123.1 2247 51.2
NARVL-KDy, 4 (ours) 40.1 30.6 136.7 243 130.6

that our learnable query token design has both accuracy and
speed advantage over the encoder output design.

Table 6. Comparisons of two types of decoder input design on
RefCOCO dataset. The learnble query token design is faster and
more accurate.

Decoder Input Val  TestA TestB Speed (ms)

Output of Encoder 87.78 89.89 83.24 82.8
Learnable Query Tokens(ours) 88.78 90.63  84.67 54.9

Table 7. Comparisons of two types of decoder input design on
MSCOCO Image Captioning dataset. The learnble query token
design has equal or better performance with faster inference speed.

Decoder Input BLEU@4 METEOR CIDEr SPICE Speed (ms)

Output of Encoder 36.4 28.6 121.8 22.0 58.7
Learnable Query Tokens(ours) 36.4 28.7 123.1 22.5 51.2

Q-CTC loss vs Cross-entropy loss We compare Q-CTC
loss and standard cross-entropy loss (CE) in NARVL, and
the results are in Table 8. With cross entropy loss, the first n
input queries are supervised to predict the output sequence,
where n is the number of tokens in the target sequence. Q-
CTC loss performs significantly better than CE loss as it
assigns proper penalty to the model, while CE penalizes the
model severely even just one token position shift.

Table 8. Comparing Q-CTC loss and CE loss with NARVL on
Captioning. The base model is used in the experiments and knowl-
edge distillation is not used for both losses.

Loss BLEU@4 METEOR CIDEr SPICE Speed (ms)
CE 17.54 18.57 66.85 11.89 52.05
Q-CTC 26.69 24.06 93.24 17.38 54.03
Difference +9.15 +5.49 +26.39  +5.49 +2.0

Knowledge distillation We study the effect of knowledge
distillation on VQA datasets, and found it improves the per-
formance by 1.48/1.35 on test-dev/test-std splits, as shown
in Tab 9.

The various lengths of query tokens We study the effect
on performance and speed of our method when we change
the number of input queries to the decoder and decoding
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Table 9. Effect of knowledge distillation on VQA and Captioning
datasets. The models with "KD” are the distilled models.

Method BLEU@4 METEOR CIDEr SPICE Speed (ms)
NARVL 26.7 24.1 93.2 17.4 54.0
NARVL-KD 364 28.7 123.1 22.5 51.2
Difference +9.7 +4.6 +29.9 +5.1 2.8
(a) MSCOCO Image Captioning
Method Test-dev  Test-std  Speed (ms)
NARVL 74.21 74.4 51.52
NARVL-KD 75.69 75.75 50.76
Difference +1.48 +1.35 -0.76
(b) VQA

methods. Ablation experiments are done on MSCOCO Im-
age Captioning dataset, and the results are shown in Table
10. If the input length is smaller than the target sequence,
the decoder won’t be able to generate complete sequence,
which leads to reduced performance for number of values
that are too small, while too large number of input queries
makes it harder for the model to decide the input output
token correspondence. Naturally larger number of queries
leads to increased inference time, while increasing the num-
ber of input queries from 10 to 1000 only leads to an in-
crease from 51.32 ms to 60.40 ms, demonstrating the amaz-
ing ability of long sequence scalability.

Table 10. Ablation experiments for the number of queries on Im-
age Captioning dataset. All experiments are done with base size
model. The models used in query number ablations only and 1
epoch training)

Decoder sequence length ablations
Number of Queries BLEU@4 METEOR CIDEr SPICE Speed (ms)

10 29.43 24.89 9690  18.51 51.32
20 33.18 27.10 11035 20.48 51.72
100 32.47 26.98 108.76  20.42 51.96
500 32.36 26.79 107.34  19.94 53.82
1000 31.91 26.60 10590  19.89 60.40

Beam search in NARVL We also experiment with greedy
and beam search decoding, and observe slightly better per-
formance from beam search. Due to the increased inference
time and autoregressive nature of beam search decoding, it’s
not adopted in previous experiments.

Table 11. Ablation experiments of Beam Search in NARVL. Test
it on Image Captioning dataset. All experiments are done with
base size model.

Decoding method experiments

Decoding Method BLEU@4 METEOR CIDEr SPICE Speed (ms)

Greedy 36.38 28.70 123.15 2246 51.18
Beam Search 5 36.85 28.74 124.03  22.51 68.95
Beam Search 20 36.91 28.71 124.15 2251 70.22
Beam Search 100 37.00 28.71 12425 2251 122.91

The model scale We investigate the performance and in-
ference speed of AR and NAR models of different model
sizes, and the comparison is illustrated in Figure 5. We ob-
serve that the inference latency increases when the model
becomes large on both AR and NAR model, but AR model
has larger latency change compared to AR models. It is
worthy to note that NAR _huge has the similar the similar
performance as AR_huge, meanwhile its inference speed is
closed to the AR _base model.

92 @ (91.8,150.82)

NAR_huge

(888,549)
90 NAR_base_~~

(91.2, 284.9)
AR_huge
88 (88.5,133.6)
AR_base

Performance

821(80.4,30.7)
NAR_tiny
'Y (79.9, 89.0)
AR_tiny
50 100 150 200 250
Inference Time (ms)

Figure 5. The comparison of accuracy and inference speed with
NAR (non-autoregressive) and AR (autoregressive) models for
varying model sizes: Tiny, Base and Huge. Speed is measured
in wall clock time. NAR models significantly outperform their
AR counterparts under the same inference time budget on the Re-
fCOCO validation set.

6. Limitations

Optimization of the NAR models is difficult, and the best
performance we get on Image Captioning and VQA datasets
rely on distillation from an autoregressive model, which is
inconvenient in practice as one needs to train two models.
The most common failure case comes from the conditional
independence nature between the decoder tokens, and the
model might end up merging multiple possible valid se-
quences into a incorrect output sequence.

7. Conclusion

We have introduced NARVL, an All-in-One non-
autoregressive model for various visual-language tasks,
and the proposed NARVL repurposes the autoregressive
decoder into a more flexible encoding that can be tailored to
different hypothesis spaces using a layer of learnable query
tokens (LQTs). These tokens are, in turn, used to define
Query-CTC loss, akin to losses used in language modeling,
but augmented to incorporate LQTs. This innovation is
key to enabling the flexibility of letting the task drive the
design of the hypothesis space, which we deem critical for
heterogeneous input and output spaces as expected in the
visual domain but absent in language.
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