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Figure 1. We train our Decolorful-Net on our new B&W Adobe 5K dataset, retouched by three experts, to produce expert-specific proxies
and corresponding output images. Once trained, we can decolorize an image with any style based on internet downloaded photos.

Abstract
Since the widespread availability of cameras, black-and-

white (BW)photography has been a popular choice for artis-
tic and aesthetic expression. It highlights the main sub-
ject in varying tones of gray, creating various effects such
as drama and contrast. However, producing BW photog-
raphy often demands high-end cameras or photographic
editing from experts. Even the experts prefer different
styles depending on the subject or even the same subject
when taking grayscale photos or converting color images
to BW. It is thus questionable which approach is better. To
imitate the artistic values of decolorized images, this pa-
per introduces a deep metric learning framework with a
novel subject-style specified proxy and a large-scale BW
dataset. Our proxy-based decolorization utilizes a hierar-
chical proxy-based loss and a hierarchical bilateral grid
network to mimic the experts’ retouching scheme. The proxy-
based loss captures both expert-discriminative and class-
sharing characteristics, while the hierarchical bilateral grid
network enables imitating spatially-variant retouching by
considering both global and local scene contexts. Our
dataset, including color and BW images edited by three
experts, demonstrates the scalability of our method, which
can be further enhanced by constructing additional prox-
ies from any set of BW photos like Internet downloaded
figures. Our Experiments show that our framework suc-
cessfully produce visually-pleasing BW images from color
ones, as evaluated by user preference with respect to artistry
and aesthetics. Code and dataset are publicly available at
https://github.com/seunghyuns98/Decolorization

†Corresponding Author

1. Introduction

Since the birth of camera photography, BW photogra-
phy has been beloved by photographers and the public be-
cause its better dynamic range and natural-looking sharp-
ness [26] convey an ability to enjoy the textures, lines and
patterns as well as contrasts. By representing subjects in vary-
ing shades of neutral gray, people can appreciate the revealed
aesthetics that cannot be enjoyed with color photos.

Barbara Davidson, a winner of the 2011 Pulitzer prize in
feature photography, adds both the intimacy and emotion to
the photos with the use of BW because she believes that color
can sometimes become visual pollution [24, 49]. In addition,
some of the BW conversions in Instagram were selected as
the 2021 most popular filters in the world [7]. Recent hit
movies like ‘Parasite’ and ‘Mad-Max’ are even re-opening in
BW videos. This trend indicates that the artistic and aesthetic
purpose of BW photography is becoming recognized.

However, artistic and aesthetic BW photography is not
easy for normal people to achieve. The monochrome cam-
era’s price is burdensome, and the photo-retouching required
to produce satisfying artistic effects still remains the do-
main of experts. Although smartphones and DSLR cam-
eras can provide basic BW photography functionalities, they
are not aesthetically delightful enough. Image decoloriza-
tion in the computer vision literature has mostly delved
into preprocessing for various downstream tasks, includ-
ing semantic segmentation [62], stereo matching [20] and
image recognition [27]. Whether local [16, 31, 37, 52] or
global approaches [6, 57], they focus on minimizing the
loss of textures during the color to grayscale conversion. Of
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course, a data-driven manner with a convolutional neural
network (CNN) in [36] is designed to take advantage of
the local and global approaches but still focuses on contrast
preservation during the color-to-monochrome conversion.
Unfortunately, the question of whether the decolorized im-
age is aesthetically entertaining has not been answered yet.

In this paper, we design a novel decolorization framework
that allows users to easily produce quasi-professional BW
photography with the subject-style aware proxy guidance
in Fig. 1, called DeColorful-Net. As usual, the decolorization
scheme differs by the scene and subject, and it is not easy for
users to suggest their favorite options in detail, different from
image editing with explicit user guidance like image [23, 25]
or text [1, 33, 35]. To produce user-preferred BW images, the
proxy-based learning using implicit vector representations
as a user-guidance is the most probable framework.

To do this, we first construct a large-scale BW dataset
to harness the network. Three professional photographers
are hired to produce their own decolorized version of the
MIT-Adobe 5K [5]. Considering the fact that the retouching
scheme varies on the experts, and even on the subject of
a scene, we design a hierarchical proxy-based deep metric
learning (DML) framework to extract subject-style aware
proxies. With the given style from the user and the defined
proxies, we propose a multi-level bilateral grid to imitate
the experts’ coarse-to-fine retouching schemes along with
to alleviate unwanted artifacts coming from conventional
single-level bilateral grids. To further demonstrate the scala-
bility of our DeColorful-Net, we collect public BW photos
on the internet taken by professional photographers. By sim-
ply fine-tuning the proxy generation network, we construct
new proxies, allowing the creation of user-specified BW im-
ages for arbitrary new styles. We show how DeColorful-Net
mimics the experts’ retouching in quantitative evaluations.
Furthermore, extensive and meticulous user studies support
our claim that DeColorful-Net produces more aesthetic BW
images compared to existing decolorization methods and
even commercial filters.

2. Related Work
Deep Metric Learning. A goal of metric learning is to
learn a new metric to address the distances between data
and to classify them. With the help of CNNs, DML [21, 34]
enables non-linear data to be handled in a higher feature
space. The loss functions aim to efficiently learn an embed-
ding space where similar features are attracted, and dissimi-
lar examples are repelled [42, 48]. One of the representative
concepts in the loss functions is proxy-based losses [2, 41,
44] which assigns proxies for each class and learns correla-
tion between data points and proxies. However, each data
point is associated only with proxies which miss the data-to-
data relations. Proxy-Anchor loss [30] solves this limitation
by designating each proxy as an anchor and associating it
with the entire data in a batch, which allows for inter-data

interactions throughout the training process. In contrast to
the other proxy-based methods, Hierarchical proxy-based
loss [60] builds multiple levels of learnable proxies where
the lowest level of proxies follows the scheme of existing
proxy-based losses. Imposing the hierarchical structures acts
as a regularization to prevent models from overfitting
DML-based Low-level Vision Tasks. With its powerful
ability to discover embedding space, DML has been in the
public eye, and is one of the main frameworks for several
vision tasks such as image retrieval [30, 51, 64], person
re-identification [8, 9, 47], and face recognition [12, 46].
Recently, it has been also applied in low-level vision tasks,
including image enhancement and image super-resolution. A
work in [11] finds matches between geometric shape descrip-
tors under proper metrics learned by Triplet metric learning
[40] to improve visual qualities in super-resolution. Another
work in [29] proposes a personalized high dynamic range
photography by modeling various user preferences as feature
vectors. Both preferred and non-preferred images of users
are fed to the CNN with a triplet loss function.
Image Decolorization. Classical decolorization focuses on
converting 3-channel color images into 1-channel grayscale
images while preserving the scene structures and con-
trasts in the original images. Methods to keep the scene con-
figurations during the conversion can be categorized into
local and global methods. Local methods [16, 31, 37, 52]
minimize differences in illumination and chrominance infor-
mation between color and BW images, by using different
mapping functions according to local regions of the input
images. Since those methods usually cause unpleasant halo
artifacts [3], global methods [6, 38, 39, 57] utilize global
linear mapping functions to effectively preserve a perceptual
quality and spatial information. One of the global methods
in [39] minimizes the contrast gap between color and the
decolorized image by optimizing the Log-Euclidean distance
for them. A work in [38] introduces the semi-parametric
approach. This uses the second-order multivariance poly-
nomial gradient to compare the color and the decolorized
images. In [6], a perception preserving decolorization is pro-
posed by minimizing a multi-level perceptual loss between
learned features from input decolorized and target images.

Unlike the existing decolorization methods which only
focus on preventing the loss of structural information, we
view the decolorization task as an aesthetic realm and pro-
pose a novel framework for generating visually plausible
BW images from color ones.

3. Expert-Retouched Imageset
MIT-Adobe 5K dataset [5] consists of 5, 000 colorful im-
ages and each image retouched by 5 photographers using
Adobe Lightroom. The retouching style of each photogra-
pher differs significantly, as already shown in [5]. Since it is
guaranteed to include a broad diversity of scenes, subjects,
and lighting conditions, it is widely used in image enhance-
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Figure 2. Illustration of three experts’ retouching schemes on the
proposed BW photography dataset.

ment [15, 53] and harmonization [10, 54]. To incorporate
those rich scene configurations, we utilize this dataset to
produce aesthetic BW images.

To represent a variety of aesthetic effects in BW im-
ages, we hire three professional photographers to retouch
the 5, 000 images with the payment. Fig. 2 shows the exam-
ple of their retouching schemes and the corresponding BW
photo examples obtained from them, who are referred to as
experts A, B, and C. Their retouching order is generally sim-
ilar: (1) adjusting global parameters such as gamma curve,
exposure, and contrast, (2) applying spatially varying filters
like vignetting or local gamma correction.

However, we find out significant variations in the detailed
retouching scheme among experts. Expert A prefers higher
exposure, enhanced clarity, and shadow effects to brighten
dark areas. Expert B tends to enhance scene details by adjust-
ing texture and clarity, further highlighting the main subject
like a person and a flower with a vignetting effect. Expert C
controls levels of highlight and shadow to manipulate the
brightest and darkest segments in images for spatial variant
retouching. This retouching enables outputs to have a more
dynamic range than input images.

We also observe that their retouching schemes depend on
scene configurations, such as the number of subjects, types,
and photographic compositions. For example, expert A tends
to use edge enhancement and higher exposure for landscape
photographs while increasing the contrast on buildings, and
using vignetting effect to concentrate on landscapes. For
portrait photographs, expert A uses a strong shadow effect to
enrich the fine details of hair-like structures. Local contrast
suitable to capture the skin’s pores and wrinkles is then
applied. Other experts also have their own retouching styles
dealing with a variety of scene configurations as well.

Considering the varying retouching scheme, we catego-
rize our dataset into four classes (human, non-human, build-
ing, and nature) based on [5], and ask them to achieve scene-
aware photo retouching. In our pipeline, images edited by
the experts are regarded as ground-truth BW images.

4. Methods
The main challenge in creating quasi-professional BW pho-
tography with our dataset is that the choice of retouching

schemes differs depending on the expert, even by the subject
of a scene. Furthermore, experts usually start with global
adjustments like exposure and contrast, followed by spatially
specific retouching. Therefore, it is essential to integrate
both global and local features to effectively manage these
spatially varying retouching techniques.

We handle these issues with a novel proxy-based image
decolorization network, named DeColorful-Net, that brings
up the concept of DML into the image decolorization task.
Our DeColorful-Net consists of two stages, which first yields
style-scene aware proxies based on DML, and then produces
a decolorized image from a hierarchical bilateral grid net-
work, as illustrated in Fig. 3

4.1. Proxy Generation
Let us consider the embedding space, where proxies repre-
sent subject-aware preferred styles for various users. Based
on the proxy-based metric learning [41], we aim to learn
the proxy generation network which produces the subject-
style aware proxies in the embedding space. For the input
I ∈ Rh×w×1, a proxy is annotated as {pij |i ∈ 0, · · · , N −
1, j ∈ 0, · · · ,M − 1}, where i and j denote an object and a
style index, respectively. Here, we set both N and M to 4 be-
cause our dataset consists of 4 subjects (human, non-human,
nature, and building) and 4 styles (RGB2Gray operator and
3 experts). These learnable 16 proxies are held in Proxy
Bank P , which is later used to provide target proxy when
given a style and a subject index.

For feature extraction, input images are fed into two indi-
vidual encoders: ResNet [19] and VGG [50] which are used
to classify subjects and styles, respectively. A cross-entropy
loss is then calculated based on the output vectors x and y
from each classifier header with fully-connected layers as:

LCE =
1

N

N−1∑
i=0

x̂i log(xi) +
1

M

M−1∑
j=0

ŷj log(yj), (1)

where x̂ and ŷ are binary indicators of the true label for the
subject and the style, respectively.

To learn an embedding space where the proxy from the
same class of the input image is regarded as positive and the
other proxies are negative, we adopt Proxy-Anchor loss [30].
Let v denote the embedding vector obtained by an additional
lightweight MLP architecture and p indicates the proxy from
the proxy bank P . Then, the Proxy-Anchor loss is given by

LPL(v,P) =
1

|P+|
∑
p∈P+

log
(
1 +

∑
v∈V +

p

e−α(k(v,p)−δ)
)

+
1

|P|
∑
p∈P

log
(
1+

∑
v∈V −

p

eα(k(v,p)+δ)
)
, (2)

where δ is a margin, α is a scaling factor, k(·, ·) is the cosine
similarity function between two vectors and P+ denotes the
set of positive proxies of data in the batch. In addition, for
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Figure 3. The overall training pipeline of our DeColorful-Net, consisting of the proxy generation network and decolorization network.
PReLU denotes the PReLU activation [18].

each proxy p, a batch of embedding vectors V is divided into
the set of positive vectors of V +

p and negative vectors V −
p .

We note that experts first roughly manipulate the whole
image, based on their artistic preferences, and then pro-
ceed to detailed retouching based on scene configurations
later on. Accordingly, we adopt a hierarchical proxy-based
loss (HPL) [60], which allows the network to capture expert-
discriminative as well as class-sharing characteristics.

Since the proxy is learned in the subject-style dependent
manner, the upper-level proxy pHj , where H denotes the
higher level, is obtained as below:

pHj =
1

N

n∑
i

pij , (3)

and thus 4 proxies exist on a higher level according to the
expert’s style. The HPL based on the LPL(v,P) is then
formulated as below:

LHPL = LPL(v,P) + λ1LPL(v,PH), (4)
where λ1 is a loss weight for a higher level of proxies and
is empirically set to 0.1. PH means the set of proxies on
a higher level. Therefore, our HPL can seize class-shared
knowledge from higher-level coarse proxies along with class-
discriminative features through the lower-level proxies, just
as the Proxy-Anchor loss does.

In total, the final loss function for the proxy generation in
DeColorful-Net is defined as:

Lproxy = LCE + λ2LHPL, (5)
where λ2 is the hyper-parameter, which is empirically set to
0.1. By training the proxy generation network on Lproxy,
we obtain subject-style aware proxies that represent each
training set of our dataset retouched from the three experts.

4.2. Image Decolorization via Bilateral Grid

The final goal is to produce a quasi-professional decolorized
image from single RGB images, which allows users to en-
gage in selecting the user preference style. To transfer the
preferred style with the help of the proxy defined for each
subject-style from Sec. 4.1, we incorporate Dual-AdaIN [53]
into the Decolorization Encoder to mitigate the discrepancy
between a source (an input RGB image) and a target do-
main (subject-style aware proxy). Dual-AdaIN transforms
the feature map from the encoder by utilizing the discrepancy
between the source and the target vectors. Here, the embed-
ding source vector v is extracted by feeding the converted
BW image into the pre-trained proxy generation network,
and the proxy pij (target vector) is selected from the Proxy
Bank according to a user given style-index and a subject-
index. Hence, the source vector v and the target vector pij
are fed to a fully-connected layer that outputs the set of mean
and variance vectors {µs, σs, µt, σt}. Transformation of the
feature map is given by:

F ′ = σt

(F − µs

σs

)
+ µt, (6)

whereF is an intermediate feature map from the decoloriza-
tion encoder and F ′ denotes a transformed feature map.

Along with the Dual-AdaIN embedded encoder, we lever-
age the idea of bilateral grid processing [15] to implement
the edge-aware spatially varying retouching scheme. Addi-
tionally, to mimic the coarse-to-fine retouching of experts,
we propose a multi-level bilateral grid framework that ex-
tracts different levels of feature maps from a local decoder
of a bilateral grid network. By using the hierarchical fea-
ture maps of the Decolorization Decoder, we can gather
information from the scene, which facilitates to generate a
decolorized image with spatially-variant effects.
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Figure 4. Visualization of embedding vectors using t-SNE [56] and examples of proxy modification. The color bars represent the proxies
used for producing the decolorized images adjacent to them. The predominant color indicates the style class, while the position of the stripes
denotes the channels altered from the original proxy. Here, Multi-Slider contains channels related to ’Exposure’, ’Clarity’, and ’Shadow’

Next, we fuse multi-level local feature maps using an addi-
tional convolution layer to construct the bilateral grid, where
each grid cell contains four weights, {wr, wg, wb, wd}.
Compared to conventional decolorization methods [37, 52]
that restrict the sum of the channel weights {wr, wg, wb}
to 1, we do not limit the sum of the weight values and use an
additional bias term wd to capture the local changes in bright-
ness and contrast similar to an affine matrix used in image
enhancement tasks [14, 15, 17]. Then, the final grayscale
image Z is produced as below:

Zd = wr
cRd + wg

cGd + wb
cBd + wd

c , (7)
where {Rd, Gd, Bd} means color channels at a pixel d on
input image, respectively. c is the corresponding location on
the grid of a pixel d.

To enforce the style consistency between the decolorized
image Z and the expert retouched ground-truth image Ẑ, we
use the cross entropy loss between the style indicator vector
y and the binary indicator vector ŷ of the user preference
style index. The style indicator vector y is extracted from
the proxy generation network’s style header. Along with the
L1 loss, the final loss for decolorization is defined as:

Ldecolor =

D∑
d=1

(Zd − Ẑd)︸ ︷︷ ︸
L1 loss

+λ3
1

M

M−1∑
j=0

ŷj log(yj)︸ ︷︷ ︸
Cross Entropy loss

, (8)

where D and Ẑ denote the total number of pixels in the image
and the expert retouched ground-truth image, respectively.
λ3 is a hyper-parameter, which is empirically set to 0.01.

4.3. Analysis

To the best of our knowledge, our DeColorful-Net is the first
to unfold the decolorization problem into an aesthetic aspect.
To validate its effectiveness, we provide a series of analyses
on DeColorful-Net.
Hierachical proxy-based loss. First, we observe a distri-
bution of the embedding vectors in the learned space based
on a hierarchical proxy-based loss (Eq. (4).) Fig. 4 visual-
izes the embedding vectors projected onto 2D space using
t-SNE [56] where the same styles and subjects are catego-
rized by the same color and shape, respectively. The clusters
on the projection surface indicates that the proxies are well

Figure 5. Visualization of the weights and results of bilateral grid.
Note that the patch size in (b) is 64.

learned through the LHPL in that the proxies are attracted
and repelled according to their styles.
Deep Metric Learning. We analyze the efficiency of a
DML framework in decolorization task. Since the retouch-
ing parameters for BW photography are more limited than
in color photo, experts should meticulously adjust them to
produce visually pleasing results. According to [28], 9 slid-
ers in retouching tools: ‘Exposure’, ‘Contrast’, ‘Blacks’,
‘Whites’, ‘Shadows’, ‘Highlights’, ‘Clarity’, ‘Texture’, and
‘Vignetting’ are keys for professional BW photos. By lever-
aging DML, our proxy generation network captures the dif-
ferences of each expert’s adjustment and encapsulates them
in an output vector. To validate this, we create image sets
with variations in each slider and mapped them onto the
latent space. As illustrated in Fig. 4, these sets are distinctly
clustered into separate groups. Also, by modifying 50 chan-
nels of RGB2Gray proxy that have the biggest discrepancies
with the central values of these clusters, we can produce
decolorized images that contain the corresponding effects.
Additionally, we found that by manipulating these channels,
we can handle multiple effects at once, and even can control
the expert’s proxy to better align with individual preferences,
thereby generating outputs that more closely match a user’s
desired aesthetic.
Hierarchical bilateral grid. Lastly, we analyze the effec-
tiveness of a hierarchical bilateral grid by comparing it with
a single bilateral grid with various patch sizes. Fig. 5 (a)
visualize the weight values, {wr, wg, wb, wd}, which are
applied to each color channel with the additional bias term.
Here, we found that the retouching schemes such as expo-
sure, contrast, and local gamma correction, are controlled by
the color channel weights. The vignetting effect, which is ap-
plied independently to the pixel values in the post-processing
stage, is represented by the bias term.
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To acquire the weights that produce the best result, we
first tune the spatial range of the bilateral grid from 4 to 64.
Fig. 5 (b) shows an example result with an improper spatial
range. As the spatial range widens, the bigger segment of
the image shares the same weight parameters, which leads
to the poor local adjustment. On the other hand, as the range
becomes narrow, the local regions are precisely delineated,
but emboss the halo effects around the edge of the objects.
To balance between them, we choose the proper range of the
patch size of the single bilateral grid as 8 in our experiment.

However, an optimal spatial range can only partially
mimic the experts’ coarse-to-fine retouching. For example,
some retouching schemes, such as vignetting effect, often
cause visually unpleasing grid artifacts. It is obvious that
a fixed single patch size has a limitation in generating the
fading, which is dependent on the spatial location of the
image. Our multi-level bilateral grid alleviates these artifacts
by capturing the diverse receptive fields of the image, thus
effectively implementing the spatially varying retouching.
The grid artifacts revealed in the single bilateral grid from
Fig. 5 (c) are removed in Fig. 5 (d).

4.4. Constructing Proxies from Internet Photos

We further demonstrate the scalability of our DeColorful-Net,
enabling users to create quasi-professional BW photographs
in their preferred style. For this, we additionally collect a vari-
ety of BW photos from professional photographers available
online with their permission to use. We find out that photog-
raphers often hone their craft by specializing in a singular
subject area. We thus choose two photographers for each
subject (8 photographers in total). Note that we use 100 and
20 images for training and validation purposes, respectively.

Since it is impossible to obtain color images correspond-
ing to the downloaded BW images, we devise a method to
construct additional proxies using only them. As our Style
branch is originally trained to classify 4 styles, we first fine-
tune the proxy generation network on the newly collected
unpaired dataset to classify 12 styles (RGB2Gray, expert
A, B, C, and additional 8 styles). Next, we simply use our pre-
trained decolorization network in Sec. 4.2. With the source
vector and target proxy from the re-trained proxy genera-
tion network embedded to the encoder of decolorization net-
work, we can obtain user-specified BW images for new styles.
Through this experiment, we show the scalability of the
proposed network, even the possibility of unpaired learning.

5. Experiments
In this section, we conduct quantitative evaluations to demon-
strate the effectiveness of our DeColorful-Net, both with
and without ground truth image pairs. We also compare its
performance against state-of-the-art methods and popular
commercial filters through a fair and extensive user-study.
Implementation Details. We train and evaluate DeColorful-
Net on our dataset. We implement DeColorful-Net using

Model PSNR↑ SSIM↑ LPIPS↓ Ablation PSNR↑ SSIM↑ LPIPS↓
HDRNet [15] 23.93 0.909 0.072 L1 27.34 0.947 0.059

StarEnhancer [53] 25.50 0.924 0.104 L2 27.16 0.946 0.062
NeurOp [58] 25.08 0.925 0.067 L2 + LCE 27.21 0.948 0.062
MAXIM [55] 25.65 0.890 0.184 w/ LTriplet 26.35 0.943 0.063
RSFNet [45] 25.95 0.937 0.075 w/ LPL 26.00 0.939 0.065
CSNorm [61] 26.62 0.931 0.158 single-stage 25.14 0.931 0.067

Ours(L1 + LCE) 27.50 0.947 0.057 w/o hierarchy 26.79 0.941 0.074

Table 1. Quantitative evaluation with other baselines(left) and
ablation study for the effects of loss functions, hierarchical proxy-
based loss, and multi-level bilateral grid(right). Bold: Best and
underlined: the second best.

Pytorch framework [43], utilize the Adam [32] optimizer
with β1=0.9 and β2=0.999 and set a learning rate to 0.0001.
On both the proxy generation and the decolorization stage,
the number of learnable parameters is 31M and 15M, respec-
tively. We split our dataset into training and test set with a
ratio of 4 : 1. We train on images with a 512×512 resolution,
and the training and inference take about 8 hours and 0.03
seconds on four NVIDIA RTX 3090 GPUs, respectively.

5.1. Quantitative Evaluation
In this evaluation, we verify how well our DeColorful-Net im-
itates the experts’ retouching schemes. We thus use common
quantitativ emeasures of image quality: PSNR, SSIM [59]
and LPIPS [63], whose results are reported in Tab. 1.

We compare our DeColorful-Net with state-of-the-art im-
age enhancement models: HDRNet [15], StarEnhancer [53],
NeurOp [58], MAXIM [55], RSFNet [45] and CSNorm [61].

HDRNet directly predicts affine color transform coef-
ficients in a bilateral grid, enabling both global and local
adjustments. StarEnhancer presents a curve-based tone map-
ping technique that leverages embedding vectors, which
serve as representatives of different styles, allowing users
to transform the retouched images into their preferred style.
NeurOp conducts color operators in the embedding space
by estimating parameters to modify the embedding vectors.
MAXIM employs multi-axis MLP structures to address the
limitations of CNNs and transformers which are the absence
of global receptive fields and suffer from quadratic complex-
ity, respectively. RSFNet uses a white-box framework for
image retouching by estimating a set of region masks and
their parameters for pre-defined retouching functions. These
parameters are able to modify attributes of images, such as
temperature, hue, and exposure for each region. CSNorm
proposes a channel selective normalization for lighting com-
ponents of images. The normalization ensures the recon-
struction quality because it prevents an information loss of
learned features in the auto-encoder structure from a central-
ization process based on their mean and variance values in
conventional image retouching.

We train them on our dataset from scratch with the au-
thors’ provided codes for user-preferred BW images. Note
that since the methods except for StarEnhancer cannot train
various styles at once, we separately train each expert’s style.

Despite their impressive performance on color image
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Age
(Gender

PDecolor
[6]

LeDecolor
[39]

SPDecolor
[38] Style A Style B Style C iPhone

14 Pro
Galaxy

S21 Ultra Instagram Tiktok Photoshop BW Mode Ours

20 (M) 2.07 ± 0.59 2.37 ± 0.76 2.82 ± 0.75 5.16 ± 0.60 3.48 ± 0.75 5.11 ± 0.54 4.18 ± 1.82 3.77 ± 1.74 3.25 ± 2.01 3.63 ± 1.97 4.34 ± 2.11 4.12 ± 2.08 4.71 ± 1.87
20 (F) 2.02 ± 0.44 2.59 ± 0.71 2.93 ± 0.65 5.12 ± 0.42 3.50 ± 0.71 4.83 ± 0.48 4.28 ± 1.86 4.30 ± 1.62 3.41 ± 2.90 3.35 ± 1.81 3.72 ± 2.08 4.15 ± 2.02 4.79 ± 2.04
30 (M) 2.79 ± 0.60 2.72 ± 0.66 2.95 ± 0.60 4.57 ± 0.55 3.45 ± 0.54 4.53 ± 0.53 3.98 ± 2.10 4.12± 1.68 3.63 ± 2.16 3.73 ± 1.85 3.80 ± 2.07 4.33 ± 2.04 4.41 ± 1.93
30 (F) 2.10 ± 0.48 2.53 ± 0.79 2.80 ± 0.74 5.09 ± 0.42 3.59 ± 0.73 4.88 ± 0.46 4.33 ± 1.78 4.33 ± 1.97 3.33 ± 1.89 3.89 ± 1.84 3.63 ± 2.19 3.56 ± 1.89 4.94 ± 1.92
40 (M) 2.54 ± 0.51 2.55 ± 0.70 2.84 ± 0.71 4.88 ± 0.55 3.46 ± 0.67 4.73 ± 0.66 3.86 ± 1.94 4.17 ± 2.04 3.91 ± 1.98 3.87 ± 1.88 3.72 ± 2.02 4.07 ± 2.04 4.40 ± 2.02
40 (F) 2.48 ± 0.50 2.65 ± 0.63 2.91 ± 0.69 4.81 ± 0.54 3.50 ± 0.58 4.65 ± 0.52 3.82 ± 1.99 4.14 ± 1.98 3.82 ± 1.98 3.93 ± 1.90 3.97 ± 2.11 3.98 ± 2.06 4.36 ± 1.91
50 (M) 2.53 ± 0.48 2.71 ± 0.58 3.02 ± 0.56 4.66 ± 0.54 3.45 ± 0.58 4.64 ± 0.49 4.31 ± 1.87 4.17 ± 1.91 3.30 ± 2.01 4.18 ± 1.82 3.58 ± 2.05 3.75 ± 2.04 4.72 ± 1.85
50 (F) 2.01 ± 0.46 2.36 ± 0.73 2.87 ± 0.76 5.22 ± 0.53 3.48 ± 0.76 5.06 ± 0.50 4.21 ± 1.92 3.95 ± 1.83 3.63 ± 2.05 3.92 ± 1.90 3.81 ± 2.08 4.15 ± 2.07 4.33 ± 2.03
Total 2.32 ± 0.38 2.56 ± 0.62 2.89 ± 0.60 4.94 ± 0.39 3.49 ± 0.58 4.80 ± 0.41 4.12 ± 1.92 4.11 ± 1.86 3.54 ± 2.05 3.81 ± 1.89 3.82 ± 2.10 4.01 ± 2.04 4.58 ± 1.96

Table 2. User Study 1 (Left) and Study 2 (Right). We report the mean and standard deviation of each result.

(e) Style B(d) Style A(a) PDecolor (b) LeDecolor (c) SPDecolor (f) Style C

Figure 6. An example of the result in Study 1.

enhancement, the performance on BW images are unsatisfac-
tory as depicted in Tab. 1. The reasons are mainly two folds:
(1) The image-to-image translations, trained independently
for each expert’s style, focus on learning their global retouch-
ing skills, thereby overlooking intra-style variations based on
the subject. Additionally, when they are trained separately
for each subject and style, they show the worse results due to
the insufficient number of training images. StarEnhancer, in
contrast, which uses a simple ResNet [19] architecture and
cross-entropy loss to train a style classifier, fails to account
for the hierarchical relation of subject and style, which leads
to the sub-optimal performances. (2) Some methods, special-
ized to the color image retouching, face challenges for BW
images. RSFNet, for example, relies on color-based opera-
tions like temperature and hue adjustments. StarEnhancer
heavily depends on the global manipulation by only tuning
RGB curves. To produce aesthetic BW images, more local
retouching schemes are required as discussed in [4, 13, 22].

5.2. Ablation Study
Loss functions. We use common distance metrics: L1 and
L2. As widely known, since the L1 is helpful to yield sharp
images than L2, which leads to higher PSNR and SSIM
and lower LPIPS values. In addition, LCE is beneficial to
classify each expert’s retouching scheme, which initially
determines a luminance intensity level and local effects like
edge enhancement of output images. Thus, we use both
L1 and LCE to train our DeColorful-Net. Furthermore, we
train an embedding space using a triplet loss denoted as
w/ LTriplet in Tab. 1. Since our pipeline needs a proxy
bank, we assign a random vector for each class and use it
as an anchor, similar to PIE-Net [29]. Along with the lower
performance, in a model design step, we decide not to use
the triplet loss for two reasons: (1) Scalability: Due to the
fact that the triplet loss compares each potential pair within
the mini-batch, its time complexity increases at a rate of
O(n2), hindering the learning of diverse styles like internet
photos Sec. 4.4. (2) Initialization Sensitivity: The model’s
performance depends heavily on the triplet samples of earlier

steps. We train the model 4 times and could confirm the
PSNR variances, from 26.01 dB to 26.35 dB.
Hierarchical proxy-based loss. When we use the
LHPL, our DeColorful-Net produces subject-aware visually-
pleasing results, even in the same style. This is because
the loss term aggregates proxies with the same style and
enforces to form a hierarchy between the style and sub-
jects. On the other hand, to check whether the LHPL is
replaceable or not, we test a conventional LPL [30]. As ex-
pected, we observe that the LPL sometimes fails to imitate
experts’ style-aware retouching because it just spreads both
the subject-style aware proxies into the embedding space
without considering their hierarchical relation.
Two-stage training. We evaluate our two-stage training
scheme and a single-stage training which skips the proxy
generation step and directly trains the decolorization net-
work in Sec. 4.2 for each expert’s style. While our two-stage
learning effectively differentiates styles in the embedding
space with DML framework as shown in Sec. 4.3, the singe-
stage learning suffers from a limited ability to extract the
style characteristics, similar to the image-to-image transla-
tion models that can only learn one style at a time. Therefore,
we believe that our two-stage training scheme is the effective
way for capturing the style features as a whole.
Multi-level bilateral grid. We compare the single and
multi-level bilateral grids. As mentioned in Fig. 5, the multi-
level bilateral grid is necessary to implement the experts’
coarse-to-fine retouching schemes. We verify the positive
effect in this quantitative evaluation again. With only the
single-level bilateral grid, posterization artifacts appear when
we add spatial-variant effects like vignetting. In contrast, the
multi-level bilateral grid alleviates the artifact by aggregating
multi-scale local information of image patches.

5.3. User Study
To examine the aesthetic value of BW photos produced by
our DeColorful-Net, we conduct a user study via Amazon
MTurk. Considering that user preferences can greatly dif-
fer by gender and generation, we gather 20 users from each
decade group - 20s, 30s, 40s, and 50s - with an equal number
of male and female participants in each, 80 users in total. The
questionnaire for the study consists of 3 sets: comparison
with (1) state-of-the-art decolorization methods, (2) com-
mercial BW filters with user preference (3) validation of
additional proxies from internet photos.
Study 1: Comparison with State-of-the-art decoloriza-
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(d) Instagram(a) Color image (b) iPhone 14 Pro (c) Galaxy S21 Ultra

(g) BW Mode (h ) Ours(e) Tiktok (f) Photoshop

Figure 7. Comparison of ours with commercial filters used in Study 2.

tions. This study 1 is designed for the comparison of ours
with the previous decolorization methods1. We randomly
choose 20 image pairs from each class in our dataset, and
a total of 80 image pairs are then presented to the users.
The participants are shown in random order of 6 images,
which are PDecolor [6], LeDecolor [39], SPDecolor [38],
and ours with the expert-style A, B and C. According to the
rankings given by the users, scores are assigned from 6 to 1
in a reciprocal order. As shown in Tab. 2, the results from
our DeColorful-Net with the experts’ styles are preferred in
every group. In particular, the DeColorful-Net with the style
A and C achieves the outstanding result on this user-study,
whose example is displayed in Fig. 6.
Study 2: User preference. Next, we consider personal
preferences of BW images by comparing ours with commer-
cial BW filters in smartphones including Galaxy S21 Ultra,
iPhone 14 Pro, Instagram, and Tiktok. Since each of them
provides three types of BW filters, users can choose one of
each that they prefer. Additionally, we use the neural filter
in Photoshop, which can stylize images with a reference, to
construct 3 additional sets based on each expert’s style in
our dataset. For a fair comparison, the experts A, B and C
directly take both real-world color and BW images at the
same spot using their own cameras. Note that they just use
BW modes of their cameras to obtain the BW images. Each
expert takes 12 photos such that 3 photos are captured for
each subject class (a total of 36 photos used in this study).
Before asking the user about their preferred image, we sort
filtered images from the commercial filters and captured im-
ages from the experts by grouping them with similar styles
together. In the beginning stage, the users first observe 3 sets
of the sorted images and have to choose the most preferred
style of them, similar to a user-study protocol in [29]. After
that, the users watch 7 BW images in arbitrary order, con-
sisting of ours, BW photography taken by BW modes of the
experts’ cameras, and the 5 filtered images (see Fig. 7).

Tab. 2 shows that our DeColorful-Net exhibits the highest
1The reason choosing them is their source codes are available in public.

Figure 8. An example of the questionnaire in Study 3. Obviously,
the answer is “Option 1.”

Age(Gender) 20 (M) 20 (F) 30 (M) 30 (F) 40 (M) 40 (F) 50 (M) 50 (F) Total
Human 75.50 83.00 78.50 66.00 81.50 71.00 79.50 60.00 74.38

Non-human 80.50 69.00 73.50 72.00 81.00 66.00 70.00 76.00 73.50
Nature 84.50 81.50 85.00 65.50 78.50 80.00 75.00 66.50 77.06

Building 78.50 62.50 70.00 68.00 80.50 72.50 70.50 64.00 70.81
Total 79.75 74.00 76.75 67.88 80.38 72.38 73.75 66.63 73.94

Table 3. User Study 3. The percentage of voting result on each subject.

preferences over those of the commercial filters and the
experts’ images. Based on this, we claim that DeColorful-
Net produces personalized and visually-pleasing BW images.
Surprisingly, the experts’ photos fail to have a good score
over the comparison methods. This is because there is a
fundamental limitation of the color DSLR cameras which
have narrower spectral ranges than monochrome cameras.
Study 3: Additional proxies from internet photos. We
evaluate the scalability of our DeColorful-Net, described
in Sec. 4.4. Let us denote two photographers for each subject
as P1 and P2, as an example. The participants observe a set
of images from P1, and then are asked to choose one of two
retouched images. They have to find the most matched style
of the given images (see Fig. 8). Note that these two image
options are retouched from our DeColorful-Net using proxies
learned with images from P1 and P2. We randomly pick 10
images from each photographer, a total of 80 image pairs
presented to each user. Tab. 3 indicates that our DeColorful-
Net remarkably mimics the distinct styles of professional
photographers, even though the proxies are made using only
internet downloaded images.

6. Conclusion
We present a novel decolorization DML framework to pro-
duce a visually-pleasing BW photography. We view decol-
orization as an aesthetic realm and handle the varying user
preference issue. To do this, we collect large-scale black-and-
white images, retouched by three professional photographers,
from public colorful image datasets. Using our dataset, we
train a DML framework with a hierarchical proxy-based loss
to extract subject-style aware proxies. It enables us to imitate
the experts’ retouching schemes.
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