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Abstract

A novel approach to blind image quality assessment,
called quality comparison network (QCN), is proposed in
this paper, which sorts the feature vectors of input images
according to their quality scores in an embedding space.
QCN employs comparison transformers (CTs) and score
pivots, which act as the centroids of feature vectors of
similar-quality images. Each CT updates the score pivots
and the feature vectors of input images based on their or-
dered correlation. To this end, we adopt four loss func-
tions. Then, we estimate the quality score of a test image
by searching the nearest score pivot to its feature vector in
the embedding space. Extensive experiments show that the
proposed QCN algorithm yields excellent image quality as-
sessment performances on various datasets. Furthermore,
QCN achieves great performances in cross-dataset evalu-
ation, demonstrating its superb generalization capability.
The source codes are available at https://github.
com/nhshin-mcl8/QCN .

1. Introduction
Image quality assessment (IQA) aims to estimate the human

perceptual quality of an image. It can be divided into two

categories: full-reference IQA and blind IQA (BIQA). In

full-reference IQA, we estimate the quality of an image by

comparing it with its pristine version, referred to as the ref-

erence image. On the other hand, in BIQA, we do not use

the reference image. In real-world problems, generally, ref-

erences are unavailable. Hence, the demand for BIQA has

increased in various applications, including image restora-

tion [17], compression [16], and super-resolution [21].

Recently, many deep learning techniques have been

developed for BIQA, achieving promising performances.

Some of them focus on the structural aspect of a deep net-

work for regressing the quality score of an image [11, 30,

37], while others explore the data aspect of deep learning

and attempt to pre-train networks using a large amount of

data specialized for BIQA [22, 27, 39]. These techniques

[11, 22, 27, 30, 37, 39], however, do not explicitly use score
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Figure 1. Illustration of the proposed QCN algorithm. The color of

an image boundary represents the quality score of the image. The

CT modules sequentially updates the feature vectors of multiple

images. To guide this update process, we use score pivots, which

act as the centroids of the feature vectors of similar-quality images.

As the update goes on in the CT modules, the images and the score

pivots are sorted according to their quality scores in the embedding

space. We estimate the quality score of a test image by finding the

nearest score pivot to its feature vector.

relations between images, such as ordering relationship and

score difference. Such relations can provide useful cues for

the score estimation. Thus, Golestaneh et al. [7] and Zhang

et al. [38] exploit the relative rank information between im-

ages to train a network, but they use the score relations in

the training phase only.

A novel approach to BIQA is proposed in this paper,

which assesses image quality reliably by exploiting both or-

dering relationships and score differences between images.

To this end, we construct an embedding space, in which

the direction and distance between the embedded vectors

of two images represent the ordering relationship and score

difference between the two images, respectively. The ba-

sic concept of this geometric representation learning, called

geometric order learning (GOL) [14], has been proposed

recently for rank estimation tasks, including facial age esti-

mation and historical image classification. However, GOL

may provide poor results for BIQA since it is designed for
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discrete rank estimation. In contrast, in BIQA, we should

estimate the continuous quality score of an image.

In this paper, we first develop the GOL-based algo-

rithm for BIQA, called quality comparison network (QCN),

which arranges input images according to their quality

scores in the embedding space, as illustrated in Figure 1.

The proposed QCN employs multiple comparison trans-

formers (CTs) and score pivots, which act as the centroids

of feature vectors of similar-quality images. In each CT, the

score pivots and the feature vectors of input images are up-

dated according to their ordered correlation. To train CTs

to achieve this goal, we adopt four loss functions. Then,

given a test image, we estimate its quality score by finding

the nearest score pivot to its feature vector in the embedding

space. Extensive experiments show that the proposed QCN

provides excellent performances on various datasets.

This work has the following major contributions:

• We propose the first BIQA algorithm based on geometric

order learning, called QCN.

• We develop the CT networks to construct an effective em-

bedding space, in which the feature vectors of images are

sorted according to their quality scores.

• QCN achieves excellent performances on various BIQA

datasets, including BID [2], CLIVE [5], KonIQ10K [9],

SPAQ [4], and FLIVE [34]. Furthermore, QCN provides

superb performances in cross-dataset evaluation, demon-

strating its good generalization capability.

2. Related Work
2.1. Blind Image Quality Assessment

Recently, with the success of deep learning in diverse vi-

sion tasks, various deep-learning-based BIQA techniques

have been proposed. Both network design and network pre-

training have been researched for BIQA.

Network design: Several network structures have been de-

veloped for reliable BIQA. Zhang et al. [37] employed two

different encoders to extract image distortion types and im-

age contents, respectively. Su et al. [30] designed the local

distortion aware module to identify local distortions in an

image. Ke et al. [11] developed a transformer-based en-

coder to extract the distortion and content features by pre-

serving the aspect ratio and composition of an image. How-

ever, these algorithms do not explicitly employ the ordering

relations and score differences between images. Hence, for

better BIQA, Golestaneh et al. [7] and Zhang et al. [38]

employed the ranking loss to train a network, but these al-

gorithms exploit the ranking relations in the training only,

not in the test.

For accurate quality score estimation of images based on

the ordering relations and score differences, we propose a

novel network architecture for constructing an embedding

space, in which such relations are well preserved.

Network pre-training: On the other hand, pre-training

schemes have been developed for BIQA. Madhusudana et
al. [22] learned to cluster images based on their distortion

degrees via self-supervised learning. Also, to extract the

content and distortion information, Saha et al. [27] pro-

posed a self-supervised learning algorithm that pre-trains

the content-aware encoder and the quality-aware encoder.

Zhao et al. [39] applied various types of distortions to im-

ages to adopt contrastive learning in the BIQA task.

These pre-training schemes, however, demand signifi-

cant training time and computational power. On the con-

trary, without such pre-training, the proposed QCN pro-

vides competent BIQA performances.

2.2. Order Learning

Order learning aims to predict the rank of an object by com-

paring it with multiple references with known ranks, and its

techniques have been developed mostly for facial age esti-

mation [12–14, 18, 28]. Lim et al. [18] first proposed the

notion of order learning. For more reliable comparisons,

Lee and Kim [12] performed the order-identity decomposi-

tion and selected references with similar identity features.

Shin et al. [28] developed a regression approach to order

learning. In practice, ordering relationships may be known

for a limited amount of training data, so Lee et al. [13]

developed a weakly-supervised training scheme for order

learning. However, these algorithms should conduct mul-

tiple comparisons with many references of different ranks,

since they consider only relative priorities between objects.

To overcome this issue, Lee et al. [14] proposed GOL,

which exploits metric relations, as well as order relations,

among objects. GOL predicts the rank of an object via a

simple k-NN search.

In this work, we adopt the concept of GOL but propose a

novel transformer-based network for estimating the contin-

uous quality score of an image. Note that the original GOL

was designed for estimating discrete ranks by employing a

convolutional neural network.

3. Proposed Algorithm
3.1. Problem Definition

Given an input image x, the objective of BIQA is to estimate

its quality score θ(x). Note that an order and score differ-

ences provide useful information for quality score estima-

tion; they convey complementary information. Suppose that

there are three images x, y, and z, and their quality scores

are 5, 10, and 20, respectively; θ(x) = 5, θ(y) = 10, and

θ(z) = 20. Since θ(x) < θ(y) < θ(z), the order indi-

cates that x and z should be located at opposite sides with

respect to y in a well-designed embedding space. On the

other hand, since |θ(x) − θ(y)| < |θ(y) − θ(z)|, the score

differences indicate that x should be closer from y than z is
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Figure 2. An overview of the proposed QCN algorithm: Given N images, the encoder extracts their feature vectors (or tokens) and forms

the token matrix H . Then, the three CTs sequentially update the feature vectors, together with learnable score pivots in P , and yield the

updated token matrix H̄ and the updated pivot matrix P̄ . As a result, the updated feature vectors and score pivots are arranged according

to their quality scores in the embedding space.

from y in the embedding space.

To exploit such order and score differences for BIQA,

we construct an embedding space, in which the ordering re-

lationships and the score differences are reflected by the di-

rections and the distances between feature vectors, respec-

tively. In other words, we attempt to sort the images in the

embedding space according to their quality scores.

3.2. QCN

We develop QCN to construct an embedding space, where

the feature vectors of N images, x0, x1, . . . , xN−1, from a

training set X are arranged according to their quality scores.

QCN is composed of an encoder and three CTs, as shown

in Figure 2.

We adopt ResNet50 [8] as the encoder backbone. The

encoder transforms the N images into feature vectors

hx0 , hx1 , . . . , hxN−1
∈ R

C . Then, we form the token ma-

trix

H = [hx0
, hx1

, . . . , hxN−1
]t ∈ R

N×C . (1)

Next, each CT updates the feature vectors (or tokens)

in H to sort them according to their quality scores. To

guide this update process, we introduce M score pivots

p0, p1, ..., pM−1, which are learnable parameters function-

ing as the centroids of feature vectors of similar-quality im-

ages. Thus, the first CT takes the learnable pivot matrix

P = [p0, p1, ..., pM−1]
t ∈ R

M×C (2)

as input. For example, if the score range is [0, 100] and

M = 11, these eleven pivots play the role of the representa-

tive images of scores 0, 10, . . . , 100 in the case of uniform

quantization. Through the three CTs, the N images and the

M pivots are arranged in the embedding space, as illustrated

in Figure 2. The final CT yields the updated token matrix

H̄ and the updated pivot matrix P̄ .

3.3. CT

As in Figures 3, each CT comprises four modules: fea-

ture self-update (FSU), feature-pivot cross-update (FPCU),

pivot self-update (PSU), and pivot-feature cross-update

(PFCU) modules.

Pivot
self-update

Feature 
self-update

Feature-pivot
cross-update

Pivot-feature
cross-update

Figure 3. A block diagram of a CT.

FSU module: To construct an embedding space in which

the score relations between input images are reflected, we

should analyze the correlation among the images. To this

end, we apply the masked self-attention [33] to H .

First, we obtain query QH , key KH , value VH by

QH = HU t
q , KH = HU t

k, VH = HU t
v, (3)

using projection matrices U t
q , U

t
k, U

t
v ∈ R

C×C . Then, we

analyze the correlation via

AM = softmax
(
QHKt

H +M)
(4)

where M ∈ R
N×N is a mask whose (i, j)th element is

0 if i �= j, and −∞ if i = j. By employing M, each

feature vector is compared with all the others, excluding

itself. Notice that QHKt
H in (4) computes the correlation

between images. Then, as in Figure 4(a), the FSU module

updates each feature vector based on the correlation by

H ′ = MaskedAttention(QH ,KH , VH ,M)

= φ(AMVH +H),
(5)

where φ is a feedforward network.

FPCU module: In BIQA, even images with similar scores

may have significantly different distortions. To cope with

this problem, we use score pivots to guide the grouping of

images with similar scores in the embedding space. The

FPCU module updates the pivot matrix P by considering

H ′ from the FSU module.

First, we obtain QP from P and KH′ , VH′ from H ′.
Then, we perform the cross-attention to yield

P ′ = Attention(QP ,KH′ , VH′) = φ(AVH′ + P ) (6)
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Figure 4. Illustration of the transition of feature vectors and score pivots in each CT. The feature vectors and score pivots are aligned

according to their scores, as they pass through the four modules of FSU, FPCU, PSU, and PFCU.

where

A = softmax
(
QPK

t
H′

)
(7)

is the cross-correlation matrix. In (6), the score pivots are

updated using the feature vectors, as shown in Figure 4(b).

PSU module: The score pivots should be also ordered.

Thus, we first obtain QP ′ , KP ′ , and VP ′ from P ′. Then,

we perform the self-attention on the pivots in P ′ and yield

the updated pivot matrix

P ∗ = Attention(QP ′ ,KP ′ , VP ′) (8)

as illustrated in Figure 4(c).

PFCU module: Finally, we update H ′ based on P ∗. We

obtain QH′ from H ′ and KP∗ , VP∗ from P ∗. Then, we

apply the cross-attention to the updated token matrix

H∗ = Attention(QH′ ,KP∗ , VP∗) (9)

as in Figure 4(d).

3.4. Loss Functions

To arrange input images according to their ordering rela-

tionships and score differences, we train QCN with the or-

der loss and the metric loss. Also, for accurate score estima-

tion, we employ the center loss and the mean absolute error

(MAE) loss. Note that we compute these four losses on H̄
and P̄ , which are the output of the last CT in Figure 2.

Order loss: We design the order loss to arrange the score

pivots according to their order. Let us define the direction

vector v(r, s) from point r to point s in the embedding space

as

v(r, s) =
s− r

‖s− r‖ . (10)

Then, we define the order loss as

Lorder =
∑M−2

m=1 v(p̄m, p̄m−1)
tv(p̄m, p̄m+1). (11)

To minimize this term, the angle between v(p̄m, p̄m−1) and

v(p̄m, p̄m+1) should be maximized as shown in Figure 5(a),

(a)

Score
0 100

Score pivot Feature vector

Order loss
Angle maximization

Center loss
Attraction
Interpolation

(b)

Figure 5. Computation of (a) the order loss and (b) the center loss.

which means that the three consecutive pivots p̄m−1, p̄m,

and p̄m+1 should be aligned on a line.

Metric loss: Note that the order loss in (11) considers each

triple of consecutive score pivots, thus it attempts to arrange

the score pivots locally. To consider the global relationship

of all pivots as well, we adopt the metric constraint in [14]

as the metric loss.

Center loss: In the embedding space, the feature vector h̄x

of an image should be near its corresponding score pivot.

However, since we use a finite number of score pivots to

represent the continuous score range, there may be no score

pivot exactly matching h̄x. Hence, we first obtain a linearly

interpolated score pivot

p̃x =
(θ(p̄m+1)− θ(x))p̄m + (θ(x)− θ(p̄m))p̄m+1

θ(p̄m+1)− θ(p̄m)
(12)

where θ(p̄m) ≤ θ(x) ≤ θ(p̄m+1). Note that p̃x is an inter-

nally dividing point between the two nearest pivots in terms

of quality scores, as in Figure 5(b). Then, we attempt to

minimize the distance ‖h̄x− p̃x‖. These distances are com-

puted for all feature vectors in H̄ , and the center loss is

defined as

Lcenter =
∑N−1

n=0 ‖h̄xn
− p̃xn

‖. (13)
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Figure 6. To estimate the score of image x, we first find the two

nearest neighbor (NN) score pivots p̄m and p̄m+1 in (a), and then

project the feature vector h̄x onto the line from p̄m to p̄m+1 in (b).

MAE loss: We estimate the score of a test instance using

the rule in Section 3.5. To minimize the difference between

the estimate score θ̂(xn) and the ground-truth score θ(xn)
for each xn, we adopt the smooth MAE loss Lmae in [6].

Finally, we minimize the overall loss function

L = Lorder + Lmetric + Lcenter + Lmae (14)

to optimize the network parameters in QCN and learn the

score pivots in P .

3.5. Score Estimation

Given an unseen test image x, we estimate its quality score

by applying it together with N − 1 auxiliary images into

QCN. We select the N − 1 auxiliary images from the train-

ing set X . More specifically, we first divide the entire score

range uniformly into the N − 1 intervals. Then, we ran-

domly select an image from each interval. It is shown in

the supplemental document that the score estimation per-

formance is not sensitive to this random selection.

Then, QCN yields the feature vector h̄x of the test image

and the score pivots in P̄ , which are aligned in the embed-

ding space. Note that the feature vectors of the auxiliary

images are not employed in the score estimation. Then, we

find the adjacent pair of score pivots p̄m and p̄m+1 mini-

mizing the sum ‖h̄x − p̄m‖ + ‖h̄x − p̄m+1‖, as illustrated

in Figure 6(a). In other words, we search the two nearest

neighbor (NN) pivots of h̄x in terms of Euclidean distances.

Then, we project h̄x onto the line from p̄m to p̄m+1, as in

Figure 6(b). Hence, the projected point is given by

p̄x = p̄m + α(p̄m+1 − p̄m), (15)

where

α =
(h̄x − p̄m)t(p̄m+1 − p̄m)

‖p̄m+1 − p̄m‖2 . (16)

Then, the score of x is estimated by

θ̂(x) = θ(p̄m) + α
(
θ(p̄m+1)− θ(p̄m)

)
. (17)
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Figure 7. MOS histograms of three BIQA datasets.

4. Experimental Results
4.1. Implementation

Training details: We initialize the encoder using ResNet50

pre-trained on ILSVRC2012 [3]. We use the AdamW op-

timizer [20] with a batch size of 54 and a weight decay of

5× 10−4. We set the learning rate to 5× 10−5 initially and

decrease it using the cosine annealing learning rate sched-

uler. By default, the number M of score pivots and the num-

ber N of input images are set to be 101 and 18, respectively.

In IQA, changing the aspect ratio and composition of an im-

age may impact the image quality. Hence, as done in [11],

we preserve the aspect ratio of an image during both train-

ing and testing. Specifically, we resize the short side of an

image to 384 while maintaining the aspect ratio. For eval-

uation, we estimate the quality score of an image and its

horizontally flipped version. Then, we average the predic-

tion scores of the two images. More details are available in

the supplemental document.

Non-uniform score pivot generation: We quantize the en-

tire score range to M reconstruction levels, which are as-

signed to the M pivots as the scores. In general, the distri-

bution of quality scores in a BIQA dataset is not uniform, as

shown in Figure 7. Hence, to minimize quantization errors,

we adopt the Lloyd-Max algorithm [19], instead of uniform

quantization. The impacts of this non-uniform quantization

will be analyzed in Section 4.4.

4.2. Datasets and Evaluation Protocol

We use five IQA datasets to assess the performance of the

proposed QCN.

• BID [2]: It provides 586 images with blur artifacts, e.g.,

due to out-of-focus, complex motion, and simple motion.

• CLIVE [5]: It contains 1,162 images in diverse categories

taken from different cameras.

• KonIQ10K [9]: It consists of 10,073 images selected

from YFCC-100M [31] to cover various types of distor-

tions.

• SPAQ [4]: It provides 11,125 photos taken with 66 smart-

phones.

• FLIVE [34]: It is one of the largest BIQA datasets, which

contains about 40K images and 120K patches. As done

in [22, 34, 39], we only use the images, not the patches,

for both training and testing.
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Table 1. Comparison of BIQA results on the BID, CLIVE, KonIQ10k, SPAQ, and FLIVE datasets. Pre-training algorithms are marked

with the asterisk *. The best results are boldfaced, and the second-best are underlined.

BID CLIVE KonIQ10k SPAQ FLIVE

Algorithm SRCC PCC SRCC PCC SRCC PCC SRCC PCC SRCC PCC

NIQE [25] 0.477 0.471 0.454 0.468 0.526 0.475 0.697 0.685 0.105 0.141

ILNIQE [36] 0.495 0.454 0.453 0.511 0.503 0.496 0.719 0.654 0.219 0.255

BRISQUE [24] 0.574 0.540 0.601 0.621 0.715 0.702 0.802 0.806 0.320 0.356

BMPRI [23] 0.515 0.458 0.487 0.523 0.658 0.655 0.750 0.754 0.274 0.315

CNNIQA [10] 0.616 0.614 0.627 0.601 0.685 0.684 0.796 0.799 0.306 0.285

WaDIQaM-NR [1] 0.653 0.636 0.692 0.730 0.729 0.754 0.840 0.845 0.435 0.430

PQR [35] 0.775 0.794 0.857 0.882 0.880 0.884 - - - -

SFA [15] 0.820 0.825 0.804 0.821 0.888 0.897 0.906 0.907 0.542 0.626

DB-CNN [37] 0.845 0.859 0.844 0.862 0.878 0.887 0.910 0.913 0.554 0.652

HyperIQA [30] 0.869 0.878 0.859 0.882 0.906 0.917 0.916 0.919 0.535 0.623

PaQ-2-PiQ [34] - - 0.840 0.850 0.870 0.880 - - 0.571 0.623

UNIQUE [38] 0.858 0.873 0.854 0.890 0.896 0.901 - - - -

MUSIQ [11] - - - - 0.916 0.928 0.917 0.921 0.646 0.739

TReS [7] - - 0.846 0.877 0.915 0.928 - - 0.554 0.625

CONRTIQUE* [22] - - 0.845 0.857 0.894 0.906 0.914 0.919 0.580 0.641

Re-IQA* [27] - - 0.840 0.854 0.914 0.923 0.918 0.925 0.645 0.733

QPT* [39] 0.888 0.911 0.895 0.914 0.927 0.941 0.925 0.928 0.610 0.677

Proposed QCN 0.892 0.890 0.875 0.893 0.934 0.945 0.923 0.928 0.644 0.741

Table 2. Cross-dataset evaluation results in SRCC. The first and second rows specify the training and test datasets, respectively.

BID CLIVE KonIQ10k

Algorithm CLIVE KonIQ10K BID KonIQ10K BID CLIVE

DBCNN [37] 0.725 0.724 0.762 0.754 0.816 0.755

PQR [35] 0.680 0.636 0.714 0.757 0.755 0.770

HyperIQA [30] 0.770 0.688 0.756 0.772 0.819 0.785

TReS [7] - - - 0.733 - 0.786

CONTRIQUE* [22] - - - 0.676 - 0.731

Re-IQA* [27] - - - 0.769 - 0.791

QPT* [39] - - 0.845 0.749 0.825 0.821

Proposed QCN 0.800 0.730 0.886 0.784 0.847 0.840

We adopt the Spearman’s rank correlation coeffi-

cient (SRCC) [29] and Pearson’s correlation coefficient

(PCC) [26] metrics. SRCC and PCC measure how well a

network sorts images according to their ranks and scores,

respectively.

For the BID, CLIVE, KonIQ10K, and SPAQ datasets,

we randomly split each dataset into train and test sets with

a ratio of 8:2. Then, we repeat the training and testing for

10 different splits and report the median SRCC and PCC

scores, as done in [11, 27, 30, 39]. For FLIVE, we employ

the same evaluation protocol as in [22, 34, 39] — 30K im-

ages for training and 1.8K images for testing.

4.3. Comparative Assessment

Table 1 compares the performances of the proposed QCN

with those of conventional algorithms on the five IQA

datasets. Note that the pre-training algorithms [22, 27, 39]

are listed separately in the middle section of the table.

Comparison with network design techniques: The pro-

posed QCN is one of the network design techniques. We

see that, in Table 1, QCN outperforms all conventional net-

work design techniques in 9 out of 10 tests.

Compared with MUSIQ [11], which is the state-of-the-

art in the network design approach, QCN improves the

SRCC and PCC performances by 1.97% and 1.83%, respec-

tively, on KonIQ10K. Also, on FLIVE, which is a challeng-

ing dataset with various types of distortions, QCN yields

comparable and better results than MUSIQ. It is worth

pointing out that, while we use only 30K training images

for FLIVE as in [22, 34, 39], MUSIQ exploits 90K training

patches additionally to boost their performances on FLIVE.

Comparison with network pre-training techniques:
Even without pre-training the network, the proposed QCN

provides competent results to the pre-training techniques.
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Figure 8. t-SNE visualization [32] of feature vectors and score pivots for the KonIQ10K dataset in each CT. We depict the scores of the

score pivots and the feature vectors in red and blue shades, respectively.

Table 3. Ablation studies for the FSU and PSU modules in QCN

on the KonIQ10K dataset.

Method FPCU / PFCU FSU PSU SRCC PCC

I � 0.858 0.849

II � � 0.916 0.881

III � � 0.930 0.939

IV � � � 0.934 0.945

In Table 1, it provides better results than those techniques

in 5 out of 10 tests.

Compared with the state-of-the-art QPT [39], QCN im-

proves the results by 0.76% in SRCC and 0.43% in PCC

on KonIQ10K. Note that the pre-training is beneficial, es-

pecially for small datasets. However, even on BID, which

contains only about 470 training images, QCN yields com-

parable results to QPT.

Cross-dataset evaluation: Table 2 compares cross-dataset

evaluation results. Even without pre-training, QCN per-

forms the best in all 6 tests. Also, in the challenging combi-

nation of training on CLIVE (1,162 images) and testing on

KonIQ10K (10,073 images), QCN outperforms the second-

best HyperIQA [30] by 1.55%. This indicates that QCN has

better generalization capability than the other algorithms,

including the pre-training techniques.

4.4. Analysis

Efficacy of FSU and PSU modules: We conduct ablation

studies to analyze the efficacy of the FSU and PSU modules

in a CT in Figure 3. In Table 3, we compare ablated meth-

ods on the KonIQ10K dataset. Method I uses the FPCU

and PFCU modules only. In II and III, FSU and PSU are

additionally used, respectively.

Compared with the full QCN in IV, method I degrades

the results severely. By employing FSU and PSU, II and III

perform better than method I, but the gaps with IV are still

large. Both FSU and PSU modules are essential for reliable

Table 4. Ablation studies for the loss functions in (14) on the

KonIQ10K dataset.

Method Lmae Lcenter Lmetric Lorder SRCC PCC

I � 0.855 0.866

II � � 0.860 0.877

III � � � 0.929 0.939

IV � � � � 0.934 0.945

feature vector arrangement.

Loss functions: Table 4 compares ablated methods for the

loss terms in (14). Method I employs only Lmae. In II, III,

and IV, we additionally use Lcenter, Lmetric, and Lorder in

that order.

From I and II, we see that Lcenter improves the results,

by encouraging the feature vector of an input to be located

near its corresponding score pivots. However, compared

with the proposed QCN in IV, methods I and II yield infe-

rior results, for we cannot sort feature vectors meaningfully

without Lorder and Lmetric. By employing Lmetric, III out-

performs II significantly. Also, by comparing IV with III,

we see that Lorder further improves the results.

Embedding space visualization: Figure 8 visualizes how

feature vectors and score pivots for KonIQ10K are aligned

through the three CTs. The t-SNE method [32] is used for

the visualization. Note that they are gradually arranged and

separated according to their scores, as the update goes on.

Performance according to N : Table 5 compares the

results according to the number N of input images on

KonIQ10K. Without auxiliary images (N = 1), the per-

formance degrades severely because we cannot exploit the

score relations between images. As N increases, the perfor-

mance gets better but saturates around the default N = 18.

Performance according to T : Table 6 compares the results

according to the number T of CTs on KonIQ10K. The best
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Table 5. Comparison of the performances according to the number

N of input images on the KonIQ10K dataset.

N 1 6 12 18 24

SRCC 0.909 0.928 0.931 0.935 0.934

PCC 0.924 0.940 0.942 0.945 0.944

Table 6. Comparison of the performances according to the number

T of CTs on the KonIQ10K dataset.

T 1 2 3 4 5

SRCC 0.928 0.930 0.934 0.933 0.933

PCC 0.939 0.941 0.945 0.943 0.943

Table 7. Comparison of the SRCC and PCC scores on KonIQ10K

and SPAQ according to the score pivot generation schemes.

KonIQ10K SPAQ

SRCC PCC SRCC PCC

Uniform 0.929 0.941 0.914 0.919

Non-uniform 0.934 0.945 0.923 0.928

Table 8. Comparison of QCN with GOL [14] on the KonIQ10K

and SPAQ datasets.

KonIQ10K SPAQ

SRCC PCC SRCC PCC

GOL [14] 0.918 0.909 0.908 0.907

Proposed QCN 0.934 0.945 0.923 0.928

results are achieved at the default T = 3.

Non-uniform score pivot generation: We use the Lloyd-

Max algorithm to quantize the scores of pivots non-

uniformly. Table 7 compares this scheme with the uniform

quantization on the KonIQ10K and SPAQ datasets. We see

that the non-uniform quantization yields better results than

the uniform quantization on both datasets, so it is used as

the default mode.

Comparison with geometric order learning: Table 8

compares the proposed QCN with the GOL algorithm [14]

on the KonIQ10K and SPAQ datasets. Since GOL is de-

signed for discrete rank estimation, it may fail to yield ac-

curate score predictions. Therefore, QCN performs better

than GOL in BIQA.

Testing time: To estimate the quality score of a test image,

the proposed QCN exploits auxiliary images, which are se-

lected from a training set. For efficiency, we extract the

features of all auxiliary images in advance. Hence, during

the test, the feature extraction of the auxiliary images is not

required. We measure the testing time on KonIQ10K us-

ing an RTX 3090 GPU. QCN takes only 0.033s to test an

image on average: 0.006s for the feature extraction, 0.001s

for the auxiliary image selection, and 0.026s for the score

69.73 (80.29) 69.59 (80.88)

71.29 (58.80) 69.80 (56.46)

Figure 9. Failure cases of the proposed QCN algorithm. For each

image, the predicted score is reported with the ground truth within

the parentheses.

estimation. Hence, QCN is feasible for many use cases.

Failure cases: Figure 9 shows some failure cases of the

proposed QCN. The first row shows images underrated by

QCN. In these cases, QCN may estimate the scores by fo-

cusing on the blurred or poorly illuminated background,

while the annotators may rate the quality scores by focusing

on the standing out composition of the foreground objects.

On the other hand, the second row shows images overrated

by QCN. In these cases, QCN and the annotators may de-

termine the qualities based on clear background and blurred

foreground, respectively.

5. Conclusions
We proposed a novel BIQA algorithm, called QCN, which

arranges the feature vectors of images based on their quality

scores in the embedding space. First, we designed the CT

module to update feature vectors to sort them according to

their quality scores. Second, to guide this update process,

we introduced score pivots. Third, we employed the four

losses to arrange the feature vectors meaningfully. Lastly,

we predicted the quality score of a test image by finding the

nearest score pivot to its feature vector in the embedding

space. Extensive experiments on various BIQA datasets

showed that QCN provides excellent performance. Further-

more, QCN demonstrated its great generalization capability

in cross-dataset evaluation.
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