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Figure 1. BaseNeRF vs ExtraNeRF: We train a BaseNeRF model and our ExtraNeRF model on six input views and render the scene
from extrapolated viewpoints. Using our visibility-aware, diffusion-guided inpainting and enhancement modules, we are able to synthesize
sharp content in disoccluded regions, whereas the BaseNeRF suffers from blurry results (see the red boxes, green boxes, and the close-up
insets).

Abstract
We propose ExtraNeRF, a novel method for extrapolat-

ing the range of views handled by a Neural Radiance Field
(NeRF). Our main idea is to leverage NeRFs to model
scene-specific, fine-grained details, while capitalizing on
diffusion models to extrapolate beyond our observed data.
A key ingredient is to track visibility to determine what por-
tions of the scene have not been observed, and focus on re-
constructing those regions consistently with diffusion mod-
els. Our primary contributions include a visibility-aware
diffusion-based inpainting module that is fine-tuned on the
input imagery, yielding an initial NeRF with moderate qual-
ity (often blurry) inpainted regions, followed by a second
diffusion model trained on the input imagery to consistently
enhance, notably sharpen, the inpainted imagery from the
first pass. We demonstrate high-quality results, extrapolat-
ing beyond a small number of (typically six or fewer) input
views, effectively outpainting the NeRF as well as inpaint-
ing newly disoccluded regions inside the original viewing
volume. We compare with related work both quantitatively
and qualitatively and show significant gains over prior art.

1. Introduction
Reconstructing a scene from photographs is an important
and long-standing problem in computer vision. Recent
advances, following the introduction of Neural Radiance

Fields (NeRF) [29] have led to an explosion of progress.
Nevertheless, a limitation of NeRF in its base form is that it
is far better at interpolating than extrapolating, and requires
dense views for the interpolation. But what if you want to
take just a few views, a practical constraint in a live capture
setting, and extrapolate beyond them to enable a bit more
freedom in viewing the scene? While there has been signif-
icant progress in scene-level sparse NeRF reconstruction,
the progress on NeRF-based view extrapolation is primar-
ily limited to object-centric scenarios. Advances in genera-
tive techniques, particularly diffusion models, have demon-
strated unforeseen capabilities to synthesize previously un-
seen imagery. This presents an opportunity to expand the
operating range of NeRF more broadly to view extrapola-
tion.

Our core strategy employs neural radiance fields
(NeRF [29]) to capture scene-specific, fine-grained details
and utilizes 2D diffusion models [40] to extend the scene
beyond the limits of observed data. A straightforward fu-
sion of these technologies initially results in NeRF-rendered
images that appear blurry and detail-deficient. This is pri-
marily due to the discord between 2D diffusion priors when
applied to a 3D scene from varying perspectives, particu-
larly evident in scene-level view extrapolation where intri-
cate details (such as leaves and branches) are significantly
diminished.

To address these challenges, we develope a multi-stage
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process (see Fig. 2) that includes: (1) employing a special-
ized visibility module to identify all 3D content which is
visible from the observed data; (2) utilizing a visibility-
aware inpainting module, which is tailored for each scene,
to imagine and add plausible 3D content into NeRF for view
extrapolation and ensure the content from observed data re-
mains unaltered; and (3) enriching view-consistent details
in hallucinated content using a carefully designed diffusion
enhancement model.

Through this novel pipeline, we demonstrate high qual-
ity view extrapolation from a small number of input views,
filling in the newly revealed areas outside the original view
volume (see Fig. 1). Our qualitative and quantitative evalu-
ation show significant gains over previous work.

2. Related Work
View synthesis: Given a set of posed images, the goal of
view synthesis is to simulate how a scene would look like
from novel viewpoints [8, 21, 52]. The problem is tradition-
ally formulated as an image-based rendering task [12, 73],
and impressive results can be achieved by blending pixel
colors across views based on depth maps [7] or by com-
positing images using proxy geometry [19]. Recently, with
the help of deep neural networks [26, 37, 38, 57, 72], the
results have been further improved. Together with carefully
curated scene representations [15, 45, 56, 62], researchers
have been able to synthesize novel views even from a single
image [39, 55, 60]. Similar to the these recent efforts, our
work seeks to extrapolate beyond what is visible and predict
the content that is occluded in all images. However, instead
of relying on deep nets to learn the geometric relationships
and hallucinate the content in a purely data-driven fashion,
we bake the 3D inductive biases (e.g., visibility) into the
pipeline to ground the generation process. This allows us to
generate high-quality, realistic and coherent scene content.

Neural radiance fields (NeRF): NeRF [29] has revolu-
tionized the field with its simplicity and extraordinary per-
formance [5, 11, 22, 23, 50, 64, 69, 70]. However, existing
NeRF-based models tend to be under-constrained, leading
to the following limitations: first, they require dense ob-
servations of the scene; and second, their performance de-
grades significantly when extrapolating rather than interpo-
lating. To alleviate these issues, researchers have proposed
regularizing the underlying scene representation by data-
driven statistics [16, 33, 63] or geometry constraints [54].
While these approaches greatly reduce the required number
of input images, they still assume that the input views have
a wide coverage of the scene. The task thus still falls under
the view interpolation setup. In this paper, we focus on a
common yet extremely challenging setup in live capture set-
ting where we only have access to a few images with small
baselines. We show that by carefully integrating generative

models with NeRF, we can effectively expand the operating
range of NeRF and produce high-quality renderings.

Diffusion models: Diffusion models [13, 40, 48, 49]
have drawn wide attention across the vision community due
to their capacity and scalability. They have demonstrated
remarkable performance on a plethora of 2D tasks such as
image inpainting [28, 42], deblurring [20, 61], and have en-
abled high-quality, diverse image generation [40, 43]. By
combining with neural rendering [29], the learned diffu-
sion priors can be further lifted to 3D to enable applica-
tions such as text-to-3D [24, 35, 51, 59] or single-/multi-
image 3D generation [25, 27, 36, 44, 46, 47, 53]. Similar to
these works, we also leverage diffusion models to synthe-
size novel views and fuse the generation results back to 3D.
However, rather than focusing on object-centric setup, we
study how to model the 3D content of the scene. Further-
more, we explicitly track the visibility across views, which
allows us to produce both realistic and consistent 3D recon-
structions. Concurrently with our work, Sargent et al. [44]
also attempt to extrapolate 3D scenes. While their focus is
primarily on generating content beyond the visible image
boundaries, our approach predicts both disoccluded regions
and areas that are not observed.

3. Preliminaries

Neural radiance fields: A neural radiance field
(NeRF [29]) is an implicit scene representation. At its core
lies a continuous function fθ : R3 × R2 7→ R+ × R3,
parameterized by a neural network, that maps a 3D point
x ∈ R3 and a view direction d ∈ R2 to a volume density
σ ∈ R+ and an RGB radiance c ∈ R3. A NeRF can be
rendered into a 2-d image as follows. For each pixel, we
cast a ray r(s) = o+ sd from the camera center o through
the pixel center in direction d, and sample a set of 3D
points along the ray and query their radiance and density.
Then we aggregate the samples and obtain the color of the
pixel via volume rendering:

C(r) =

Nr∑
i=1

Ti(1− exp(−σiδi))ci. (1)

Here, δi = si+1 − si is the distance between adjacent sam-
ples, and Ti = exp(−

∑i−1
j=1 σjδj) represents the accumu-

lated transmittance along the ray till si. Intuitively, one can
think of Ti as visibility, since it is the probability that the
ray travels to si without hitting any other particle.

The volume rendering operation is generic and can be
adapted to render other properties of the scene, such as ge-
ometry (i.e. depth) or visibility (see Sec. 4.3). For instance,
by replacing the color radiance ci in Eq. 1 with distance si,
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we can compute the expected termination depth:

D(r) =

Nr∑
i=1

Ti(1− exp(−σiδi))si. (2)

The neural radiance field fθ is learned on a per-scene ba-
sis. Given a dense set of images, the parameters θ can be
learned by minimizing the discrepancy between target pixel
colors Ctarget(r) and the colors rendered by corresponding
rays C(r), i.e. Lrgb =

∑
r∥Ctarget(r) − C(r)∥22. If depth

information is available, or can be computed with methods
such as multi-view stereo, one can additionally adopt geo-
metric supervision: Ldepth =

∑
r∥Dtarget(r) −D(r)∥22. As

we will show in the later sections, explicitly regularizing the
geometry of the underlying 3D scene is critical when only
a few input images are available. It can also enable better
extrapolation to unseen, disoccluded regions.

Diffusion models: Diffusion [13, 40, 48, 49] has emerged
as a powerful approach for generative image synthesis.
Diffusion models rely on the learned denoising module
Ψ(xt, t, l) that takes a noisy input image xt and possible
extra conditioning signals (e.g., text prompts l, timestep t),
and predicts the noise ϵ. By iteratively predicting the noise
and subtracting it from the data, the model gradually con-
verts the original noisy data xt to a target sample of interest
x. To train such a model, various levels of Gaussian noise ϵ
are added to original clean data points, and the denoiser Ψ
is tasked with predicting the noise:

L = Ex,t,ϵ∥ϵΨ(xt, t, l)− ϵ∥22 (3)

Since training diffusion models from scratch is often costly
and requires large amount of data, researchers typically
fine-tune pre-trained models for specific tasks using Eq. 3
with a smaller, domain-specific dataset. This fine-tuning
can be achieved either by directly adjusting the weights of
the denoiser Ψ [14, 41] or by introducing additional param-
eters such as learnable embeddings [10].

4. Method
Given a sparse set of images of the scene, our goal is not
only to synthesize photo-realistic results between the input
views, but also generate high-quality view extrapolations
with inpainted disocclusions.

In this section, we first briefly review the basic building
blocks of our approach. Next, we explain each component
in more detail. Finally, we discuss how we fine-tune our
diffusion models and other design choices.

4.1. Extrapolating Neural Radiance Fields

We create a NeRF capable of view extrapolation in three
steps (see Fig. 2):

1. Training the BaseNeRF: We follow a standard process
to train a NeRF on a sparse set of input images.

2. Diffusion-guided inpainting: We iteratively optimize
NeRF with virtual views and the original inputs. Each
virtual view is rendered from the NeRF and then in-
painted using our diffusion model. Then the NeRF can
be supervised with this virtual image, backpropagating
the newly inpainted regions to the NeRF. Through this
iterative process, we construct a consistent neural radi-
ance field that extends beyond the original input images.

3. Diffusion guided enhancement: We find that the pre-
vious iterative optimization tends to introduce blur and
color drift in the inpainted regions. In the final stage, we
use a fine-tuned diffusion model to increase sharpness
and improve color consistency in these regions.
We now describe each component in more detail.

Training the BaseNeRF: Given a sparse set of images
{Ii}ni=1 and their associated camera poses {Πi}ni=1, we first
train a BaseNeRF (see Sec. 3). Due to the lack of dense
multi-view images for effective regularization of the under-
lying 3D space, we utilize the method proposed in [54] to
compute dense depth maps {Di}ni=1 for each input image
for geometric supervision. To further reduce “floater” arti-
facts (spuriously reconstructed bits of content in empty re-
gions of the volume), we incorporate distortion loss [1] and
hash decay loss [2] and apply gradient scaling [34] to regu-
larize the learning procedure.

Diffusion-guided Inpainting: Once we have the BaseN-
eRF, the next step is to augment it such that it can handle
extrapolated viewpoints.

To do this, we repeatedly optimize the NeRF over the set
of original views and virtual views that extend beyond the
original viewing domain. For each virtual view, we render
it using the NeRF and then use a diffusion inpainting model
Ψinpaint to predict the unobserved regions.

As our inpainting module Ψinpaint, we adopt the inpaint-
ing variant of latent diffusion from [40], which we fur-
ther fine-tune on a per-scene basis (see Sec. 4.2). To limit
the inpainting to the unobserved regions (e.g. areas where
NeRF lacks supervision), our diffusion inpainter Ψinpaint

takes three inputs: noisy image, visibility mask, and masked
clean image that lacks data in areas to inpaint (see Fig. 3).
The visibility masks are computed by checking whether the
3D sample points along the ray at each pixel have been ob-
served in the training images (see Sec. 4.3).

For each virtual view, we also inpaint the depth condi-
tioned on the inpainted color image using a depth comple-
tion network (see Sec. 4.3).

Once the image and depth for the virtual view are in-
painted, they are used to further supervise the NeRF through
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Figure 2. Overview of our method: We start from n input images, their camera poses, and depth maps (predicted as described in Sec. 4).
In Step 1, we train a BaseNeRF by supervising with this input data. In Step 2, we add supervision from virtual views. We repeatedly
inpaint the areas that are unsupervised by the original input views by a diffusion model while continuing to supervise the NeRF with the
virtual views. In Step 3, we iterate in similar fashion, but instead of inpainting we apply another diffusion model specifically designed to
further improve the detail and color consistency in inpainted regions.

Lrgb
inpaint and Ldepth respectively (see Fig. 2). Lrgb

inpaint is com-
puted as follows:

Lrgb
inapint =

∑
r

w(t)|Cinpaint(r)−C(r)|, (4)

where w(t) is a noise-level dependent weighting function,
Cinpaint is the inpainted colors and C is the rendered im-
age from NeRF. We chose to run small number of diffusion
denoising steps on each virtual view at the time (e.g. 10),
but we repeat the whole process by iterating over the views
several times.

Note that while inpainting in multiple views separately
could lead to inconsistencies, our iterative approach does
converge, because at each virtual view the diffusion process
is bootstrapped via the noisy image that is re-estimated from
the continuously improving NeRF on every iteration. This
is similar to [35], although in our work we opted to run more
than one step of diffusion before we move to a new view.

Diffusion-guided enhancement: While the iterative in-
painting converges into a consistent result, we have ob-
served that some blurriness and color drift may still occur
in the NeRF after the inpainting stage.

To alleviate this, we utilize a diffusion-based enhance-
ment model, Ψenhance, which has the same architecture as
Ψinpaint but specifically trained for the enhancement (see
Sec. 4.2).

Similar to inpainting, we use an iterative approach to up-
date our NeRF. In each training iteration we 1) render the

Figure 3. The input triplet of diffusion model consists of noisy-
image, mask, and an guidance image. While masked pixels of
guidance images of Ψinpaint are erased, they are preserved as the
guidance for Ψenhance.

image and compute the visibility mask from the NeRF, 2)
create a triplet of input data from the rendered image and
visibility mask, and 3) leverage our Ψenhance model to gen-
erate an enhanced image from the triplet. In contrast to the
inpainting process, we do not mask out the pixels in the in-
tact rendered image (see Fig. 3). Instead, we want Ψenhance

to enhance detail in these areas. Once the enhanced image
is generated, we then complete the depth. Finally, we super-
vise the NeRF following steps similar to the inpainting stage
but replace Lrgb

inpaint with Lrgb
enhance. Lrgb

enhance is almost identical

to Lrgb
inpaint except that we replace Cinpaint with Cenhance (i.e.

enhanced colors). As shown in Fig. 7, this process can im-
prove detail and overall image quality.
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Figure 4. Illustration of data collection for enhancement model.
We draw a pseudo visibility mask in a captured photo. Ground-
truth supervision in the mask is replaced by inpainting supervision
when we iteratively optimize NeRF. The optimization corrupts
pixels in the mask when rendered with NeRF. A captured photo
along with several corrupted images from different optimization
iterations can used to train Ψenhance

4.2. Fine-tuning the Diffusion Models:

As mentioned earlier, we use the inpainting-variant of the
latent diffusion model [40] for both inpainting and enhance-
ment. For the best quality it is essential to fine-tune both
Ψinpaint and Ψenhance for the scene and their respective tasks
using our sparse set of input images {Ii}ni=1. This is per-
haps obvious in the case of Ψenhance as its task is not ex-
actly inpainting, but more similar to deblurring. However,
as shown in Fig 7, scene-specific fine-tuning is also impor-
tant for the inpainting module.

To fine-tune these two models Ψinpaint and Ψenhance, we
devise a process to produce ground truth training data us-
ing our input images. The first step is to create visibil-
ity masks similar to those that would occur in the virtual
views. For each training image, we compute a correspond-
ing pseudo visibility mask by checking if pixels are visible
in all other training views. Pixels not visible in one more
view are treated as disocclusions, and we fine-tune Ψinpaint

by asking it to inpaint the regions under these masks.
We fine-tune both models using standard diffusion loss

(Eq. 3) following the DreamBooth [41] pipeline.
To produce training data for Ψenhance a further step is

needed. To produce corrupted input for enhancement, we
optimize a NeRF by intentionally replacing supervision
from input viewpoints with inpainting supervision from
Ψinpaint for pixels in the pseudo-disocclusion masks. We
find that this adequately simulates the blur and color drift
that the Ψenhance is tasked to reduce. See Fig. 4 for an exam-
ple.

4.3. Implementation details

Visibility map: The visibility map indicates whether the
3D points corresponding to the pixels of a virtual view are
visible in the input images. They might be hidden if they
are outside the input view frustums or occluded by a closer
object.

It plays a critical role in our system as it helps us deter-
mine which areas are unobserved in the original images and
require inpainting. As indicated in Sec. 3, the accumulated

Masked Depth Guidance Image Completed Depth

Figure 5. The depth completion model takes a masked depth along
with a guidance image as input and completes the depth in the
masked region using the guidance of the RGB image.

transmittance from NeRF encodes essential visibility infor-
mation. This enables us to estimate the visibility of any 3D
point w.r.t the input views.

To compute the visibility map for a single pixel of a vir-
tual view, we first construct a ray through that pixel. For
each sampled 3D point along this ray, we then compute the
transmittance towards each training view (e.g. another ray
march). To aggregate the transmittance values across the
input views, we simply select the second largest value. This
is based on the rationale that the geometry of a 3D point is
only reliable if observed by at least two views (the minimum
for triangulation). If a 3D point is seen by only one training
view, its estimated depth might be unreliable. Finally, these
aggregated transmittance samples are aggregated together
to the visibility map pixel by volume rendering, similarly to
color values.

Depth completion module: We develop a depth comple-
tion module to complete the depth maps for virtual views
required by Ldepth (Fig. 5). The depth completion network
takes the inpainted RGB image, visibility mask, and masked
depth-map as input, and inpaints depth map in the masked
region. The model is based on the pretrained weights of
MiDaS-v3 [4] with two additional input channels for the in-
put mask and masked depth-map. The model is fine-tuned
with a self-supervised approach on the Places2 dataset [71]
(see Suppl. for details).

Hyper-parameters: We fine-tune our inpainting and en-
hancement models for 500 iterations with a learning rate of
5e-6 for the diffusion U-Net and 4e-5 for the LoRA layer of
the text encoder. Our NeRF uses Instant-NGP [32] as the
backbone, with scene contraction [1] to handle unbounded
scenes. We propose a 3-stage pipeline to train our NeRF.
In step 1, we train the BaseNeRF for 5000 iterations using
Lrgb and Ldepth with an initial learning rate of 1e-2, gradu-
ally decreasing to 3e-4. In step 2, in addition to Lrgb and
Ldepth, the NeRF also receives supervision from the inpaint-
ing model Ψinpaint via Lrgbinpaint using the virtual views for
500 iterations. In Stage 3, we supervise the NeRF for an-
other 500 iterations but replace the inpainting model Ψinpaint

with the enhancement model Ψenhance.
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Time consumption: In our experiments, we used one
A100 GPU. Step 1, the bottleneck, involved 6 hrs of train-
ing Sparf [54] with early stopping at 30K iterations to create
depth maps, and 8 minutes to train the BaseNeRF model.
Steps 2 and 3 typically took 2-3 hrs, including 1 hour for
data collection and fine-tuning two diffusion models, as
well as 1-2 hrs for training the ExtraNeRF model. Our total
optimization time is shorter than that of NeRF [29], which
can take a day or more when running on a single GPU.

5. Experiments
5.1. Experimental setup

LLFF Datasets: We primarily utilize the LLFF dataset
to demonstrate the effectiveness of our method. This dataset
offers two settings for the training/test split that we have
explored. In the first protocol, our goal is to assess perfor-
mance in the task of view extrapolation. Therefore, 6 out
of 30-40 images, whose viewpoints are closest to the center
position, are chosen as the training set, and 8 images, whose
viewpoints are farthest from the center position, are chosen
as the test set (see Tab. 1). The second protocol follows the
standard few-shot view synthesis setup [33] (see Tab. 2).

Tanks & Temples Datasets: We also utilize the Tanks &
Temples dataset [18] to demonstrate our method’s capabil-
ity to manage more complex scenes in real-world settings.
The data processed by NeRF++ [67] serves as our basis. In
each scene, we select 3-5 nearby views as the training set
and choose another 5-6 views whose viewpoints surround
the training viewpoints, as the test set.

Metrics: We adopt the same metrics as [30], since our
goals, akin to theirs, involve evaluating the performance of
synthesized 3D content. Accordingly, we utilize two sets
of metrics: full-reference (FR) and no-reference (NR). For
the FR metrics, we exclusively use LPIPS[68], KID [3], and
also include PSNR and SSIM [58] for a comprehensive as-
sessment. However, it’s noteworthy that PSNR and SSIM
are not considered reliable metrics for evaluating generative
tasks [6, 9, 44]. For NR metrics, MUSIQ [17] is employed
to assess the visual quality of rendered images.

Baselines: We compare our method with six related
baselines for which code is available: (1) Sparf [54], one
of the state-of-the-art (SOTA) methods for sparse view re-
construction. (2) FreeNeRF [66], another SOTA method for
sparse view reconstruction. (3) DiffusioNeRF [63], which
employs a patch-wise diffusion model to provide RGB and
depth supervision for a NeRF. (4) SPIn-NeRF [31], aimed
at inpainting unobserved content behind an object in 3D,
given a complete object mask. In our setting, where no
object mask exists, we substitute it with a visibility mask,

Table 1. Quantitative comparison of view extrapolation.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ KID ↓ MUSIQ ↑

Sparf 20.38 0.650 0.324 0.0199 40.32
FreeNeRF 20.16 0.663 0.329 0.0203 39.51
DiffusioNeRF 19.94 0.683 0.296 0.0198 50.03
*SinNeRF 16.86 0.373 0.558 0.0458 31.54
*SPIn-NeRF 20.40 0.672 0.284 0.0156 51.84
*SDS 20.56 0.654 0.338 0.0351 49.35
Ours 20.76 0.688 0.269 0.0154 54.13

Table 2. Quantitative comparison of few-shot view synthesis [33].

Metrics DiffusioNeRF Sparf FreeNeRF Ours

PSNR ↑ 19.79 20.20 19.63 21.17
SSIM ↑ 0.568 0.630 0.612 0.719
LPIPS ↓ 0.338 0.383 0.308 0.264

Table 3. Ablation study.

Methods LPIPS ↓ KID ↓ MUSIQ ↑

BaseNeRF 0.323 0.0220 49.31
w/ pretrained Ψinpaint 0.291 0.0158 52.90
w/ fine-tuned Ψinpaint 0.282 0.0155 53.15
w/ fine-tuned Ψinpaint & Ψenhance 0.269 0.0154 54.13

denoted as *SPIn-NeRF. (5) *SinNeRF [65], capable of ex-
trapolating views in 3D from a single image and an accurate
depth map. For a fair comparison, we provide RGB super-
vision from all images in the training set. (6) *SDS [35]
loss, widely used in 3D content generation. Here, we sub-
stitute the color supervision from the inpainted image with
SDS loss.

5.2. LLFF

Comparison of view extrapolation: In Table 1, our
method surpasses related works across various metrics,
showcasing our approach’s superior ability to inpaint un-
seen regions in view extrapolation tasks. Furthermore,
Figure 6 presents a qualitative comparison, highlighting
the distinctions between our method and competing ap-
proaches.

While Sparf and FreeNeRF demonstrate proficiency in
estimating geometry and appearance for regions captured
by input viewpoints, they fall short in generating meaning-
ful content for view extrapolation scenarios. DiffusioNeRF,
sharing our utilization of a diffusion prior to enhance NeRF
quality, is limited by its patch-based model’s narrow recep-
tive field, preventing the synthesis of coherent content. Our
diffusion model, in contrast, processes the entire image to
generate meaningful and consistent content. *SPIn-NeRF,
employing perceptual loss to address inconsistencies in su-
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Image & Visibility mask Sparf DiffusioNeRF *SinNeRF

FreeNeRF *SPIn-NeRF *SDS Ours

Image & Visibility mask Sparf DiffusioNeRF *SinNeRF

FreeNeRF *SPIn-NeRF *SDS Ours

Figure 6. Qualitative results of view extrapolation on LLFF dataset. We present the image masked by the visibility mask on the left
and the extrapolated results on the right. In comparison to the baselines, our results are significantly sharper and align coherently with the
existing scene content. We are able to accurately reconstruct the structure of the leaves (top) and the partially observed chair (bottom), in
contrast to the baselines, which yield blurry outcomes and struggle to differentiate between the foreground and background.

pervision from inpainted images, inadvertently introduces
pattern artifacts. Additionally, while SDS loss can produce
reasonable content, it often lacks the complexity of detail.

Compared to these methods, our technique excels in cre-
ating believable content that is both stylistically consistent
and detailed.

Comparison of few-shot view synthesis: In Table 2, we
demonstrate that our method outperforms other baselines in
the few-shot view synthesis protocol with only 3 training
views. This indicates that our approach can significantly
reduce the number of required training views.

Ablations: In Figure 7, we illustrate the impact of re-
moving components from our pipeline on the task of view
extrapolation. The pretrained inpainting model struggles
to fill masked regions with content that maintains consis-
tent appearance and structure, leading to results that ex-
hibit blurriness and color drift in NeRF, as depicted in Fig-
ure 7. By fine-tuning the inpainting model with the spe-
cific scene’s captured photos, the diffusion model learns the
scene’s unique distribution, enabling it to more accurately
generate content with consistent structure and appearance.
Moreover, our enhancement model is capable of adding
even greater detail than the fine-tuned inpainting model.
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BaseNeRF w/ pretrained Ψinpaint w/ finetuned Ψinpaint w/ finetuned Ψinpaint&Ψenhance

Figure 7. Ablation study. Inpainting disoccluded regions with a pretrained diffusion model results in blurry and color-drifted outcomes.
However, fine-tuning the model on specific scenes reduces these issues, as the fine-tuned model captures scene-specific statistics more
accurately. Additionally, our enhancement model further enables fine-grained details in NeRF-rendered images, producing sharper results.

Figure 8. Qualitative results on Tanks&Temples. While only a very small portion of the deck and the tires of the truck is visible from
input viewpoints (left), our model is still able to synthesis the missing content (right).

Table 4. Quantitative comparison on Tanks & Temples Dataset.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ KID ↓ MUSIQ ↑

Sparf 19.21 0.576 0.518 0.149 36.07
*SPIn-NeRF 18.28 0.683 0.348 0.042 37.63
Ours 19.20 0.718 0.312 0.065 40.85

Additionally, the results in Table 3 further demonstrate the
effectiveness of each component within our pipeline.

5.3. Tanks & Temples

Given that this dataset features a significant proportion of
pixels with extremely large depth values, we limit our com-
parison to methods equipped to handle unbounded scenes.
In Table 4, our method surpasses others in LPIPS and
MUSIQ scores, signifying superior visual quality of our re-
sults. However, our KID score falls short of SPIn-NeRF’s.
We hypothesize that this is likely due to the dataset’s small
size that may be insufficient to accurately estimate the test

set’s distribution. Furthermore, we showcase an example
highlighting our model’s ability to synthesize extensive ar-
eas of content that are unobservable from the input view-
points (see Figure 8).

6. Conclusion
In this paper, we present an approach to broadening viewing
range for a NeRF captured from a small, narrowly grouped
set of input images. Our method, dubbed as ExtraNeRF,
uses a pretrained diffusion model to produce new detail in
two ways: first to inpaint given a visibility mask computed
from the NeRF itself, then to enhance detail. We find that
per-scene fine-tuning, design of enhancement model, and
our data collections are critical for achieving good results.
We set a new SOTA for view extrapolation on the LLFF
dataset and Tanks & Temples dataset.
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