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Abstract

This paper presents a novel zero-shot method for jointly
denoising and enhancing real-word low-light images. The
proposed method is independent of training data and noise
distribution. Guided by illumination, we integrate denois-
ing and enhancing processes seamlessly, enabling end-to-
end training. Pairs of downsampled images are extracted
from a single original low-light image and processed to
preliminarily reduce noise. Based on the smoothness of
illumination, near-authentic illumination can be estimated
from the denoised low-light image. Specifically, the illumi-
nation is constrained by the denoised image’s brightness,
uniformly amplifying pixels to raise overall brightness to
normal-light level. We simultaneously restrict the illumi-
nation by scaling each pixel of the denoised image based
on its intensity, controlling the enhancement amplitude for
different pixels. Applying the illumination to the original
low-light image yields an adaptively enhanced reflection.
This prevents under-enhancement and localized overexpo-
sure. Notably, we concatenate the reflection with the illumi-
nation, preserving their computational relationship, to ul-
timately remove noise from the original low-light image in
the form of reflection. This provides sufficient image infor-
mation for the denoising procedure without changing the
noise characteristics. Extensive experiments demonstrate
that our method outperforms other state-of-the-art meth-
ods. The source code is available at https://github.
com/Doyle59217/ZeroIG.

1. Introduction
Images taken in real low-light conditions typically exhibit
a low signal-to-noise ratio (SNR) and contain underex-
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Figure 1. Visual comparison on a real night-time low-light image.

posed regions. These images provide inadequate informa-
tion and can impair computer vision tasks. Achieving high-
quality low-light image enhancement (LLIE) requires im-
proving brightness and contrast as well as effectively reduc-
ing noise. In the past decades, traditional methods like his-
togram equalization [14, 19] and gamma correction [9, 25]
have been used to enhance low-light images. Additionally,
various traditional methods [5, 17] are based on Retinex the-
ory [12]. Retinex theory suggests that low-light observa-
tion can be decomposed into illuminated and reflected com-
ponents. Illumination, influenced by ambient light, leads
to low-light images formation. Reflection represents the
image’s intrinsic properties and is typically viewed as the
target for enhancement. However, these hand-crafted con-
straints/priors are not adaptive enough and their results may
suffer from under- and over- enhancement, in addition, they
may present intensive noises.

Recently, deep learning methods have known significant
advancements [4, 18, 26, 30, 33, 38]. However, the effec-
tiveness of these LLIE methods [21, 24, 27, 29, 31, 34,
36, 37] heavily rely on carefully selected paired/unpaired
training data. Still, the low-light environments are highly
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Figure 2. Illumination-guided: integrating denoising and enhanc-
ing. In the overall adjustment, X and Y represent pixel coordi-
nates. Blue represents pixel intensity of the low-light image, while
red represents adjusted intensity. Pixel-by-pixel adjustment shows
curves with varying brightness coefficients. The horizontal axis
signifies pre-adjustment pixel intensity, and the vertical axis post-
adjustment intensity. Refer to Section 2 for symbol representation.

complex, with brightness levels varying significantly across
images. Moreover, a single low-light image also exhibits
uneven brightness distribution. Additionally, a substantial
amount of sensor-specific noise, varying across different
devices due to dark current and electronics shot in camera
imaging, is introduced. Consequently, collecting training
data to encompass all scenarios is impractical. This results
in a performance drop for dataset-based methods when ap-
plied to test images from different datasets, especially in
enhancing practical noisy low-light images. Meanwhile,
some dataset-independent methods [6, 16, 20, 22, 35] tend
to overlook noise reduction, leading to undesirable results.

In this paper, we propose a novel Retinex-based
deep learning method for LLIE, termed ZERO-shot
Illumination-Guided joint denoising and adaptive enhance-
ment for low-light images (ZERO-IG). Leveraging in-
trinsic information of the real-world low-light image and
constraining illumination, ZERO-IG achieves high-quality
LLIE without requiring training data. Specifically, our net-
work learns from each image individually and does not re-
quire pre-training. In contrast to cascade methods [36] that
separate denoising from enhancement, our method uses il-
lumination guidance to jointly denoise and enhance images,
as shown in Figure 2. The integration of denoising and en-
hancement is based on the smoothness of illumination. Fur-
thermore, we utilize illumination to achieve enhancing and
aid denoising. Initially, we apply a preliminary denoising
to the original low-light image. Inspired by ZS-N2N [23],
we derive downsampled image pairs from the original and
map them to mitigate noise. This allows ZERO-IG to be
independent of noise distribution knowledge, making it ap-
plicable to diverse noise types. However, direct recovery of

the enhanced image from the denoised version is not fea-
sible. This limitation arises from the inherently low pixel
values in low-light images, which yield insufficient detail
for denoising. Consequently, the low-light image procured
at this phase is not completely free of noise.

The denoised low-light image is suitable for estimating
illumination. Reduced noise helps in accurately capturing
light’s propagation and reflection, resulting in a more pre-
cise estimation of illumination’s statistical distribution. Ad-
ditionally, illumination is characteristically smooth, with
changes typically occurring continuously and gradually,
rather than abruptly. Therefore, minor inaccuracies in es-
timated illumination can be naturally compensated by the
inherent continuity of light, making them insignificant. In
other words, the illumination derived from the preliminarily
denoised low-light image can closely approximate that of a
fully clean low-light image, enabling further enhancement.

We reference the average brightness of normal-light im-
ages, and proportionally scale up pixels in the denoised
low-light images by constraining the illumination to boost
overall brightness. However, such an overall adjustment
may lead to under-enhancement in extremely dark regions
and overexposure in already bright regions. Thus, we si-
multaneously constrain the illumination by scaling the de-
noised low-light image pixel-by-pixel based on pixel in-
tensity. These result in an adaptive illumination that can
control the enhancement amplitude of each pixel, enabling
more enhancement in darker areas and less in brighter ones,
while increasing the overall brightness, as shown in Figure
2. Adjusting the original low-light image using this illu-
mination process yields the reflection with pixel-level en-
hancement. As a result, ZERO-IG can effectively enhance
low-light images with varying brightness levels and uneven
brightness distributions.

Still, the reflection contains noise. Direct denoising of
the reflection, as other methods [36], would yield subop-
timal result. This occurs as computational processes al-
ter noise characteristics, causing them to become entwined
with the image content. Such entanglement complicates the
distinction between noise and actual image content. To ad-
dress this problem, we innovatively use illumination to as-
sist denoising. Specifically, we concatenate the reflection
with the illumination, as shown in Figure 2. The key of this
process is maintaining constant illumination before and af-
ter denoising. Given that the reflection is derived from the
low-light image and the illumination, their computational
relationship remains fixed. Keeping constant illumination
can also be seen as eliminating noise from the original low-
light image. Consequently, ZERO-IG supplies sufficient in-
formation for denoising via the reflection (brightened im-
age), preserving the original noise characteristics and dis-
tribution, yielding the clean enhanced image. Additionally,
we create a new dataset, VILNC, captured under real low-
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light conditions. Figure 1 shows an example of the visual
comparison on our VILNC dataset. See the Supplemental
Materials for more details.

Our contributions are summarized as follows:

• We present a novel zero-shot method, ZERO-IG, for
jointly denoising and enhancing real-world low-light im-
ages. Guided by illumination, we fully consider the cou-
pled relationship between denoising and enhancing. Uti-
lizing the inherent information of the low-light image,
ZERO-IG attains high-quality LLIE without the necessity
of any training data or knowledge of noise distribution.

• We employ illumination to adjust each pixel in the low-
light image, achieving pixel-level adaptive enhancement.
This prevents both under-enhancement and overexposure.

• We utilize illumination to assist in denoising. By con-
catenating the reflection with the illumination, we effec-
tively remove noise from the original low-light image in
the form of reflection.

• We create a new real-world dataset VILNC. Extensive ex-
periments illustrate our superiority against other state-of-
the-art methods.

2. Background

2.1. Retinex Theory

The Retinex theory [12], inspired by the Human Vision Sys-
tem, is an effective low-light image enhancement algorithm
and can simulate human color perception. It decomposes
observed images into reflected and illuminated components:

Î = R̂ ◦ Ŝ (1)

The classical Retinex model overlooks the impact of
noise on images. Therefore, Î is regarded as a noise-free
low-light image. R̂ and Ŝ denote the reflection (also the en-
hanced image) and the illumination, both immune to noise.
◦ symbolizes element-wise multiplication.

However, real-world low-light images often have signifi-
cant noise due to inadequate lighting and flaws in the imag-
ing system. M. Li et al. [17] introduced a noise term N
into the classic Retinex model, resulting in I = Î + N =
R̂ ◦ Ŝ + N , where I represents a noisy low-light image.
But the typically low pixel values in low-light images make
accurately separating the exact noise N a challenge.

Since illumination determines the image’s dynamic
range, remaining uncontaminated by noise. The reflection,
representing the image’s inherent properties, frequently
contains noise during the imaging process. The equation
can be rewritten as I = (R̂+n)◦ Ŝ = R◦ Ŝ, where R is the
reflection tainted with noise n. While the reflection offers
valuable information for denoising, its calculation can alter
the noise’s characteristics. The noise is more intertwined
with the image content and harder to remove.

We adopt a different strategy by integrating the afore-
mentioned equations:

I = R̂ ◦ Ŝ +N = R ◦ Ŝ (2)

Our objective is to estimate the illumination Ŝ. Next,
using the reflection R to remove noise N from the origi-
nal low-light image I , producing the enhanced image R̂.
This provides ample image information for denoising while
maintaining the original noise’s characteristics. Addition-
ally, it creates a coupled relationship between denoising and
enhancing. The details will be discussed in Section 3.

2.2. Noise2Noise and ZS-N2N

Noise2Noise [15] is a denoising method that does not re-
quire clean ground truth images. It only needs two indepen-
dently noisy images of the same scene. With two indepen-
dent noisy observations I1 and I2 of the same ground truth
Î , Noise2Noise suggests that mapping I1 to I2 is analogous
to supervised mapping to a clean image Î .

ZS-N2N [23] extends Noise2Noise [15], enabling train-
ing with only one noisy image. It decomposes a noisy image
I into two downsampled images G1(I) and G2(I), consid-
ering them as equivalents for two noisy observations of the
same scene. And training a denoising network by mapping
G1(I) to G2(I).

Inspired by ZS-N2N [23], we also demonstrate our
method’s independence from noise distribution knowledge.
Contrasting with methods rely on camera-specific datasets,
our method is effective in scenarios with unknown noise
distribution or levels, making it suitable for situations with
scarce data.

3. Proposed Method
As shown in Figure 3, ZERO-IG comprises three subnet-
works: the low-light image denoising network (LD-Net),
the illumination estimation network (IE-Net), and the re-
flection denoising network (RD-Net). Our method em-
ploys illumination to sequentially connect these subnet-
works. The IE-Net receives input from the LD-Net. The
estimated illumination is initially used to restore the noise-
affected reflection, which is then fed into the RD-Net. And
the entire network is trained end-to-end, integrating denois-
ing and enhancing effectively.

3.1. Low-light Image Denoising Network

Although illumination is not contaminated by noise, the
presence of noise can significantly affect its statistical distri-
bution. Directly using the original noisy low-light image I
for illumination estimation may lead to inaccuracies. Con-
sequently, we first introduce the LD-Net to preliminarily de-
noise I . This results in a more suitable low-light image Ĩ to
estimate illumination.
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Figure 3. The framework of ZERO-IG. It comprises three subnetworks: the LD-Net, the IE-Net, and the RD-Net. The original low-light
image I is initially input into the LD-Net. The IE-Net estimate the illumination S̃ using the preliminarily denoised low-light image Ĩ . S̃ is
applied to I to calculate the reflection R. The RD-Net denoises the concatenated R and S̃, producing the final enhanced image R̂. Notably,
the RD-Net directly outputs a concatenation of noise and an all-zero pixel array. The noise matches R in size and channel number, while
the all-zero array aligns with S̃ in the same dimensions. All downsampled images are used exclusively for training. The entire network is
a straightforward CNN of eleven convolutional layers, each layer consists of 48 or 64 convolutional kernels of size 3×3.

Inspired by ZS-N2N [23], we downsample I of size
H×W×C through operation G = (G1, G2). Creating im-
ages I1 = G1(I) and I2 = G2(I) each of size H/2×W/2×C.
The operation divides I into non-overlapping 2×2 patches,
averaging diagonal pixels for I1 and anti-diagonal pixels for
I2. Subsequently, we train the LD-Net using I1 and I2.

We express residual loss Lres(θ) through symmetric loss:

Lres(θ) = ∥I1−fθ(I1)−I2∥22+∥I2−fθ(I2)−I1∥22 (3)

where fθ() represents the noise. We also express the con-
sistency loss Lcons(θ) using symmetric loss:

Lcons(θ) =∥I1 − fθ(I1)−G1(I − fθ(I))∥22+
∥I2 − fθ(I2)−G2(I − fθ(I))∥22

(4)

The loss function for the LD-Net is defined as LLD =
Lres (θ) + Lcons(θ). It is noteworthy that due to the low
SNR, I lacks sufficient information for effective denoising.
Although the output Ĩ of the LD-Net has considerably less
noise, it cannot be directly used to restore the enhanced im-
age R̂. As Ĩ is not the completely clean low-light image Î
depicted in Eq. 1.

3.2. Illumination Estimation Network

In the IE-Net, we take Ĩ as input to generate the illumination
S̃. Given that the smoothness of illumination can compen-
sate minor errors, S̃ can approximate the noise-unaffected
Ŝ estimated from Î . Thus, S̃ can be used for enhancement.

The main problem with low-light images is the low
brightness and poor visibility. It is essential to increase the
overall brightness of the low-light image to match normal-
light levels. Specifically, we constrain the illumination by
image brightness to proportionally upscale all pixels in Ĩ .
The overall adjustment loss Lover can be expressed as:

Lover = ∥S̃ − α−1∥22 (5)

where the brightness coefficient α = YHYL
−1. YH repre-

sents the mean value of the luminance plane Y of normal-
light images. We statistically set YH to 0.5, see the Supple-
mental Materials for details. YL indicates the mean value of
the luminance plane Y of Ĩ .

The current adjusted image can be expressed as Ĩ ◦
S̃−1 = αĨ . As our method is designed for low-light im-
ages, α > 1. This process increases overall brightness and
contrast of Ĩ . However, low-light images contain regions
with varying brightness, each needing a different degree of
enhancement. Uniformly enhancing all pixels may result
in under-enhancement in darker areas or overexposure in
brighter areas (light sources).

We additionally constrain the illumination by the inten-
sity of each pixel in Ĩ . This achieves different amplitude
enhancements for pixels with differing intensities, further
enhancing extremely dark regions while preventing overex-
posure in brighter areas. Inspired by Gamma correction [3],
we establish a relationship between S̃ and Ĩ . The pixel-by-
pixel adjustment loss Lpix can be expressed as:

Lpix = ∥S̃ − β(αĨ)
α∥22 (6)
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where α (as in Eq. 5) facilitates pixel-level scaling accord-
ing to the brightness of Ĩ . We additionally incorporate a
scaling factor β that controls the scaling degree and dictates
the level of contrast enhancement.

The image, post per-pixel adjustment, can be repre-
sented as Ĩ(x, y)◦S̃(x, y)−1 = Ĩ(x, y)◦(β(αĨ(x, y))α)−1,
where (x, y) denotes pixel coordinates. Pixels with well-
exposedness level E after overall adjustment should remain
unaltered following per-pixel adjustment. Specifically, it
implies E = (α−1E) ◦ (βEα)−1, therefore β = α−1E−α.
We empirically set E = 0.7, see the Supplemental Mate-
rials, resulting in β = α−10.7−α. This indicates that both
α and β depend on the brightness of Ĩ . Thus, our method
achieves pixel-level adaptive enhancement while improving
the brightness and contrast of low-light images based on
their brightness and pixel intensity.

Illumination has smoothness properties. Variations in il-
lumination in natural images are typically continuous and
smooth, able to offset minor errors. To balance global and
local changes, we introduce the smoothness loss Lsmooth:

Lsmooth=
∑

c(|∇xS̃c|+|∇yS̃c|)2+
N∑
i=1

∑
j

wi,j |S̃i−S̃j | (7)

where c ∈ {R,G,B}, with horizontal and vertical gradient
operations denoted by ∇x and ∇y respectively. N is the
total number of pixels, with i signifying the ith pixel. j ∈
N (i) indicates the neighboring pixels of i within a 5 × 5
window. The weight wi,j is determined using a Gaussian
kernel function, which is based on the difference between
pixels in the YUV color space.

The loss function for the IE-Net is defined as LIE =
Lover + Lpix + Lsmooth. LIE enables our IE-Net to estimate
pixel-level adaptive illumination for low-light images with
varying or uneven brightness. And can obtain S̃ to approx-
imate noise-unaffected illumination Ŝ. Substituting S̃ and
the original low-light image I into Eq. 2 results in the adap-
tively enhanced reflection R, which contains noise.

3.3. Reflection Denoising Network

In contrast to the LD-Net, the RD-Net utilizes the estimated
illumination S̃ to aid denoising. We concatenate the reflec-
tion R with S̃ and feed them into the RD-Net to get the final
noise-free enhanced image R̂.

Initially, the downsampling operation G = (G1, G2) is
applied to S̃, yielding S̃1 = G1(S̃) and S̃2 = G2(S̃). Sub-
stituting I1, I2 and S̃1, S̃2 into Eq. 2 to calculate the corre-
sponding noisy reflections R1 and R2. We concatenate R1

with S̃1 and R2 with S̃2 to train the RD-Net.
The residual loss Lres (θ̂) is expressed as:

Lres (θ̂)=∥R1 C⃝S̃1−fθ̂(R1 C⃝S̃1)−R2 C⃝S̃2∥22+
∥R2 C⃝S̃2−fθ̂(R2 C⃝S̃2)−R1 C⃝S̃1∥22

(8)

Figure 4. Depiction of the interactive denoising loss Linter. D acts
as a binary denoising indicator, ranging from 0 to 1. Higher D
values indicate smaller differences between G1(R̂) and G2(R̂).
Values above the 0.975 threshold are classified as 1 (indicated in
white), while others are 0 (indicated in black).

where C⃝ symbolizes the concatenation operation. fθ̂() de-
notes the concatenation of noise and illumination.

We also apply constraints to the final enhanced image R̂.
Employing the same downsampling to derive G1(R̂) and
G2(R̂). R̂1 and R̂2 denote the denoising results for R1 and
R2. The consistency loss Lcons is formulated as:

Lcons = ∥G1(R̂)− R̂1∥22 + ∥G2(R̂)− R̂2∥22 (9)

The key of the concatenation operation is the imposed
illumination consistency loss Lill. It is applied to the fi-
nal output illumination S concatenated with R̂, as shown in
Figure 3, and the illumination S̃ concatenated with R:

Lill = ∥S − S̃∥22 (10)

Why does concatenation work? To train the RD-Net,
we map one noisy concatenation to another (see Eq. 8).
In simpler terms, one output is constrained to be equal to
another input. This maintains the computational relation-
ship between the reflection and the illumination from input
to output. As outlined in Section 3.2, R = I ◦ S̃−1. The
computational relationship linking R with S̃ mirrors that
between R̂ and S. Consequently, R̂ can also be expressed
as R̂= Ī ◦S−1. Consider Ī for now as a component of R̂.
Based on Eq. 1, we can also derive R̂= Î ◦ Ŝ−1= Î ◦ S̃−1.
Crucially, the illumination is constrained to keep constant,
i.e., S = S̃ (as Eq. 10). This leads to Ī = Î . It im-
plies that R C⃝S̃→ R̂ C⃝S can be viewed as (I◦S̃−1) C⃝S̃→
(Î◦S−1) C⃝S. Consequently, the RD-Net converts the orig-
inal low-light image I into the clean version Î , effectively
eliminating noise N (as Eq. 2). The actual input of the RD-
Net is the reflection R, and the final output is the enhanced
image R̂. Essentially, through the concatenation operation,
the RD-Net harnesses the form of the bright image R to pro-
vide sufficient information for denoising. While preserving
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(a) Input (b) URtinexNet [30] (c) LLFlow [26] (d) PairLIE [6] (e) SCI [22] (f) ZeroDCE++ [16]

(g) KinD++ [38] (h) SNR-aware [33] (i) RUAS [20] (j) ZERO-IG-IE-Net (k) ZERO-IG (l) Ref

Figure 5. Visual comparison on the real-world low-light image from the SIDD [1] dataset.

the characteristics and distribution of the original noise N ,
achieving effective noise reduction. This further illustrates
that our method uses illumination as guidance, establishing
the connection between denoising and enhancing.

As shown in Figure 4, to further augment the RD-Net’s
ability of denoising, the interactive denoising loss Linter is
presented as:

Linter=
∑
i=1,2

∥Gi(R̂)−(D◦Gi(R̂)+(1−D)◦µi)∥22 (11)

where µi represents the average of all pixel values within a
5 × 5 window at the respective position in Gi(R̂). D sig-
nifies the disparity in luminance channels between G1(R̂)
and G2(R̂). Inspired by DeSRA [32], we define D =
2σ1σ2(σ

2
1 + σ2

2 + C)−1. σi represents the standard devi-
ation of the pixels within a 5×5 window at the correspond-
ing positions in Gi(R̂)’s luminance channel. A constant C
is added to stabilize the division with a weak denominator.

We assume that for a sufficiently clean image, its two
downsampled versions should be nearly identical. Conse-
quently, D is employed to pinpoint discrepancies between
G1(R̂) and G2(R̂). Points with significant differences are
likely indicative of noise. Since adjacent pixels in a clean
image are highly correlated and typically have similar val-
ues, we adjust these points to approach the average value of
their 5× 5 window.

For the ideal clean image, a small local area can be con-
sidered as a constant, with its variance nearly zero. The
noisy image’s variance equals the sum of variances of the
noise and the clean image. To further purifies the clean im-
age, the local variance loss Lvar is formulated as follows:

Lvar =
1

M
∥

M∑
j=1

σ2
j −

M∑
j=1

σ̂2
j ∥22 (12)

where M denotes the number of 5× 5 windows. σ2
j and σ̂2

j

represent variances of the jth window in R and n, where
n = R− R̂.

Finally, inspired by DSLR [10], we introduce an extra
color loss Lcolor:

Lcolor = ∥Rb − R̂b∥22 (13)

where Rb and R̂b represent the blurred versions of R and
R̂. Rb(i, j) =

∑
k,l R(i+ k, j + l) ·G(k, l) and G(k, l) is

a 2D Gaussian blur operator.
The loss function for the RD-Net is defined as LRD =

Lres (θ̂)+Lcons+Lill+Linter+Lvar+Lcolor. Since our method
is trained end-to-end, the total loss function is defined as
Ltotal = LLD + LIE + LRD.

4. Experiments

4.1. Implementation Details

Parameter Settings. All experiments are implemented
with PyTorch on a single Nvidia Titan X Pascal GPU.
The ADAM optimizer [11] is employed, with parameters
β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The batch size is set
to 1. The learning rate is fixed to 10−3. The training epoch
number is set to 2000.

Compared Methods. We compare our method with sev-
eral state-of-the-art LLIE methods: four supervised learn-
ing methods (URetinexNet [30], LLFlow [26], SNR-aware
[33], and KinD++ [38]), and four unsupervised learning
methods (SCI [22], ZeroDCE++ [16], PairLIE [6], and
RUAS [20]). The results are reproduced using publicly
available source codes with recommended parameters.

Benchmarks Description and Metrics. For testing, we
use 15 validation images from the LOL [28] dataset, 50 val-
idation images from the LSRW [8] dataset (30 by Huawei,
20 by Nikon), and 22 randomly sampled images with the
attribute of “Lowlight” from SIDD-Small [1] dataset. No-
tably, we adjust the SIDD-Small dataset’s image resolu-
tion to 1280x720. We employ two commonly-used metrics,
PSNR and SSIM. In addition, for visual comparisons, we
use the LIME [7] and DICM [13] datasets.

4.2. Benchmark Evaluations

Performance Evaluation. Figure 5 displays a visual com-
parison of images taken in real low-light conditions. Our
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Table 1. Quantitative comparisons in terms of PSNR and SSIM. The best and the second best results are highlighted in red and blue.

Supervised Learning Methods Unsupervised Learning Methods
Datasets Type Metrics URtinexNet

(cvpr2022)
LLFlow

(AAAI2022)
SNR-aware
(cvpr2022)

KinD++
(IJCV2021)

SCI
(cvpr2022)

ZeroDCE++
(TPAMI2021)

PairLIE
(cvpr2023)

RUAS
(cvpr2021)

ZERO-IG
IE-Net ZERO-IG

PSNR ↑ 16.2600 14.6107 14.8907 16.5524 15.5257 15.6757 17.0254 12.5997 15.1154 18.9849- SSIM ↑ 0.4247 0.4401 0.6010 0.5799 0.3537 0.3561 0.5266 0.4287 0.2865 0.6253
PSNR ↑ 16.5879 17.2651 14.8641 16.6056 15.7053 16.4329 17.1241 12.7437 16.0232 18.9849SIDD

Followed
by ZS-N2N SSIM ↑ 0.4715 0.5097 0.5994 0.5982 0.3610 0.45883 0.5497 0.4459 0.4577 0.6253

PSNR ↑ 20.1405 24.0641 24.6977 17.6476 14.7839 15.1416 18.4684 16.5976 17.6255 22.1751LOL - SSIM ↑ 0.8221 0.8601 0.8494 0.7714 0.52544 0.5657 0.7426 0.6559 0.4566 0.7719
PSNR ↑ 18.1566 19.2005 17.6209 17.0251 15.7003 16.3821 18.9887 15.7422 17.6842 19.8414LSRW-

Huawei - SSIM ↑ 0.5464 0.5419 0.5781 0.4993 0.4279 0.4696 0.5502 0.4976 0.4101 0.5944
PSNR ↑ 15.9870 15.3675 15.9362 15.4796 14.5542 15.2770 15.5214 12.2104 15.3901 16.6157LSRW-

Nikon - SSIM ↑ 0.4425 0.4491 0.4691 0.4411 0.4065 0.4129 0.4271 0.4394 0.3818 0.4706

(a) Input (b) SNR-aware [33] (c) RUAS [20] (d) SCI [22] (e) PairLIE [6] (f) LLFlow [26] (g) ZERO-IG

Figure 6. Visual comparisons on low-light images with uneven brightness from LIME [7], DICM [13], LOL [28] and LSRW [8] datasets.

method excels over other methods in image brightness, con-
trast, color fidelity, and noise reduction. Although to be a
zero-shot method, we get more natural visual quality and
closer to the reference. Even when using only our IE-Net
for enhancement, we yield better result than others. This
is because they heavily rely on training data, typically us-
ing images with negligible noise. Real noise in low-light
images pollutes their enhanced results and degrades their
performance, leading to inferior visual effects. We also per-
form comparisons on uneven brightness low-light images.

Figure 6 demonstrates that our method effectively enhances
darker regions without overexposing the brighter areas, con-
trasting with other methods that fail in this regard.

In quantitative comparisons, our method outperforms
others on both SIDD [1] and LSRW [8] datasets, as indi-
cated in Table 1. In particular, the versatility of our method
is demonstrated by its strong performance across various
shooting devices, as shown on the LSRW [8] dataset. On
the LOL [28] dataset, we surpass all unsupervised methods
and are comparable to supervised methods. Due to space

(a) Input (b) Baseline (c) BM3D [2] (den-enh) (d) BM3D [2] (enh-den)

(e) ZS-N2N [23] (den-enh) (f) ZS-N2N [23] (enh-den) (g) ZERO-IG (h) Ref

Figure 7. Visual comparison with cascaded methods on the SIDD [1] dataset.
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Table 2. Ablation study of the contribution of the three subnet-
works and concatenation operation. The best and the second best
results are highlighted in red and blue.

Subnetworks
The

IE-Net
The

LD-Net
The

RD-Net
Concat-
enation

PSNR ↑ SSIM ↑

✓ ✗ ✗ ✗ 18.2091 0.4134
✓ ✓ ✗ ✗ 18.2123 0.4143
✓ ✗ ✓ ✓ 18.1160 0.5580
✓ ✓ ✓ ✗ 19.4880 0.6284
✓ ✓ ✓ ✓ 23.2349 0.6703

Table 3. Ablation study of the contribution of loss terms in the
RD-Net. The best and the second best results are highlighted in
red and blue.

The RD-Net Losses
Lill Linter Lvar Lcolor

PSNR ↑ SSIM ↑

✗ ✓ ✓ ✓ 19.1476 0.5442
✓ ✗ ✓ ✓ 18.0733 0.5000
✓ ✓ ✗ ✓ 19.3852 0.5785
✓ ✓ ✓ ✗ 19.3372 0.6131
✓ ✓ ✓ ✓ 23.2349 0.6703

limitations, more comparisons are available in the Supple-
mental Materials.

Evaluation of Joint Enhancement and Denoising. To
highlight the significance of joint denoising and enhancing,
we initially denoise the enhanced images of the mentioned
methods using ZS-N2N [23]. Then we compare the results
with ours. Table 1 shows that, while these methods exhibit
slight improvement post-denoising on the SIDD [1] dataset,
they are still significantly less effective than ours. To further
compare ZERO-IG with cascade methods, we incorporate
ZS-N2N [23] and BM3D [2] for denoising. Specifically,
we explore two scenarios: denoising then enhancing (den-
enh) and enhancing then denoising (enh-den). The enhance-
ment result of our IE-Net is used as the baseline. Figure 7
indicates that cascade networks either failed in denoising
or over-smoothed the image details. Conversely, our joint
method successfully preserves details and effectively sup-
presses noise.

4.3. Ablation Study

Table 2 shows the results of various combinations of the
three subnetworks. Solely using the IE-Net, or introducing
the LD-Net/RD-Net before/after enhancement, produces re-
sults inferior to the integrated of all three subnetworks. This
confirms the importance of our proposed joint denoising
and enhancing approach. Moreover, removing the concate-
nation operation leads to a substantial decrease in metrics.

Subsequently, we assess the results of training the IE-Net
with different loss combinations. As shown in Figure 8, the
reconstruction loss Lover increases the brightness of the low-
light image. While leading to localized overexposure, evi-
dent in the enlarged area within the red frame. Adding the
magnitude control loss Lpix enables adaptive enhancement,
addressing the overexposure problem but resulting in overly
sharp edges. The inclusion of smoothness loss Lsmooth fur-

(a) Input (b) Lover (c) Lover+Lpix

(d) Lover+Lpix+Lsmooth (e) ZERO-IG (f) Ref

Figure 8. Ablation study of the contribution of loss terms in the
IE-Net.

ther improves the texture and details, yielding a more natu-
ral visual appearance.

Finally, we evaluate the losses in the denoising networks.
Figure 8(e) illustrates that incorporating all denoising losses
effectively reduce noise, particularly in the areas magnified
in the green and red frames. This yields an enhanced image
closer to the reference. Table 2 confirms the effectiveness of
residual loss Lres and consistency loss Lcons in the LD-Net.
Therefore, we focus solely on evaluating other loss terms in
the RD-Net. As shown in Table 3, omitting any loss term re-
sults in reduced performance metrics. The most significant
decline is observed when Linter is excluded, underscoring
its critical role. Additionally, eliminating Lill also leads to
a notable decrease in performance, reaffirming the signifi-
cance of the concatenation operation. More ablation exper-
iments are included in the Supplemental Materials.

5. Conclusion

This paper proposes ZERO-IG, a method that jointly de-
noises and enhances real-world low-light images. ZERO-
IG is guided by illumination, requiring only a single low-
light image for training without needing prior knowledge
of noise distribution. We employ the form of pixel-level
adaptive enhanced reflection to remove original noise from
the low-light image. This avoids under-enhancement and
over-exposure while preserving the noise’s original charac-
teristics for effective enhancement. We also create a new
dataset VILNC captured in real low-light conditions. Both
qualitative and quantitative experiments demonstrate the su-
periority of ZERO-IG against existing advanced methods.
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