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Figure 1. Scene-level 3D reconstruction comparison on the Synthetic Rooms dataset [29]. DITTO maximizes the benefits of both
grid and point latents, thereby improving 3D surface reconstruction performance. We particularly focus on refining features based on point
latents along with grid latents and integrating them (namely, dual and integrated latent topologies). This advancement enhances the ability
to restore complex structures precisely, such as thin and intricate geometries, which posed challenges for previous methods.

Abstract

We propose a novel concept of dual and integrated latent
topologies (DITTO in short) for implicit 3D reconstruction
from noisy and sparse point clouds. Most existing methods
predominantly focus on single latent type, such as point or
grid latents. In contrast, the proposed DITTO leverages
both point and grid latents (i.e., dual latent) to enhance
their strengths, the stability of grid latents and the detail-
rich capability of point latents. Concretely, DITTO consists
of dual latent encoder and integrated implicit decoder. In
the dual latent encoder, a dual latent layer, which is the
key module block composing the encoder, refines both la-
tents in parallel, maintaining their distinct shapes and en-
abling recursive interaction. Notably, a newly proposed dy-
namic sparse point transformer within the dual latent layer
effectively refines point latents. Then, the integrated im-
plicit decoder systematically combines these refined latents,
achieving high-fidelity 3D reconstruction and surpassing
previous state-of-the-art methods on object- and scene-level
datasets, especially in thin and detailed structures.

*Corresponding author.

1. Introduction

Implicit 3D reconstruction aims to determine surface
boundaries by estimating implicit values, such as occu-
pancy and signed distance fields, based on given query co-
ordinates [24]. In particular, implicit 3D reconstruction has
evolved using geometric primitives like vectors [6, 24, 27,
32], grids [19, 29, 30, 37], and point clouds [1, 43] as in-
termediaries, namely, latent representations. Prior stud-
ies have focused on selecting appropriate latent represen-
tations for 3D reconstruction. Specifically, early meth-
ods [6, 24, 27, 32] use vectors as their latent representa-
tion because of their simplicity. However, they fall short
in handling large-scale scenes due to the absence of a
geometric prior (i.e., positional information). To allevi-
ate this issue, subsequent methods based on grid latent
have emerged [7, 19, 29, 37]. Grid latents have similar
shapes with occupancy cube, the target domain of 3D re-
construction. Thus, they offer high-fidelity reconstructions
at the scene-level but often lack detail because of resolu-
tion constraints. On the other hand, point latent-based ap-
proaches [1, 43] enable detailed reconstruction because they
preserve the details of the input points without information
loss (e.g., quantization). However, they can produce unsta-
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Figure 2. Overview of DITTO. DITTO architecture consists of the proposed dual latent encoder and integrated implicit decoder (IID)
modules. In the encoder, DITTO receives a point cloud P and generates point and grid latents C and T, respectively, using shallow
FKAConv layers [2]. These latents are refined in a U-shaped network composed with the proposed DLL to produce refined point and grid
latents, respectively C̃ and T̃. Our IID estimates the occupancy of given arbitrary query locations. The mesh can be obtained by applying
the Marching Cubes algorithm [22] to the occupancies estimated as form of a regular grid.

ble results due to ambiguities, such as holes in thin struc-
tures, because they can be sensitive to the noise inherent in
the input point coordinates. In short, each latent has its own
pros and cons, so it is crucial to leverage the strengths of
each representation properly.

As an attempt to combine the strengths of each latent,
Wang et al. [44] introduces a new alternating latent topol-
ogy concept, so-called ALTO. Concretely, ALTO simulta-
neously utilizes two latent representations by alternatively
projecting one latent into another. ALTO then decodes the
combined features in the form of a grid for 3D reconstruc-
tion. Such an intuitive and alternative approach improves
3D reconstruction performance and is meaningful as a first
attempt. However, ALTO may overlook the advantages of
abundant features extractable from point latents and makes
the implicit decoder rely solely on a grid latent-based de-
coder for convenience.

In this work, we propose a novel concept of dual and
integrated latent topologies (DITTO) for implicit 3D recon-
struction. The proposed DITTO aims to systematically in-
tegrate the strengths of each latent while maintaining their
spatial structure of point and grid latents (i.e., dual latent).
Specifically, we seek to offset the inherent ambiguity of
point latents through the stability of grid latents and, con-
versely, complement the resolution constraints of grid la-
tents through the detailed representation by point latents.

The proposed DITTO employs an encoder-decoder ar-
chitecture for dual latent (see Fig. 2). From a given point
cloud, our encoder, called dual latent encoder, constructs
point and grid latents and refines this dual latent while pre-
serving their original shapes. In particular, we propose a
new dynamic sparse point transformer (DSPT) for point fea-
tures, which leverages large receptive fields, enabling ef-
fective learning of point-based spatial patterns. Based on
DSPT, we design a dual latent layer (DLL) that iteratively
and separately updates dual latent with the correlation be-
tween two latents. This DLL module allows us to implicitly
learn challenging patterns, such as thin objects, that cannot
be handled by grid latent alone. Then, our decoder, called
integrated implicit decoder (IID), integrates enhanced dual
latent to estimate the implicit value. Unlike previous meth-

ods that utilize only a subset of latents, our decoder consid-
ers dual latent; especially, we unify grid-based and point-
based implicit decoders together by introducing the concept
of integrated latent. IID helps to restore details by adjusting
the relationship between neighbor points and query, adapt-
ing to the surface proximity. Finally, the proposed DITTO
improves 3D surface reconstruction performance, outper-
forming previous approaches and establishing a new state-
of-the-art (see Fig. 1).

The main contributions of DITTO are as follows:
• DITTO is a new implicit 3D reconstruction method focus-

ing on advanced feature extraction and fusion of grid and
point latents, enhancing 3D understanding capabilities.

• We design a new dual latent layer module that refines dual
latent while preserving their individual strengths. Par-
ticularly, we present a dynamic sparse point transformer
(DSPT) to emphasize point feature refinement.

• We present a novel integrated implicit decoder that
uniquely integrates two latents, providing clear surface
boundaries, and robust to thin and intricate structures.

2. Related Work

3D reconstruction can be explicitly represented using a vari-
ety of geometric primitives, such as point, voxel, and mesh,
or it can be inherently represented by leveraging such geo-
metric primitives as latent representations [1, 6, 19, 24, 27,
29, 37, 40, 43, 44]. We refer to the former as explicit 3D
reconstruction and the latter as implicit 3D reconstruction.
The readers refer to [44] for explicit representations. In this
section, we discuss the strengths and weaknesses of each la-
tent for implicit 3D reconstructions.

Vector Latent Topologies. Early approaches, such as
[6, 24, 27], employ an encoder-decoder architecture in a
similar manner. They encode a 3D shape into vector latents
by the encoder and then reconstruct the 3D shape by the de-
coder. The decoder estimates the implicit values of a given
query point at arbitrary locations. However, since vector
latents lack geometric priors, they show decreased detailed
reconstruction performance (i.e., vector latent-based meth-
ods are vulnerable in large scenes with complex geometry).
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Grid Latent Topologies. As an alternative to vector la-
tents, grid latents that encode geometric priors have been
proposed [29, 30, 37, 40, 44]. Grid latent-based methods
quantize the input point cloud into a grid latent during en-
coding. Then, they extract latent features at the query points
using linear interpolation of the adjacent grids during de-
coding.

According to geometric primitives, we can divide grid
latent-based methods into voxel-based and triplane-based
methods. Voxel latents can densely store latent features in
the form of 3D grids [12, 26, 33, 36, 45]. ConvONet [29]
expands the previous ONet [24] by utilizing voxel latents
instead of vector latents. ConvONet and ALTO [44] take
voxel latents as one of the base representations, which re-
veal their effectiveness, especially for scene-level recon-
structions. However, voxels require cubic computation and
inherently have limited resolutions. On the other hand,
triplanes use 2D planes, which have less resolution con-
straints, allowing higher resolution than voxels. This ad-
vantage leads to more effective restoration than voxels, par-
ticularly for object-level tasks [3, 5, 8, 11, 13, 14, 34, 42],
which has slightly lower geometric complexity than scenes.
For this reason, ConvONet and ALTO use triplanes as the
primary latent topologies in object-level reconstruction.

Even though grid latent-based approaches show effective
reconstruction, but still require point feature quantization.
This process can result in a loss of fine details of the 3D
surface, which is a fundamental limitation of grid latents.

Point Latent Topologies. There are a few methods [1,
43, 46, 47] that encode features into point latents, typically
offering benefits for the preservation of spatial informa-
tion. Namely, there is no need for quantization, preventing
the loss of details. POCO [1] encodes latent features into
point latents and further enhances each feature by leverag-
ing the point latents of neighbor points through point con-
volution [2] and attention mechanism [39]. ARO-Net [43]
improves point features by introducing methods like anchor
points and radial observations, enhancing the performance
of the point-based implicit decoder. However, these point
latent-based methods may suffer instability from preserv-
ing spatial information of the point cloud, including even
noise points. Concretely, point latents from noise points
can affect neighbor points. In addition, the query feature
extraction process may introduce ambiguity since different
queries can share the same neighbor points. We address
these issues of point latents by leveraging the stability of
grid latents.

Blended Latent Topologies. ALTO [44] introduces a new
method that leverages multiple types of feature represen-
tations, utilizing both grid and point latents. This attempt
is the first approach to combine the strengths of each latent.
Specifically, ALTO iteratively projects its features from grid
to point cloud and vice versa. By doing this, ALTO aims
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Figure 3. Conceptual comparison of DITTO. We compare the
concept of implicit 3D reconstruction methods in terms of latent
representations: (a) encoders and (b) decoders. In (b), the image
of green chairs represents grid features.

to preserve the details inherent in the point cloud and en-
able feature sharing between planes, leading to improved
detailed surface reconstruction. However, ALTO primarily
relies on grid latents, with limited feature extraction from
point latents, hindering its capacity to fully exploit the po-
tential of point latents. In particular, its decoder exclusively
employs grid latents, making it directly susceptible to the
resolution constraints inherent in grid latents.

To address these issues, we propose DITTO designed
with advanced 3D geometry understanding capabilities.
DITTO comprises an enhanced point encoder, based on
FKAConv [2], and advanced module for extracting features
from both point and grid latents. Furthermore, we present
an implicit decoder that leverages the fusion of both grid
and point latents for improved performance.

3. Dual and Integrated Latent Topologies
In this section, we propose a new topological concept, dual
and integrated latent topologies (DITTO), for implicit 3D
reconstruction from a given noisy and sparse point cloud.
DITTO employs dual latent (i.e., point and grid latents) to
leverage both the structural stability of grid latents and the
preciseness of point latents. DITTO, composed of encoder-
decoder architecture for dual latent, refines and integrates
these two latents, overcoming individual limitations and im-
proving overall efficacy. This strategy leads to high-fidelity
surface reconstruction, even for thin, intricate structures.

3.1. Overview

Given a noisy and sparse point cloud P = {pi ∈ R3}Ni=1

as input, the goal of DITTO is to accurately reconstruct 3D
surfaces in a form of occupancy O = {oj ∈ {0, 1}}Mj=1 for
query coordinates of arbitrary location Q = {qj ∈ R3}Mj=1,
where N and M are the number of input points and queries.

The proposed DITTO comprises two main parts: dual la-
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Figure 4. Overview of our proposed DLL. The input consists of
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grid and point latents of the current layer, respectively. The T̄ and
T̄′ represent the input and output grid latents, respectively, used
for establishing a dense skip-connection between the layers.

tent encoder and integrated implicit decoder (see Fig. 2). In
the dual latent encoder, we first extract the point latents C =
{ci ∈ Rd}Ni=1 for P based on FKAConv layers [2], where
d is the dimension of the point latents. We then project C
to grid latents. Following the convention [29, 44], we use
triplanes T ∈ R3×R×R×d or voxels V ∈ RR×R×R×d as
grid latents, where R is the resolution of grids. In this sec-
tion, we explain the details of DITTO based on triplanes
as grid latents, but they can seamlessly be replaced with
voxels. After extracting the initial dual latent (C and T),
we refine them using a UNet architecture [31], where each
layer consists of the proposed dual latent layer (DLL). This
UNet estimates refined grid T̃ and point C̃ latents. The
detailed description of DLL is in Sec. 3.2. Then, inte-
grated implicit decoder (IID) estimates occupancy proba-
bility Õ = {õj ∈ R}Mj=1 of given query coordinates Q by
integrating latents T̃ and C̃. IID effectively manipulates the
distinct characteristics of grid and point latents, facilitating
the reconstruction of detailed and thin structures. The de-
tailed description of IID is in Sec. 3.3. More detailed net-
work architectures are provided in supplementary materials.

3.2. Dual Latent Layer

We present a dual latent layer (DLL) that adeptly combines
the advantages of both grid and point latents. Specifically,
DLL individually enhances two latents and infuses correla-
tion between them to optimize their combined performance
while preserving their own strengths, instead of combining
them into a single latent (see Fig. 3a). In particular, we
newly present a dynamic sparse point transformer (DSPT)
as a point feature extractor. DSPT boosts point feature re-
finement by directly employing a transformer to point-based
dynamic windows.

Dynamic Sparse Point Transformer. The concept of
DSPT is to apply a transformer directly to points, stimulat-
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Figure 5. Conceptual illustration of DSPT. We visualize DSPT
in the 2D domain for better understanding, but DSPT works in the
3D domain by sequentially processing the x-, y-, and z-axes.

ing local-global interactions among point latents. Inspired
by the concept of windowed attention [20], we create point-
based non-overlapping windows and apply self-attention
to each window. However, unlike images or voxels hav-
ing regular grids, points have free form and are unordered.
To alleviate this issue, we adopt a sorting-based window-
ing scheme, motivated by DSVT [41], FlatFormer [21] and
CSwinTransformer [10]. Concretely, we sort points for a
certain axis and divide them into multiple windows so that
each window has an equal number of points. Subsequently,
self-attention is applied within each window. In a DSPT
block, we repeat this procedure for each of the x-, y- and
z-axes (see 2D illustration of DSPT in Fig. 5).

Here, we describe the details of DSPT. For given point
features C and their coordinates P , we first sort C based on
P along a specific axis. We then divide the sorted point fea-
tures into windows {Cwnd

l }Ll=1 so that the number of points
belonging to each window is equal:

{Cwnd
l }Ll=1 = split(sortx(C,P), L),

where Cwnd
l = {cisorted ∈ Rd}N/L

isorted=1,
(1)

L is the number of windows, sortx(·, ·) denotes a sort func-
tion, which sorts C w.r.t. their coordinates P of x-axis,
split(·, ·) denotes a splitting function, which divides the
given C into L windows, and isorted indicates the sorted in-
dex. For convenience, we use the x-axis in Eq. (1), but
we can also apply the y- and z-axes. Before applying self-
attention, a rotary positional embedding (RoPE) [35], mod-
ified one for point clouds [18], is applied to the query and
key of the inputs of self-attention. Subsequently, a shared
MLP is applied to each c, and the points are re-sorted in
reverse to restore the original point order.

Overall Architecture of DLL for Dual Latent. The pro-
posed DLL takes dual latent, C and T, from the previous
DLL as input and systematically refines each latent feature
while maintaining their shape and strengths (see Fig. 4).
Within DLL, we first enhance grid latents T using a simple
CNN-based architecture. Note that when the triplane is used
as grid latents, 3D-aware-conv [42] is additionally applied
to induce feature exchange among three planes. We call
this enhanced grid latents as intermediate grid features T̄′,
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which is used to refine C and form a dense skip-connection
between consecutive DLL modules, similar to [44].

In the point latent perspective, we combine C with the
point features projected from T̄, inducing information of
stable grid latents to point latents. We then refine these point
latents using the proposed DSPT. We denote these refined
point latents as C′. In the grid latent perspective, we project
C′ into grid domain and merge with intermediate latent T̄′,
forming enhanced grid latents T′, which creates a synergy
of dual latent.

3.3. Integrated Implicit Decoder

We present an integrated implicit decoder (IID) that esti-
mates implicit values (i.e., occupancy) for a given query
location using refined dual latent T̃ and C̃. In particular,
IID integrates the grid and point latents while reinforcing
the strengths and compensating for shortcomings associated
with each latent (see Fig. 3b). To this end, we first analyze
the pros and cons of each latent in terms of decoding per-
spective and then introduce IID in detail.
Point Latents vs. Grid Latents in Decoding. Point-based
implicit decoding approaches like POCO [1] utilize K-
nearest neighbors (KNN) to define neighbor points for a
given query point and use features of neighbor points to
calculate query feature. This point-based decoder is advan-
tageous for detail restoration. However, such point-based
decoders can be fragile when handling thin structures due
to inherent ambiguity because different query points may
share the same neighbors, resulting in instability.

Grid-based decoding methods (e.g., ConvONet [29] and
ALTO [44]) estimate occupancy by interpolating features
from adjacent grids for a given query to determine the
query feature. Additionally, ALTO employs an attention
mechanism to alleviate the resolution constraints inherent
to grid latents, thereby enhancing performance. Specifi-
cally, ALTO compares query feature and adjacent grid fea-
tures through subtraction-based cross-attention [48]. This
comparison allows ALTO to use not only the query feature
but also the varying patterns of adjacent grid features, mit-
igating the resolution constraints of grid latents. However,
despite this improvement, detailed reconstruction remains
limited due to the inherent limitations of relying solely on
grid latents.
Integrated Decoder for Dual Latent. The proposed IID
selectively integrates the advantages of each latent decod-
ing method (i.e., a hybrid approach between point and grid
latent decoding). We basically adopt KNN-based neigh-
bors of point latents to determine neighbor point features
since it can recover the detailed reconstruction free from
the resolution limit. Instead, we handle the inherent limi-
tation of point features by using grid-based decoding. That
is, we combine point features at neighbor locations with ad-
jacent grid features via interpolation. This integration en-
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Figure 6. Illustration of IID. IID makes query feature zq0 and
neighbor integrated features {zq1 , . . . , z

q
k}. Then, IID iteratively

applies self-attention to a sequence of {zq0 , . . . , z
q
k} to update

query feature zq0 . Finally, we estimate the query feature ẑq0 and
apply linear layer to estimate occupancy õ.

ables IID to effectively consider both latents. We call these
combined features as neighbor integrated features. Subse-
quently, we estimate implicit value through self-attention
between neighbor integrated features and query feature ob-
tained from grid latents. Note that since neighbor points are
located around the surface, the region of interest (i.e., size of
the neighbor integrated features) is adaptively defined w.r.t.
query-neighbor distances. This adaptive mechanism facil-
itates the reconstruction of clear surface boundaries of de-
tailed and intricate structures.

The detailed IID is visualized in Fig. 6. First, we esti-
mate query feature zq0 by interpolating the grid features as
in [29, 44] and applying linear layer so that the query fea-
ture has 2d dimensions:

zq0 = interpolate(T̃,q)W, zq0 ∈ R2d, (2)

where interpolate(·, ·) computes a grid feature of a given
location using linear interpolation for adjacent grid latents,
and W ∈ Rd×2d is a weight matrix of linear layer. Sub-
sequently, we find neighbor points Pq and neighbor point
features C̃q of the query point q by using KNN:

(Pq, C̃q) = KNN(q,P, C̃,K), (3)

where KNN(·, ·, ·, ·) returns given K number of neighbor
point coordinates Pq = {pq

k ∈ R3}Kk=1 and their features
C̃q = {c̃qk ∈ Rd}Kk=1. After that, we compute neighbor grid
features Tq by interpolating grid latents for every pq

k :

T̃q = {interpolate(T̃,pq
k)}

K
k=1. (4)

Then, we construct the neighbor integrated features Zq by
concatenating C̃q and T̃q in channel direction:

Zq = concat(C̃q, T̃q) = {zqk ∈ R2d}Kk=1, (5)

where concat(·, ·) is a concatenation function. Then, we
refine zq0 by applying self-attention multiple times on a se-
quence {zq0 , . . . , z

q
K} including both zq0 and Zq. We de-

note ẑq0 as the refined query feature. While applying self-
attention, we use point-based RoPE [35] as mentioned in
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Table 1. Object-level quantitative comparison on ShapeNet. From left to right, the input point clouds become sparse (variations in
density); they have 3K, 1K, and 300 points, respectively. The best scores are red in bold, and the secondary ones are blue with underline.

Method normal (3K points & noise level 0.005) sparse (1K points & noise level 0.005) sparse (300 points & noise level 0.005)
IoU ↑ Chamfer-L1 ↓ NC ↑ F-score ↑ IoU ↑ Chamfer-L1 ↓ NC ↑ F-score ↑ IoU ↑ Chamfer-L1 ↓ NC ↑ F-score ↑

ONet [24] 0.761 0.87 0.891 0.785 0.772 0.81 0.894 0.801 0.778 0.80 0.895 0.806
ConvONet [29] 0.884 0.44 0.938 0.942 0.859 0.50 0.929 0.918 0.821 0.59 0.907 0.883

POCO [1] 0.926 0.30 0.950 0.984 0.884 0.40 0.928 0.950 0.808 0.61 0.892 0.869
ALTO [44] 0.930 0.30 0.952 0.980 0.905 0.35 0.940 0.964 0.863 0.47 0.922 0.924
DITTO (ours) 0.949 0.27 0.957 0.988 0.926 0.32 0.949 0.975 0.882 0.43 0.931 0.940

(a) GT Mesh (b) Input points (c) ConvONet [29] (d) POCO [1] (e) ALTO [44] (f) DITTO (ours)

Figure 7. Object-level 3D reconstruction comparison on ShapeNet [4] with 3K input points. DITTO distinctively excels in recon-
structing thin structures, evidenced by the intricate details of lamps and benches. Uniquely, DITTO is the only method that accurately
captures the side mirror and the fine details of car wheels.

Sec. 3.2. Note that during the self-attention, we update only
zq0 and the other elements of the sequence {zq1 , . . . , z

q
K}

remain unchanged. Finally, we estimate occupancy õ by
applying linear layer to ẑq0 :

õ = ẑq0Wout, (6)

where Wout ∈ R2d is a weight matrix of linear layer.

3.4. Training Objectives

We use binary cross entropy objective between Õ and O:

L(Õ,O)=− 1

M

M∑
j=1

[oj log(õj)+(1−oj) log(1−õj)] . (7)

4. Experiments
We evaluate DITTO against SoTA methods. Details of im-
plementation are provided in Sec. 4.1. Qualitative and quan-
titative comparisons for object-level and scene-level are in
Sec. 4.2 and Sec. 4.3, respectively. In addition, we validate
the generality in Sec. 4.4. Additional experiment results are
available in the supplementary materials.

4.1. Baselines, Datasets, Metrics

Implementation Details. We implement DITTO in
PyTorch [28], utilizing xFormers [17] and mixed-
precision [25]. We train DITTO with Adam optimizer [16]

and cosine annealing learning rate scheduler [23]. For a fair
comparison, we set the resolution of triplanes as R=64 and
R=128 for object- and scene-level tasks, respectively. For
voxels, we set R=64 in scene-level tasks. In DSPT, we use
L=25 for {3K, 1K, 0.3K} input points and L=20 for 10K
input points. More detailed hyperparameters are described
in the supplementary materials.

Comparison Methods. To assess the 3D reconstruction
performance of DITTO, we compare it with various base-
line methods. These methods include a non-learning-based
method [15], as well as implicit methods that utilize diverse
latent topologies, such as vector [24], grid [19, 29], point
[1] and blended [44] latents. Our evaluation procedure pri-
marily follows the previous SoTA method, ALTO, including
several additional experiments.

Datasets. For the evaluation of object-level surface re-
construction, we use ShapeNet [4], which contains 13 cat-
egories of object watertight meshes. For assessment of
scene-level surface reconstruction, we use the Synthetic
Rooms dataset [29], which has 5K synthetically created
rooms utilizing objects from ShapeNet. We follow the
same train/val/test splits in both datasets with conven-
tion [1, 29, 44] for fair comparison. The points are ran-
domly sampled, and Gaussian noise is applied. In addi-
tion, we adopt ScanNet-v2 [9], which contains 1,513 scene
scans, for generality evaluation.

5401



(a) Input Points (10K) (b) ConvONet [29] (c) POCO [1] (d) ALTO [44] (e) DITTO (ours)

Figure 8. Qualitative comparison of scene-level 3D surface reconstruction on the Synthetic Rooms dataset [29].

Table 2. Scene-level quantitative comparison on the Synthetic
Rooms dataset [29]. We train each method for 10K input points
with 0.005 noise level. The triplane comparison involves assess-
ing the impact of triplane in methods using grid latents.

Method IoU ↑ Chamfer-L1 ↓ NC ↑ F-score ↑

ONet [24] 0.475 2.03 0.783 0.541
SPSR [15] - 2.23 0.866 0.810

SPSR trimmed [15] - 0.69 0.890 0.892
ConvONet [29] 0.849 0.42 0.915 0.964

DP-ConvONet [19] 0.800 0.42 0.912 0.960
POCO [1] 0.884 0.36 0.919 0.980
ALTO [44] 0.914 0.35 0.921 0.981

Ours 0.928 0.34 0.930 0.984
Triplane comparison

ConvONet [29] 0.805 0.44 0.903 0.948
ALTO [44] 0.895 0.37 0.910 0.974

Ours 0.931 0.33 0.931 0.984

Evaluation Metrics. We measure the reconstruction per-
formance using standard quantitative metrics, such as IoU,
Chamfer-L1 distance, normal consistency (NC), and F-
score [38], following baseline methods. For Chamfer-L1

distance, we multiply 100 for convenience and use the
threshold value as 1% for F-score.

4.2. Object-Level 3D Surface Reconstruction

Quantitative Evaluation. In Table 1, we quantita-
tively compare the object-level surface reconstruction per-
formance on ShapeNet [4]. DITTO exhibits superior per-
formance across all metrics. Notably, DITTO demonstrates
a substantial lead in the IoU metric; a four times larger gap
compared to the previous SoTA [44]. In addition, evalu-
ation on various input point densities implies that DITTO
shows robust scores regardless of the number of points, even
though we use point latents. This result demonstrates the ef-
fectiveness and robustness of DITTO.

Qualitative Evaluation. Figure 7 shows the qualitative re-
sults. DITTO shows clear surface boundaries, especially for
thin and intricate structures. Note that DITTO is the only
method that successfully reconstructs the complex struc-
tures, such as the intricate pedestal of the lamp (first row),
back of the bench (second row), rearview mirror and pattern
on wheels of the car (third row). In particular, reconstruct-
ing shapes with repeated thin structures is a challenging

Table 3. Scene-level quantitative comparison on the Synthetic
Rooms dataset [29] with sparse and noisy input data. We train
each method for sparse (3K points with 0.005 noise level) and
noisy (10K points with 0.025 noise level) input point clouds.

Method IoU ↑ Chamfer-L1 ↓ NC ↑ F-score ↑

Sparse input points (3K input points)

ConvONet [29] 0.818 0.46 0.906 0.943
POCO [1] 0.801 0.57 0.904 0.812
ALTO [44] 0.882 0.39 0.911 0.969
DITTO (ours) 0.900 0.37 0.919 0.975

Noisy input points (0.025 noise level)

ConvONet [29] 0.777 0.57 0.872 0.885
POCO [1] 0.701 0.64 0.848 0.857
ALTO [44] 0.804 0.55 0.877 0.898
DITTO (ours) 0.811 0.55 0.875 0.898

problem. Grid latents struggle due to resolution constraints,
while point latents often fail to create clear boundaries due
to their inherent ambiguity. In this challenging case, DITTO
successfully creates a clear surface boundary.

4.3. Scene-Level 3D Surface Reconstruction

Quantitative Evaluation. We assess the scene-level recon-
struction performance on the Synthetic Rooms dataset [29].
The quantitative results are in Table 2. DITTO surpasses
previous methods in most of the metrics. Regarding grid
latent representation, DITTO marks a turning point. Most
grid-based methods [29, 44] with triplane representations
show decreased performance in complex scene-level recon-
structions. In contrast, DITTO maintains consistent per-
formance, even with triplane representations. In addition,
quantitative results focusing on sparse and noisy inputs are
in Table 3. DITTO shows outstanding performance robust
to sparse and noisy input point clouds. These results con-
trast the method solely based on point latents, which is vul-
nerable to contamination of the input point clouds.

Qualitative Evaluation. We visualize the qualitative com-
parisons in Fig. 1 and Fig. 8. The results of ConvONet [29],
a grid-based method, are relatively stable, with fewer holes
in thin structure, but they lack detail (see lamps in red
boxes). On the other hand, POCO [1], a point-based
method, shows better detail but is less stable, often result-
ing in holes and artifacts (see lamps and chairs in yellow
boxes). ALTO [44], employing both latents, tends to of-
fer better detail compared to ConvONet and better stabil-
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(a) Input Points (10K) (b) ConvONet [29] (c) POCO [1] (d) ALTO [44] (e) DITTO (ours)

Figure 9. Qualitative comparison of ScanNet-v2 [29].

Table 4. Ablation study on the proposed modules. We train
networks on the Synthetic Rooms dataset by switching modules
one by one from the baseline to the suggested method.

Method IoU ↑ Chamfer-L1 ↓ NC ↑ F-score ↑

ALTO [44] (triplane; baseline) 0.895 0.35 0.921 0.981

+ DLL (DSPT backbone) 0.921 0.35 0.925 0.981
+ DLL (FKAConv [2] backbone) 0.917 0.35 0.922 0.979
+ DLL (PointTransformer [48] backbone) 0.911 0.36 0.917 0.976
+ IID 0.907 0.35 0.913 0.976
+ PointEncoder (FKAConv [2]) 0.912 0.36 0.918 0.978
+ DLL + IID 0.925 0.34 0.927 0.983
+ DLL + PointEncoder 0.926 0.34 0.928 0.981
+ IID + PointEncoder 0.918 0.35 0.920 0.981

DITTO (ours) 0.931 0.33 0.931 0.984

ity than POCO. However, ALTO displays less stability than
ConvONet and less detail than POCO. Unlike the previous
approaches, DITTO validates both superior stability and de-
tail. This result demonstrates that DITTO achieves synergy
from the integration of two latents.

4.4. Ablation Study

We evaluate the impact of each proposed module by in-
crementally incorporating them into baseline ALTO (see
Table 4). DLL demonstrates significant performance im-
provements regardless of the type of point backbones. This
result reveals that the point feature extraction module that
learns spatial patterns of point latents is more crucial than
the simple MLP of ALTO. Additionally, while NC and F-
score slightly decrease with IID alone, other metrics im-
prove. However, combining DLL with IID significantly
boosts performance across all metrics. We deduce that the
variation in performance is due to the latent points without
DLL not being optimized to learn spatial patterns.

4.5. Real-World 3D Surface Reconstruction

We conduct an additional experiment to assess generality
(see Table 5 and Fig. 9). DITTO demonstrates superior
performance than previous methods. DITTO successfully
restores the sofas (see red and yellow boxes), where other
methods encounter difficulties. We also evaluate the per-
formance using triplanes as grid latents (see Triplane com-
parison for grid latents). Unlike the scene-level results in
Sec. 4.3, triplanes generally show poorer performance on
ScanNet-v2. We attribute this performance issue to a lack
of geometric inductive bias in triplanes. Since each plane in

Table 5. Quantitative comparison on ScanNet-v2 [9]. We
test models pre-trained with the Synthetic Rooms dataset [29] on
ScanNet-v2, which is not used during training. Since the dataset
has no ground truth occupancy, we only measure Chamfer distance
and F-score, following [44].

Method Ntrain, Ntest = 10K, 10K Ntrain, Ntest = 10K, 3K
Chamfer-L1 F-score Chamfer-L1 F-score

ConvONet [29] 1.02 0.694 1.01 0.719
POCO [1] 0.87 0.757 0.93 0.737
ALTO [44] 0.79 0.779 0.87 0.746

DITTO (ours) 0.70 0.808 0.78 0.773
Triplane comparison

ConvONet [29] 1.45 0.636 1.55 0.614
ALTO [44] 1.43 0.640 1.44 0.601

DITTO (ours) 1.26 0.677 1.26 0.660

a triplane misses information in a direction, triplane latents
are required to learn spatial rules that the voxels naturally
have. This limitation poses challenges for triplanes when
reconstructing out-of-distribution data. Despite these chal-
lenges, DITTO shows better performance than other grid-
based methods with triplanes.

5. Conclusion
We have proposed DITTO, a novel concept of dual and inte-
grated latent topologies for implicit 3D reconstruction from
noisy and sparse point clouds. Specifically, we have stud-
ied the use of grid and point latents together as dual latent
to integrate their own strengths. To this end, we have pro-
posed the DLL architecture with the DSPT module for en-
hancing dual latent while maintaining their original shape
at the encoder level. Then, we explored how to utilize both
refined latents in the proposed integrated implicit decoder.
DITTO outperforms previous state-of-the-art implicit 3D
reconstruction methods, especially DITTO facilitates the
reconstruction of thin structures and intricate shape details.
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