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Abstract

Predicting the future occupancy states of the surround-
ing environment is a vital task for autonomous driving.
However, current best-performing single-modality methods
or multi-modality fusion perception methods are only able
to predict uniform snapshots of future occupancy states
and require strictly synchronized sensory data for sensor
fusion. We propose a novel framework, StreamingFlow,
to lift these strong limitations. StreamingFlow is a novel
BEV occupancy predictor that ingests asynchronous multi-
sensor data streams for fusion and performs streaming fore-
casting of the future occupancy map at any future times-
tamps. By integrating neural ordinary differential equations
(N-ODE) into recurrent neural networks, StreamingFlow
learns derivatives of BEV features over temporal horizons,
updates the implicit sensor’s BEV features as part of the
fusion process, and propagates BEV states to the desired
future time point. It shows good zero-shot generalization
ability of prediction, reflected in the interpolation of the ob-
served prediction time horizon and the reasonable inference
of the unseen farther future period. Extensive experiments
on two large-scale datasets,nuScenes [2] and Lyft L5 [14],
demonstrate that StreamingFlow significantly outperforms
previous vision-based, LiDAR-based methods, and shows
superior performance compared to state-of-the-art fusion-
based methods.

1. Introduction

Occupancy grid is gaining more traction in the self-driving
community, due to its versatilities in downstream tasks, e.g.,
irregularly shaped object representation, robot navigation,
etc. With the help of modern deep learning technologies,
occupancy grid maps (OGMs) have evolved significantly.
For example, not just LiDAR point clouds, camera images
can now be used to construct high-quality occupancy grid
maps [26]. In addition to its fine-grained geometric infor-
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Figure 1. Comparison between conventional synchronized BEV
fusion (top) and our asynchronous BEV fusion (bottom). We for-
mulate fusion with an update-predict-update approach.

mation, occupancy grids can also represent rich semantic
and motion cues [1, 9–11]. Such cues grant occupancy net-
works the ability to predict the occupancy state of the en-
vironment at desired future timestamps. While trajectory
forecasting only contains object-level information, the oc-
cupancy grid conveys a much more comprehensive under-
standing of the surrounding environment, which is the key
to achieving better intelligence and driving safety.

Despite the great potential of occupancy-based predic-
tion, we notice that existing methods can only predict at
fixed frequencies [1, 9–11, 33]. This comes from the fact
that sensors sample the environment at predetermined fre-
quencies, e.g., motors in mechanical LiDARs spin at 10Hz,
and many cameras captures images at 30FPS. Thus, pre-
vious algorithms predict at the same intervals as they are
trained with ground-truth labels of future intervals. If future
occupancy can be predicted at any given timestamps in a
continuous manner, self-driving algorithms can have shorter
latency and more rapid responses. Streaming forecasting
can also relax the sensor synchronization constraints, as
the continuous forecasting model can update the predic-
tion as new sensory data come in. Compared with dis-
crete snapshot-based prediction, streaming motion forecast-
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ing [24] naturally has safety advantages.
We noticed several challenges in fulfilling such a stream-

ing forecasting paradigm. Firstly, sensory data and ground
truth annotations are collected at a fixed frequency. Stream-
ing forecasting aims to achieve temporally dense and con-
tinuous prediction, with data only sparsely and uniformly
sampled in the temporal domain. Secondly, mainstream
network architectures are not designed for such streaming
requirements. Forecasting at any given timestamp requires
delicate modeling of the temporal dynamics, but how to em-
bed the temporal dynamics into the widely adopted BEV
feature representation remains under-explored.

To this end, we propose to use the neural ordinary dif-
ferential equation (N-ODE) framework for such temporal
dynamics modeling. N-ODE is originally proposed for
learning continuous implicit processes in dynamic systems.
In our application, by representing the continuous motion
trends of the driving scenarios into a time series of implicit
spatial BEV features, the neural ODE framework not only
allows streaming occupancy predictions on any temporal
horizon with one fixed model, but also relaxes the sensor
synchronization constraints.

With such flexibility, we propose a novel method,
StreamingFlow, that performs asynchronous multi-modal
sensor fusion to achieve streaming occupancy forecasting.
Toward the goal of streaming modeling of temporal BEV
features, StreamingFlow integrates neural ordinary differ-
ential equations (N-ODE) onto wrapped-based recurrent
neural networks. It learns derivatives of BEV features over
temporal horizons, updates the implicit sensor’s BEV fea-
ture as part of the fusion process, and propagates BEV states
to the desired future time point. A graphical illustration of
fusion strategies between conventional BEV-based fusion
and ours is illustrated in Fig. 1.

Our contributions can be summarized as follows:
1. To the best of our knowledge, we propose the first

streaming occupancy flow prediction framework that
supports asynchronous multi-sensor fusion;

2. We design a novel temporal feature propagation strategy
that achieves high performance on dense continuous oc-
cupancy prediction with only temporally sparse labels;

3. Our proposed method achieves state-of-the-art perfor-
mance on the widely used nuScenes [2] and Lyft L5 [14]
datasets, validating the effectiveness and robustness of
our proposed algorithms.

2. Related Works

2.1. Occupancy forecasting

Occupancy flow prediction, first proposed in [23], is a valu-
able supplement to trajectory-set prediction [3, 22]. The
advantages of occupancy flow are a non-parametric distri-
bution output and fine-grained grid flow. Recent LiDAR-

based methods [21, 30, 32] attach displacement vectors
to non-empty BEV grids to describe short-term motion
in future 1.0s. These networks typically have a BEV-
based spatial-temporal backbone and several shared heads
that indicate the classification, motion, and displacement
of each grid. STPN [32] and BE-STI [30] are effective
BEV-based spatial-temporal feature extractors for binary-
occupied grids which consist of only 2D convolutional
blocks. Vision-centric pipelines usually formulate the pre-
diction task as future instance segmentation on BEV grids.
FIERY [9] is the first vision-centric stochastic future predic-
tion method. StretchBEV [1] uses a variational autoencoder
for decoupling learning of temporal dynamics and BEV de-
coder. End-to-end driving frameworks [10, 11, 33, 34] con-
duct planning based on occupancy prediction. UniAD [11]
and TBP-Former [6] models temporal future with video
transformers. One major bottleneck of video transform-
ers is prediction of long-term sequence length [28]. Po-
sition encoding enables video transformer to interpolate
shorter sequences but few video transformers can general-
ize to the unseen longer sequence length. Unlike all prior
works that predict discrete near-future snapshots, We focus
on the streaming flow prediction which adapt the predictor
to a more distant future and finer granularity.

2.2. Multi-sensor Spatial-temporal Fusion

Spatial multi-modal fusion is widely investigated in the fea-
ture level. BEVFusion and its variants [7, 8, 20] combine
multi-modal input features in a shared BEV space. [4, 16]
support feature interaction in 3D voxel space. Temporal fu-
sion is a common aggregator for perception tasks. LiDAR-
based networks [30, 32] typically employ data-level tem-
poral fusion, which transforms multi-frame point clouds to
the current ego’s coordinate as inputs via ego pose or reg-
istration methods. Most vision-centric methods align the
BEV feature maps from multiple time steps based on ego
pose, and then concatenate them for fusion [9, 12, 17, 25]
or support their interactions of multi-frame BEV features
through attention [13, 18, 27]. Prior spatial fusion methods
usually assume strict synchronization. CoBEVFlow [31] is
most similar to our approach in that they predict BEV flow
to interpolate asynchronous data timestamps from roadside
unit to vehicle system, but short-term flow information can-
not support long-term prediction. To this end, we provide
a flexible spatio-temporal fusion framework which predicts
the future frames and triggers update process as fusion when
asynchronous sensor data arrives.

3. Methodology

3.1. Framework

The pipeline of StreamingFlow is depicted in Fig. 2. Given
multi-modal data streams from the previous few seconds,
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Figure 2. The framework of StreamingFlow. Raw data streams are encoded to BEV features, respectively. The SpatialGRU-ODE process
operates on the timeline with two stages split by the present timestamp, asynchronous multi-sensor deep feature via the SpatialGRU-ODE
update process and continuous occupancy flow prediction via SpatialGRU-ODE predict process.

the task is defined as predicting the future several seconds’
instance occupancy and flow on uniformly-shaped BEV
grids. The framework includes three phases: 1) BEV en-
coders for LiDAR and camera branches, respectively, 2)
asynchronous multi-sensor fusion, and 3) streaming occu-
pancy prediction. As the data stream runs, modality-specific
encoders map raw data to BEV features. The BEV state
starts from zeroed features and fuses every incoming BEV
feature in a trigger mode instead of a matching mode in
conventional fusion. The BEV state propagates until a new
BEV feature is received. The incoming BEV feature is
fused to the BEV state and state continues to propagate until
next incoming observation.

The SpatialGRU-ODE is the core for streaming predic-
tion. The SpatialGRU-ODE iterates for ODE steps, updates
when a new measurement occurs within a certain ODE step,
and performs future prediction. In the training stage, the
loss comes from the supervision of decoded BEV grids at
the timestamps with labels, as well as an auxiliary proba-
bilistic loss from Kullback-Leibler divergence (KLD) be-
tween updated BEV features and latent observations. In the
inference process, SpatialGRU-ODE predicts via a variable
ODE step only related to the required timestamps for eval-
uation and application.

The BEV decoder, loss functions, and post-processing
techniques follow standard practices, and we leave the de-
tails in the supplementary materials.

3.2. BEV Encoders

LiDAR branch. We adopt the popular pillar representa-
tions for point cloud features. We observed that a very
lightweight pillar-net encoder is sufficient for high accu-
racy. Heavier backbones consisting of sparse convolutional
modules or voxel transformers can be trivially integrated for
performance at the cost of additional computation.

Camera branch. As a baseline for algorithms
aligned with previous work, we adopt the Lift-splat-shoot

(LSS [26]) settings with depth supervision for depth-based
view transformation. We adopt accelerated BEV pool oper-
ators to speed up the inference stage. Other BEV mapping
methods are trivially compatible with our framework.

3.3. SpatialGRU-ODE

Gate Recurrent Unit (GRU) consists of reset gate (rt), up-
date gate (zt), and update vector (gt). The update process
follows the formula,

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

gt = tanh(Whxt + Uh(rt ⊙ ht−1) + bh)

(1)

Neural-ODE on GRU blocks focuses N-ODE’s ability
to model continuous time series given sporadic sensor data
coming from non-uniform time intervals. SpatialGRU-
ODE is highly inspired by GRU-ODE-Bayes [5], which
serves as the foundation component of the proposed spa-
tiotemporal fusion and flow predictor. Eq. (1) formulates
the general process of GRU blocks. With regard to ht as
a BEV feature, SpatialGRU has its state variable ht with
shape [B,C,H,W ] where B,C,H,W are the batch size,
embedded dims, height, and width. σ is the sigmoid func-
tion, and tanh denotes a CNN block in SpatialGRU set-
tings. xt is the input state at timestamp t with the same
shape as ht. For simplicity, the update gate Wr = Ur,
the reset gate Wz = Uz , and the GRU init bias br = bz .
rt ⊙ ht−1 is the matrix multiplication between reset gate
and state. In summary, the update state ht is calculated as,

ht = zt · ht−1 + (1− zt) · gt = GRU(ht−1, gt) (2)

The amount of change of the state variable is calculated as:

∆ht = ht − ht−1 = zt · ht−1 + (1− zt) · gt − ht−1

= (1− zt) · (gt − ht−1)
(3)

The derivatives of the state variable are calculated as:
∆h(t)

dt
= (1− z(t)) · (g(t)− h(t)) (4)
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Algorithm 1 The pseudo-code of SpatialGRU-ODE

Input: state-timestamp pairs [t,m[t]],t ∈ [t0, ..., tpresent],
ODE step ∆t

Output: lossKLD, state-timestamp pairs [t, h[t]],t ∈
[t0, ..., tpresent, ..., tfuture].

1: Initialize current time T = t0, KL divergence loss
lossKLD = 0, current state feature h = h0

2: for tobs in [t0, ..., tpresent] do
3: while T < tobs do
4: h = ODE Predict(h,∆t)
5: T+ = ∆t
6: end while
7: h, loss = ODE Update(h,m[tobs])
8: lossKLD+ = loss
9: save h[tobs] = h

10: end for
11: for tpredict in [tpresent+1, ..., tfuture] do
12: while T < tpredict do
13: h = ODE Predict(h,∆t)
14: T+ = ∆t
15: end while
16: save h[tpredict] = h
17: end for

GRU-ODE-Bayes has proven the convergence of this
process, as is also applicable to the initial state of
SpatialGRU-ODE. If h0 ∈ [−1, 1], then hj(t) ∈
[−1, 1], where j is the index of elements in h(t), as
dh(t)j

dt

∣∣∣
t:h(t)j=1

≤ 0 and
dh(t)j
dt

∣∣∣∣
t:h(t)j=−1

≥ 0.

N-ODE has several nice properties when implemented
on GRU models. The learned parametric derivative makes
training not constrained by supervision from fixed future
timestamps states, which greatly increases flexibility. On
the other hand, unlike RNNs, which require emission in-
tervals for updating, the GRU-ODE continuously defined
dynamic model can naturally combine data observed at any
given time.

The pseudo-code for SpatialGRU-ODE is shown in Al-
gorithm 1. Given state-timestamp pairs [t,m[t]] from previ-
ous multisensor features, The expected output is the states
[t, h[t]] of each measured past timestamp and anticipated
future timestamp t ∈ [t0, ..., tpresent, ..., tfuture]. The ode
step may be variable or constant. During the update proce-
dure, a KL divergence loss lossKLD is gathered to quantify
the similarity between updated state feature h and observed
feature m[tobs].

3.4. Asynchronous Modality-agnostic Fusion

Asynchronous modality-agnostic fusion attempts to fuse Li-
DAR and camera BEV features in a way similar to the

Beyasian predict-then-update process. The proposed strat-
egy is able to eliminate two crucial limits for multi-sensor
fusion, which are strict multi-modal synchronizations and
fixed interval data flow.
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Figure 3. Illustration of the measurement update process of
SpatialGRU-ODE in temporal-agnostic fusion.

Fig. 3 presents the network structure for the SpatialGRU-
ODE update process. After raw data is encoded to BEV
maps by different BEV encoders, BEV features from
different modalities are agnostic on the source, ordered
chronologically, and formulated as multiple timestamp-
BEV-feature pairs [t, ht]. The output retains the same
shape as the input, but the hidden features are as 1

4 size
of the input for the sake of eliminating memory storage.
In order not to degrade the ultimate performance, both
state and observation in BEV feature space with shape
[B,C,H,W ] are implicitly encoded into a smaller feature
space [B,C,H/4,W/4] and finally implicit decoded in the
same way for occupancy flow decoder. The temporal prop-
agator runs the subsequent ODE step till the arrival of the
next observation. When a new observation occurs, the pre-
dicted state and new observation are processed into the dis-
tribution module with CNN blocks to obtain the mean and
variance of BEV features both with the size [1, H/4,W/4].
Means and variances of both features are estimated using
KL divergence, an auxiliary loss that reflects the similar-
ity between predicted and measured characteristics. Proba-
bilistic auxiliary loss is calculated as follows:

lossKLD =

H×W∑
j=1

DKL(pstate,j ||pmeas,j) (5)

The core module for the updated BEV feature is a dual-
pathway SpatialGRU module, which first propagates the ob-
served and predicted features respectively, then mixes the
two hidden states distributions and finally undergoes the
weighted summation of two features after the trusting gate
and softmax function to generate the final new state.
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3.5. Streaming Occupancy Flow Predictor

The occupancy flow predictor handles multi-frame BEV
features from past and present timestamp-agnostic fusion
as input and propagates to future steps in an ODE-enabled
variational recurrent neural network. Particularly, the gran-
ularity of temporal prediction is decoupled from the training
granularity and only related to the minimal ODE step in this
method. If we set the variable ODE step, the prediction en-
ables arbitrary granularity.

State 

ConvBlock ConvBlock ConvBlock

Input

random 

SptialGRU-ODE

Infer future input

ConvGRU-
ODE

dt

ConvGRU-
ODE

dt

……

Figure 4. Illustration of streaming prediction process of
SpatialGRU-ODE.

Fig. 4 illustrates the SpatialGRU-ODE procedure. Sim-
ilar to the update process, the states are implicitly encoded
into a smaller feature space. Except for the initial in-
put which is the first BEV feature, the input with shape
[H/4,W/4, C] is inherited from the last ODE step. The
core module, SpatialGRU-ODE, computes the derivatives
of BEV features in unit time intervals via a recurrent block
specified in Eq. (4). SpatialGRU-ODE may employ either
Euler or Midpoint solver for the update and fixed or variable
ODE time step. To obtain the projected states, the deriva-
tives are multiplied by delta time dt and added to the initial
states. A CNN block is used to infer the next input from
the current state in order to make the subsequent predic-
tion. Only states near to the needed timestamps with su-
pervision (closer than half of the minimum ode step) are
preserved and decoded in the BEV decoder for supervision.
Thus, the prediction time step dt is not always constant and
uniform, and supervision signals are not required for each
future timestamp.

4. Experiments

In this section, we seek to answer two questions with the
following experiments: (1) Whether the model works as
well as published state-of-the-art algorithms for standard
occupancy forecasting tasks. (2) Whether we are able to
generalize to streaming forecasting settings with one model
trained with temporally-sparse occupancy labels.

4.1. Datasets and Metrics

The NuScenes [2] dataset is a public large-scale au-
tonomous driving dataset collected by Motional. NuScenes
dataset provides a full sensor suite including 1 top LiDAR,
6 cameras, 5 radars, GPS, and IMU, with 360° coverage
of the surroundings. It contains 1000 scenes, each lasting
20 seconds, of which annotations of 850 scenes at 2Hz are
available. We use the training and validation splits as same
as previous works [1, 9, 10, 30, 34], with 28130 samples for
training and 6019 samples for validation.

The Lyft L5 dataset [14] is another large-scale au-
tonomous dataset provided by Lyft. This dataset contains
180 scenes, each lasting 25-45s in length and annotated at
5Hz. We use 6 ring cameras and the top LiDAR from its
sensor suite, which has a 360° field of view. We use train-
ing and validation splits from the practice of FIERY [9],
which include 16000 training samples and 4000 validation
samples.

The occupancy flow prediction is formulated as a video
panoptic prediction task [15]. We use Intersection over
Union (IoU) to measure the semantic segmentation quality
of each frame, and video panoptic quality (PQ), recogni-
tion quality (RQ), and segmentation quality (SQ) to mea-
sure both the accuracy and consistency of instance segmen-
tation. VPQ is computed as:

VPQ =
∑H

t=0

∑
(pt,qt)·TPt

IoU(pt · qt)

|TPt|+
1

2
|FPt|+

1

2
|FNt|

=
∑H

t=0

|TPt|

|TPt|+
1

2
|FPt|+

1

2
|FNt|

= SQ · RQ
(6)

4.2. Implementation Details

Task details. The standard occupancy prediction task is to
take the past 1.0s sensor data for input, which is 3 keyframes
in nuScenes (5 keyframes in Lyft), predict the motion in
the future 2s, which is 4 keyframes in nuScenes and 10
keyframes in Lyft.

Data details. The BEV occupancy labels are from 3D
bounding boxes labels projected to BEV. The perception
range is set as [100m, 100m] and the grid resolution is set
as 0.5m. Images are resized to 224 × 480 pixels for each
frame. Each point cloud is densified by aggregating point
clouds of adjacent sweeps. Point clouds are voxelized to
200 × 200 × 13 voxels. StreamingFlow adopts an asyn-
chronous data stream as input, with LiDAR streams every
0.2s and camera streams every 0.5s as input. For larger
models fairly compared with the state-of-the-art, we use im-
ages with size 320 × 800 and aggregated LiDAR streams,
each with 10 sweeps.

Model details. The framework is implemented on Py-
torch 1.10.2 and Pytorch Lightning 1.2.5. The optimizer is
AdamW with a learning rate of 1e−4. The learning strategy
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Figure 5. Visualization of StreamingFlow for diverse driving scenarios. Different colors represent different instances of the agents, and
lighter colors represent the future occupancy of the agents. (top): samples from Lyft dataset, highway (left), and urban (right). (middle
and bottom): samples from nuScenes dataset, sunny (middle left), overcast after rain (middle right), rainy (bottom left), and night (bottom
right). StreamingFlow works well in all challenging driving scenarios.

is cosine annealing with a weight decay of 0.01. All mod-
els are trained on 8 A6000 GPUs for 20 epochs with a total
batch size 16. The image backbone is EfficientNet-b4 [29]
for tiny and base model and Effi-b7 for small model.

4.3. Comparison with the State-of-the-art

Comparisons of methods implemented in the nuScenes
dataset are shown in Tab. 1. All methods are trained for
a standard instance flow segmentation and prediction task.
Fig. 5 illustrates some examples covering diverse scenarios.

StreamingFlow achieves competitive performance while
significantly outperforming other single-modality meth-
ods. StreamingFlow surpasses the best vision-based
BEVerse [34] with a larger backbone Swin-small [19]
by +7.0 IoU and +10.0 VPQ, and the best LiDAR-
based BE-STI [30] +7.7 IoU and 5.1VPQ. Compared
to FusionAD, StreamingFlow-base uses the same LiDAR
backbone(SpConv), similar image backbone(Effi-B4 vs.
ResNet101) but a half smaller image size(800 × 320 vs.
1600 × 900), and is +1.6 VPQ and 2.4 IoU higher than
the latest fusion-based FusionAD [33].

Comparisons of methods implemented in the Lyft L5
dataset are shown in Tab. 2. StreamingFlow achieves the
best of all metrics while surpassing baseline methods by
a large margin: +20.6 IoU and +23.5 VPQ against ST-
P3 [10]. Moreover, it surpasses our reproduced BEVFusion
with lightweight encoders by +2.3 mIoU and 0.2 VPQ.

4.4. Streaming Forecasting Results

We design three experiments on nuScenes dataset for
demonstration of the streaming occupancy prediction: (1)
Extension of the prediction temporal horizons to unseen fu-
ture; (2) Prediction at any desired future time point; (3) Data
streams input at different frame rates. Experiments are con-

ducted on models loaded from the checkpoints trained on
standard instance forecasting tasks.

Extension of the temporal horizons of unseen future.
Tab. 3 shows the prediction result of StreamingFlow which
extends the temporal horizons from 2.0s to 8.0s. Baselines
reported in [1] are trained for different lengths of tempo-
ral horizons. StreamingFlow shows excellent performance
in variable prediction length without retraining. Similar to
prior arts which extend prediction horizons to farther fu-
ture, StreamingFlow shows a similar gradual performance
decay. We then compare zero-shot Streamingflow with the
model trained with the longest future 8s groundtruth labels
in Tab. 4. The zero-shot long-term prediction results are
only −0.9 IoU and −1.8 VPQ less than fully supervised
models, which demonstrates great generalization ability of
foreseeing the unseen future.

Streaming prediction at any desired time point. Since
nuScenes do not provide labels for non-keyframes, we
adopt the practice of MotionNet and interpolate the box
instances between two adjacent keyframes. We randomly
choose to predict at a list of time points and report the re-
sults in Tab. 5. To simply illustrate the capability, we de-
signed the main task to predict uniformly spaced tempo-
ral horizons, but this framework can predict uneven and ar-
bitrary future snapshots. The prediction results are stable
generally. There is a slight decline as the forecast becomes
denser.

We provide demo videos as supplementary materials to
show the effectiveness of streaming prediction. We pro-
vide a finer granularity of streaming perception at any fu-
ture time. In the video, we visualize the prediction results
every 0.05s from the current to the future 2s to 3s, with a
total of 40 to 60 frames.

Asynchronous multi-modal data streams as input.
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Method Modality Image backbone LiDAR backbone Future Semantic Seg. Future Instance Seg.
IoU↑ PQ↑ SQ↑ RQ↑

Static* C Effi-B4 - 32.2 27.6 70.1 39.1
FIERY*[9] C Effi-B4 - 37.0 30.2 70.2 42.9
StretchBEV[1] C Effi-B4 - 37.1 29.0 - -
BEVerse[34] C Swin-tiny - 38.7 33.3 70.6 47.2
BEVerse[34] C Swin-small - 40.8 36.1 70.7 51.1
ST-P3 Gaus.[10] C Effi-B4 - 38.6 31.7 70.2 45.2
ST-P3 Ber.[10] C Effi-B4 - 38.9 32.1 70.4 45.6
UniAD[11] C Effi-B4 - 40.2 33.5 - -

MotionNet[32] L - STPN 37.2 38.9 75.6 51.4
BE-STI[30] L - BESTI-STPN 40.1 41.0 75.5 54.3

StreamingFlow-tiny LC Effi-B4 PillarNet 47.8 46.1 75.8 60.8
StreamingFlow-small LC Effi-B7 PillarNet 51.1 48.0 75.1 64.0
FusionAD[33] LC ResNet-101 VoxelNet 51.5 51.1 - -
StreamingFlow-base LC Effi-B4 VoxelNet 53.9 52.7 78.7 66.9

Table 1. Comparison with the state-of-the-art methods for instance-aware occupancy flow prediction on nuScenes[2] validation set. ’C’
denotes vision-only methods, ’L’ denotes LiDAR-based methods, and ’LC’ denotes a LiDAR-camera fusion methods. ∗: reported in [9].

Method IoU↑ PQ↑ SQ↑ RQ↑

Static* 24.1 20.7 - -
Extrapolation model* 24.8 21.2 - -
FIERY*[9] 36.3 27.2 - -
ST-P3[10] 36.3 32.4 71.1 45.5

BEVFusion-tiny† 54.6 55.7 78.0 71.4
StreamingFlow-tiny 56.9 55.9 78.1 71.6

Table 2. Comparison with the state-of-the-art methods for future
instance segmentation (2.0s) on Lyft L5 AV [14] validation set. ∗:
results reported in [9]. †: results of BEVFusion with LSS-based
image encoder and pillar-based encoder reproduced by us.

Method Pred IoU↑ PQ↑ SQ↑ RQ↑

FIERY
2s 35.8 29.0 - -
4s 30.1 23.6 - -
6s 26.7 20.9 - -

StretchBEV
2s 37.1 29.0 - -
4s 32.5 23.8 - -
6s 28.4 21.0 - -

StreamingFlow

2s 47.8 46.1 75.8 60.8
3s 44.4 41.1 74.1 55.4
4s 41.7 38.4 73.6 52.1
5s 39.1 35.8 73.2 48.9
6s 36.7 33.6 72.9 46.0
8s 32.5 29.8 72.6 40.1

Table 3. Comparison of occupancy flow prediction for any tempo-
ral horizons.

We validate asynchronous data streams as input and stan-
dard occupancy forecasting as output. We test multiple set-
tings of data stream frame rate and report the results in Tab.

Schedule 2s 3s 4s 6s 8s

ZS. 47.8/46.1 44.4/41.1 41.7/38.4 36.7/33.6 32.5/29.8
Sup. 48.2/46.9 46.0/45.2 41.9/38.7 37.8/34.2 33.6/31.6

Table 4. ZS: zero-shot inference of StreamingFlow. Sup: Stream-
ingFlow trained with the longest prediction horizons 8s. Each
value is given in the format of ‘IoU/PQ’.

Prediction Interval IoU↑ PQ↑ SQ↑ RQ↑

0.5 47.8 46.1 75.8 60.8
0.25 43.4 40.1 74.1 54.1
0.6 45.6 44.3 75.2 58.9

Table 5. Prediction results at any desired intervals. For example,
prediction at the interval of 0.6 means prediction at [0.6, 1.2, 1.8].

6. The model performs the best when the inference uses the
training configuration. Denser inputs lead to similar fore-
casting accuracy.

LiDAR stream Cam stream IoU↑ PQ↑ SQ↑ RQ↑

5 2 47.8 46.1 75.8 60.8
10 2 47.6 45.8 75.6 60.5
10 4 47.1 45.4 75.1 60.4

Table 6. Prediction results with multi-modal data stream of differ-
ent frame rates. Frame rates are shown in Hz.

4.5. Ablation Study

Effect of different fusion strategies. We compare
SpatialGRU-ODE with fusion strategies at different stages
and the implementation details are in supplementary
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material. As shown in Tab. 7, asynchronous fusion
is inferior to synchronous fusion and SpatialGRU-ODE
for both datasets. For nuScenes dataset, the ordinary
temporally-synchronized fusion approach performs the
best. SpatialGRU-ODE performs −2.4 IoU and −0.9
VPQ, slightly less than BEVFusion [20]. For Lyft dataset,
SpatialGRU-ODE outperforms synchronized fusion. It per-
forms +2.3 IoU and +0.2 VPQ more than BEVFusion [20].

Fusion mode IoU↑ PQ↑ SQ↑ RQ↑

nuScenes dataset

Spatial then temporal 50.2 47.0 75.6 63.0
Temporal then spatial 44.7 42.7 74.6 57.2
SpatialGRU-ODE 47.8 46.1 75.8 60.8

Lyft L5 AV dataset

Spatial then temporal 54.6 55.7 78.0 71.4
Temporal then spatial 50.4 50.2 75.2 66.7
SpatialGRU-ODE 56.9 55.9 78.1 71.9

Table 7. Comparison with the baseline fusion methods for fu-
ture instance segmentation (2.0s) on nuScenes validation set.
StreamingFlow-ODE is compared with different fusion modes.
Spatial fusion is conducted in the same way as BEVFusion [20].
‘Spatial Then Temporal’ is for synchronous mode, and ‘Temporal
Then Spatial’ is for asynchronous mode.

Effect of ODE solvers. ODE solvers are vital tools for
a N-ODE framework. We test two basic ode solvers, Euler,
and midpoint solver as compared in Tab. 8 on two datasets.
In both cases, the midpoint solver yields superior VPQ, sur-
passing the Euler solver by 3.2 points on nuScenes dataset
and 0.8 points on Lyft dataset. On nuScenes dataset, the
midpoint solver shows similar IoU with the Euler solver,
but on Lyft dataset, the midpoint solver performs worse se-
mantic segmentation by −1.9.

ODE Solver IoU↑ PQ↑ SQ↑ RQ↑

nuScenes dataset

Euler 47.8 42.9 73.5 58.6
Midpoint 47.8 46.1 75.8 60.8

Lyft L5 AV dataset

Euler 56.9 55.9 78.1 71.5
Midpoint 55.0 56.7 78.2 72.4

Table 8. Comparison with prediction using different ODE solvers.

Effect of ODE update intervals. We ablate different
ODE update intervals which determine the minimum gran-
ularity of occupancy prediction. The ODE step is set to
0.05, 0.1, 0.5 and variable for comparison. Variable means
the ODE step is the next timestamp minus the current times-
tamp. In general, the finer a single update is divided during
the ODE update process, the higher the final prediction ac-

curacy. It is also intuitive that a higher update frequency
may eliminate continuous errors. As shown in Tab. 9, the
predictor with interval 0.05s surpasses interval 0.1s by 0.1
IoU and 3.1 VPQ, and interval 0.5s by 0.5 IoU and 3.1
VPQ. Remarkably, the variable time step update also shows
nice performance, which is +0.5 IoU and −2.2 VPQ when
compared to the predictor with ODE step 0.05s. A variable
time step updater strikes a good balance between precision
and inference speed, so it is more favorable for long-term
prediction to 8s future.

Step IoU↑ PQ↑ SQ↑ RQ↑

nuScenes dataset

0.05 47.8 46.1 75.8 60.8
0.1 47.7 43.0 73.7 58.4
0.5 47.3 42.1 73.3 57.4
Variable 48.2 43.9 73.9 58.8

Lyft L5 dataset

0.05 56.9 55.9 78.1 71.9
Variable 54.0 53.5 77.4 69.7

Table 9. Comparison of prediction under different ode steps.

5. Conclusion
We present StreamingFlow as the first practice for fusion-
based streaming occupancy forecasting. Starting from the
motivation of fusing and predicting from non-ideal data
streams, the streaming feature brings a more flexible tem-
poral scene understanding and generalizes occupancy fore-
casting well to any temporal horizon. The advantage of
SpatialGRU-ODE is that it decouples the supervision in the
training process and outputs in the inference process, by
modeling the derivatives of BEV grids and propagating fu-
ture grid states to required timestamps. We hope that this
work will inspire more Neural-ODE applications and in-
sights into the streaming automotive perception.
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