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Figure 1. We introduce dispersed structured light, a low-cost high-quality hyperspectral 3D imaging method. By placing a diffraction

grating film on a conventional camera-projector setup, we disperse structured-light patterns. Analyzing the images captured under the

dispersed structured light enables accurate hyperspectral 3D reconstruction. (a) Capture configuration, (b) estimated hyperspectral image

in sRGB, (c) comparison with spectroradiometer measurements, (d) estimated depth map, (e) estimated hyperspectral image.

Abstract

Hyperspectral 3D imaging aims to acquire both depth
and spectral information of a scene. However, exist-
ing methods are either prohibitively expensive and bulky
or compromise on spectral and depth accuracy. In this
paper, we present Dispersed Structured Light (DSL), a
cost-effective and compact method for accurate hyperspec-
tral 3D imaging. DSL modifies a traditional projector-
camera system by placing a sub-millimeter thick diffrac-
tion grating film front of the projector. This configuration
enables dispersing structured light based on light wave-
length. To utilize the dispersed structured light, we devise
a model for dispersive projection image formation and a
per-pixel hyperspectral 3D reconstruction method. We val-
idate DSL by instantiating a compact experimental proto-
type. DSL achieves spectral accuracy of 18.8 nm full-width
half-maximum (FWHM) and depth error of 1 mm, outper-
forming prior work on practical hyperspectral 3D imag-
ing. DSL promises accurate and practical hyperspectral 3D
imaging for diverse application domains, including com-
puter vision and graphics, cultural heritage, geology, and
biology.

1. Introduction

Hyperspectral 3D imaging aims to capture both depth and

spectrum per pixel. Allowing for geometric-spectral analy-

sis of a scene [4, 21–23, 44], this imaging modality has po-

tential applications across diverse domains, including food

ripeness detection [41], mineral detection [42], art authenti-

cation [36], classification [26], and cultural heritage preser-

vation [19].

Despite of the potential in capturing rich geometric and

spectral information, existing hyperspectral 3D imaging

methods are often impractical, due to the high instrumen-

tation costs, large form factor, and low accuracy. Specifi-

cally, high-end systems such as using coded-aperture snap-

shot spectral imaging systems (CASSI) and liquid-crystal

tunable filters provide accurate depth and spectral infor-

mation, however mandate high cost and large form fac-

tor [7, 14, 19, 37, 44–46, 48]. In contrast, affordable hy-

perspectral 3D imaging systems suffer from low accuracy

of depth and spectrum [4, 15, 20–23, 29, 35].

In this paper, we exploit dispersion, a phenomenon

where light rays are spatially redirected according to their

wavelength either by refraction or diffraction. Using the

optical dispersion, we present dispersed structured light
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aiming for practical and accurate hyperspectral 3D imag-

ing. DSL augments a conventional projector-camera system

with diffraction grating film, which adds a negligible cost

and size of around 10 USD with a sub-millimeter thickness.

The diffraction grating in front of the projector spatially dis-

perses broadband projector light based on its wavelength,

resulting in a dispersed pattern consisting of several diffrac-

tion orders [13].

Specifically, zero-order diffraction permits light to pass

through the diffraction grating as if the grating is not

present, enabling us to exploit it for 3D imaging. First-

order diffraction changes the direction of a light ray based

on wavelength, resulting in dispersed structured light pat-

terns that aid hyperspectral reconstruction. We develop a

model for dispersive projection image formation and a per-

pixel hyperspectral 3D reconstruction method using multi-

order diffractions.

DSL achieves an average depth error of 1 mm and

spectral FWHM of 18.8 nm in the visible spectrum, out-

performing existing practical hyperspectral 3D imaging

method [21] that has a spectral FWHM of 83 nm.

In summary, we make the following contributions.

• We present dispersed structured light that enables com-

pact, low-cost, and high-quality hyperspectral 3D imag-

ing by augmenting a projector-camera setup with a

diffraction grating film.

• We develop a model for disperisve projection image

formation and per-pixel hyperspectral 3D reconstruction

method that considers both zero-order and first-order

diffractions.

• We perform extensive evaluations and show that DSL

achieves an average depth error of 1 mm and spectral

FWHM of 18.8 nm, outperforming the state-of-the-art af-

fordable hyperspectral 3D imaging methods.

2. Related Work
Hyperspectral 3D Imaging Existing work on hyperspec-

tral 3D imaging typically combines the field of hyperspec-

tral imaging [5, 24, 25, 27, 47] with depth imaging [15,

38, 44]. Specifically, researchers have paired CASSI [43]

with structured light [7, 19], time-of-flight camera [37],

light-field camera [45], and stereo [44]. An alternative to

CASSI is the use of spectral bandpass filters with struc-

tured light [4, 14] or a light field camera [48]. Xu et al.[46]

present a hyperspectral projector that incorporates collima-

tion optics, diffraction grating, and digital micro-mirror de-

vice. Although these systems acquire accurate hyperspec-

tral 3D information, their increased complexity due to relay

lenses, narrow-band spectral filters, and plate-based disper-

sion optics results in a high building cost and large form

factor.

Several methods have explored hyperspectral 3D imag-

ing with compact setups. Baek et al. [4] propose a diffrac-

tive optical element (DOE) producing a point spread func-

tion (PSF) that varies with scene spectrum and depth, facil-

itating single-shot hyperspectral 3D imaging through blur

analysis. However, the depth and spectral reconstruction

accuracy are limited due to the low-frequency characteris-

tics of the PSF. Li et al. [21, 23] employ a projector-camera

setup to capture a scene with varying trichromatic projector

primaries with known spectra, allowing for hyperspectral

reconstruction. Despite its practicality, the spectral accu-

racy is limited by large spectral bandwidth of the projector

primary spectra, resulting in 83 nm FWHM. In comparison,

the proposed DSL enables accurate hyperspectral 3D imag-

ing with 18.8 nm FWHM and average depth error of 1 mm

by dispersing projector light at a cost and form factor on-par

with conventional structured light systems.

Structured Light Structured light techniques project il-

lumination patterns onto a scene and analyze the reflected

light using a camera [8]. The projected patterns enable

establishing correspondence between camera and projector

pixels for 3D imaging. DOEs, combined with narrow-band

coherent laser, have often been employed as cost-effective

components for generating structured light [2, 18, 32]. Em-

ploying a conventional projector instead of the DOE-based

laser illumination allows for using multiple patterns in a

programmable manner, significantly enhancing depth accu-

racy [9, 38]. Various structured light patterns have been

proposed to facilitate 3D imaging robust to global illumina-

tion [11, 31], light transport analysis [10, 33], and energy-

efficient 3D imaging [34]. Introducing polarizing optics to a

conventional projector further enhances its capability, mak-

ing 3D imaging of translucent objects and polarimetric light

transport analysis feasible [1, 17]. The proposed DSL aug-

ments structured light by only placing a diffraction grating

film in front of a projector, enabling accurate hyperspectral

3D imaging with a compact setup.

Dispersive Optics for Cameras and Projectors Disper-

sive optics, such as prism and diffraction grating, have been

often employed in the design of cameras and displays, in

particular for hyperspectral imaging. CASSI employs dis-

persive optics and a coded mask to obtain masked spectral

images with a wavelength-dependent translation [43]. Us-

ing a prism and a coded mask without relay lenses enables

video-rate hyperspectral imaging [6]. Computed tomogra-

phy imaging spectrometers leverage multi-order dispersion

from a diffraction grating for hyperspectral imaging [30].

Hostettler et al.[16] use a prism and a mask to implement

a trichromatic color projector based on dispersion. Mohan

et al. [28] employ a diffraction grating and an attenuation

mask to control the spectral power distribution of projec-

tor light. Recently, Sheinin et al.[39, 40] use a diffraction

grating and a line camera to track fast-moving sparse scene
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points. Our DSL augments a projector-camera system only

with a diffraction grating film, allowing to keep the form

factor compact and cost low. Instead of directly masking

the spectrum emitted from the projector using additional

components, we analyze and exploit how structured light

patterns are dispersed and illuminate a scene.

3. Dispersive Projection Image Formation
Imaging Setup We devise the proposed DSL imaging

system with the goals of compactness and affordability.

To this end, we combine a conventional trichromatic cam-

era (FLIR GS3-U3-32S4C-C) with a trichromatic projector

(LG PH30N) and a diffraction-grating film (Edmund #54-

509) mounted in front. This configuration makes light from

the projector undergo dispersion, and, as such, patterns

emitted from the projector are spatially dispersed depending

on wavelength. Figure 2 shows our experimental prototype

and a captured image with a projector pattern composed of

four squares. For zero-order diffraction, light does not ex-

perience wavelength-dependent changes, and the projected

squares retain their original shapes. For first-order diffrac-

tions, each square undergoes wavelength-dependent shift.

3.1. Image Formation

Background on Diffraction Grating Diffraction grating

consists of repetitive, even-spaced micron-scale grooves

characterized by the groove density g. The interaction of

light with the grating incurs wavelength-dependent diffrac-

tion [13], which is modeled in the geometric-optics perspec-

tive as a redirection of the light path:

dg(v,m, λ) = (−mgλ+ vx︸ ︷︷ ︸
dx

, vy︸︷︷︸
dy

,
√
1− d2x − d2y), (1)

where m is the diffraction order, v = (vx, vy, vz) is the

incident light vector. x-axis here is aligned with the groove

direction and λ is the wavelength. dg(v,m, λ) is the ray di-

rection after diffraction. In addition to the direction change,

the diffraction grating introduces a change in light intensity

depending on diffraction order and wavelength, represented

as diffraction efficiency ηm,λ [13].

We use a diffraction grating which creates positive and

negative first-order diffractions appearing to the left and

right sides with respect to the zero-order component as

shown in Figure 2(c). Note that higher-order diffractions

are not detected inside of our camera FoV.

Forward Model For a projector pattern P (q, c), where q
is a projector pixel and c is a color channel (R, G, or B), the

light intensity L(q, λ) emitted for each wavelength λ is

L(q, λ) =
∑
c

Ωproj
c,λP (q, c), (2)

CameraProjector

Diffraction
grating

(a) Experimental prototype

(c) Example of dispersed structured light capture

(b) Schematic diagram
Scene

Camera image

+1 order 
diffraction

0 order 
diffraction

Object

Projector pattern

Projector

Diffraction grating
Camera

Figure 2. Experimental prototype. (a) & (b) Our prototype con-

sists of an RGB projector equipped with a diffraction grating film,

and an RGB camera. (c) An example projector pattern and its cor-

responding captured image, exhibiting clear first-order diffraction.

where Ωproj
c,λ is the projector emission function shown in Fig-

ure 3(a).

The light then passes through the diffraction grating and

splits into multiple light rays with varying propagation di-

rections dg(v,m, λ), depending on diffraction order m and

wavelength λ. Here, we focus on a ray corresponding to

wavelength λ and diffraction order m. The ray will prop-

agate and eventually illuminate a scene point S at depth z.

The reflected light from the scene point will be captured by

a camera pixel p. We then establish a correspondence func-

tion ψ that maps the camera pixel p, depth z, diffraction

order m, and wavelength λ to the corresponding projector

pixel qm,λ that emitted the light ray illuminating the scene

point:

qm,λ = ψ (p, z,m, λ) . (3)

We proceed to describe our full image formation before de-

scribing how we model the correspondence function ψ.

The intensity at the camera pixel p and color channel c
then can be modeled as

I(p, c) =
∑
λ∈Λ

Ωcam
c,λH(p, λ)

1

d(p)2

1∑
m=−1

ηm,λL(qm,λ, λ)︸ ︷︷ ︸
Dispersed structured light

,

(4)

24999



+1 order -1 order

(a) Spectral response
/emission functions

N
or

m
al

iz
ed

sp
ec

tra
l i

nt
en

si
ty

450 500 550 600 650
Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0
CameraProjector

(d) Spatially varying dispersion

0 200 400 600 800

500

400

300

200

100
0

Row [px]

Column [px]

500

100

(b) Image formation

Camera Projector

GratingCamera
center Projector center

Object Zero-order
First-order

(c) Depth dependency in first-order
diffraction correspondence

450 500 550 600 650

370

620

600 650 700 750 800 850 900
Depth [mm]

[nm]

Figure 3. Image formation. (a) Camera response function and projector emission function. (b) Schematic diagram of image formation.

(c) Depth dependency of the correspondence function ψ for m = 1 and a camera pixel p. (d) Spatially-varying correspondence map for

depth 700 mm and wavelength 430 nm for the first-order diffractions m = −1, 1.

where Ωcam
c,λ is the camera response function shown in Figure

3(a), Λ = [λ1, · · · , λ47] is the set of 47 wavelengths sam-

pled from 430 nm to 660 nm with 5 nm interval. H(p, λ) is

the hyperspectral intensity, which we aim to estimate. d(p)
is the propagation distance from the projector to the scene

point S, as such, the term 1/d(p)2 describes inverse-square

law.

The dispersed structured light term in Equation (4) de-

scribes the light intensity projected to the scene point S
by aggregating zero- and first-order light energy L(qm,λ, λ)
weighted by the corresponding diffraction efficiency ηm,λ.

In the following, we model the correspondence function ψ
introduced in Equation (3).

3.2. Correspondence under Dispersion

Zero-order Diffraction For zero-order diffracted light

(m = 0), light transport can be analyzed as if no diffrac-

tion grating exists [13]: given a camera pixel p and its depth

z, we obtain the corresponding projector pixel q0,λ for any

visible wavelength λ by applying perspective unprojection

and projection [12]:

q0,λ = ψ (p, z, 0, λ) (5)

= project (unproject (p, z)) , (6)

where unproject(·) is the perspective unprojection from

a camera pixel p to a 3D point S using the depth z.

project(·) is the perspective projection from the 3D point

S to the projector.

First-order Diffractions Correspondence for first-order

diffractions (m = −1 or 1) is more challenging to model.

Due to the direction change by diffraction grating, direct

perspective projection from the scene point S to the projec-

tor is no longer valid. Instead, we need to identify a point r
on the diffraction grating where the light ray from the pro-

jector center tproj diffracts at r and reaches to the scene point

S. This is illustrated in Figure 3(b) and by using Equa-

tion (1) it can be formulated as

minimize
r

‖dg( ˙−−→
tprojr,m, λ)− −̇→

rS‖2, (7)

where −̇→x represents the normalized vector of −→x . While

the formulation is intuitive, solving Equation (7) over the

entire 3D volume, for each wavelength λ and diffraction

order m, is prone to calibration errors and is computation-

ally demanding when approached with iterative numerical

methods like the Newton-Raphson method or root-finding

algorithms.

Hence, instead of directly solving Equation (7), we de-

velop a data-driven model for efficient and accurate corre-

spondence mapping of the first-order diffractions. We pre-

pare samples: first-order corresponding projector pixel po-

sitions q′m,λ for wavelengths λ′ ∈ Sλ, grid-sampled camera

pixels p′ ∈ Sp, and depths z′ ∈ Sz . Section 5 describes

the sample acquisition. We then fit an exponential function

to the samples for modeling depth dependency of the corre-

spondence function ψ and perform linear interpolation for

spatial and spectral dimensions. As the first-order diffrac-

tion in our prototype occurs along the horizontal axis, and

our hyperspectral reconstruction only uses horizontal corre-

spondence, we only model the horizontal coordinate of the

correspondence function, i.e., the column index. More de-

tails on our data-driven correspondence model can be found

in the Supplemental Document.

Our data-driven first-order correspondence model ob-

tains a mean reprojection error of 1px and can be efficiently

evaluated with tabulation in O(1). Figure 3(c) shows the

depth dependency of the modeled correspondence function

ψ. Figure 3(d) shows the spatially-varying correspondence

map for depth 700mm, wavelength 430 nm, and the diffrac-

tion orders m = 1 and − 1.

4. Hyperspectral 3D Reconstruction
With the image formation model from above in hand, we

estimate a depth map using binary-code structured light

and then reconstruct the hyperspectral image using scanline

structured light.

4.1. Depth Reconstruction

For depth estimation, we use binary-code structured

light patterns shown in Figure 4 and represented as
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Figure 4. Binary decoding under dispersion. Simulated images

under the binary-code patterns for (a) DSL and (b) conventional

SL. (c) Intensity of a camera pixel with DSL and conventional SL.

(d) Depth error of binary-code decoding for DSL and conventional

SL with varying Gaussian noise.

[P1, . . . , PKb
]: Pi(q, ∀c) = bit(q, i), where bit(q, i) re-

turns the i-th binary bit of the decimal horizontal and verti-

cal location of the projector pixel q, encoding the projector

pixel location as a binarized code [9]. Kb = 40 is the num-

ber of patterns. Then, each camera pixel p observes the fluc-

tuating intensity values under these binary-code patterns,

producing an observation vector [I1(p, ∀c), . . . , IKb
(p, ∀c)]

shown in Figure 4(c).

Binary-code Decoding From the observation vector, we

aim to estimate the zero-order correspondence q0,λ, which

will facilitate the estimation of depth z through trian-

gulation using the zero-order correspondence function

ψ(p, z, 0, λ). Note that zero-order correspondence has no

dependency on wavelength λ. For the i-th projector pattern

Pi, the conventional decoding method binarizes the cap-

tured intensity Ii into 0 or 1 based on its intensity level

by using RGB-to-gray conversion and thresholding with a

constant τ . The binary code is then decoded to a decimal

number, which is the location of the corresponding projec-

tor pixel q0,λ.

Validation of Binary-code Decoding for DSL An im-

portant question is whether the conventional binary decod-

ing works for DSL in the presence of dispersed light. We

provide both mathematical and experimental verification.

In theory, this can be confirmed if the intensity lit by the

zero-order diffracted light exceed the intensity when not re-

ceiving the zero-order diffracted light. We derive the mini-

mum captured intensity Ion
min when a scene point is only illu-

minated by the zero-order structured light. Also, we model

the maximum captured intensity Ioff
max when the zero-order

structured light does not illuminate the point and the first-

order light illuminates. The quantities are written as

Ion
min(p, c) =

∑
λ

Ωcam
c,λH(p, λ)η0,λ

∑
c′

Ωproj
c′,λ, (8)

Ioff
max(p, c) =

∑
λ

Ωcam
c,λH(p, λ)

∑
m=1,−1

ηm,λ

∑
c′

Ωproj
c′,λ. (9)

We then compare both quantities, giving an observation

that the inequality Ioff
max < Ion

min holds in our setup configu-

ration, because for all wavelength λ the following inequal-

ity holds η0,λ
∑

c′ Ω
proj
c′,λ >

∑
m=1,−1 ηm,λ

∑
c′ Ω

proj
c′,λ. This

validates the use of conventional binary-code decoding for

DSL in theory. Refer to the Supplemental Document for the

derivation details.

Next, we further validate the applicability of binary de-

coding on 106 simulated samples with random hyperspec-

tral reflectance for a planar object with Gaussian measure-

ment noise. Example observation vectors with and without

considering first-order diffractions are shown in Figure 4(c).

We set the Gaussian standard deviation 0.01 corresponding

to the real-world noise in our hardware measurements. The

average depth error after decoding, shown in Figure 4(d), is

1.04mm in the presence of first-order diffractions. This ex-

periment further validates the use of binary-code decoding

for DSL.

4.2. Hyperspectral Reconstruction

Once depth z is obtained, we proceed to estimate per-pixel

hyperspectral intensity H = [H(p, λ1), · · · , H(p, λN )] ∈
R

N×1. To this end, we use the scanline structured light

patterns [P1, , ..., PKs ] that scans through the whole column

with a line width w. Ks = 318 is the number of scanline

patterns. Figure 5 shows that the first-order diffracted light

from the i-th scanline pattern produces a narrow-band il-

lumination spread across multiple columns. Consequently,

scanning columns from left to right enables illuminating

each scene point with every narrow-band light, facilitating

high-quality hyperspectral reconstruction.

Pixel Intensity under Scanline Patterns For the i-th
scanline pattern, a camera pixel p receives either zero-order

diffraction, first-order diffractions, or no illumination at all.

This simplifies our image formation as

Ii(p, c) =

⎧⎪⎨
⎪⎩
∑

λ Ω
cam
c,λH(p, λ)η0,λL(q0,λ, λ) for zero order,

Ωcam
c,λH(p, λ)ηm,λL(qm,λ, λ) for first orders,

0 otherwise.

(10)

Figure 5(c) shows the intensity graph of a camera

pixel p for varying index of the scanline patterns:
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Figure 5. Hyperspectral imaging with scanline illuminations.
Captured images under (a) white pattern and (b)&(c) scanline pat-

terns. Narrow-band illumination over multiple columns is shown

in (b), which originates from the first-order diffraction. (d) Pixel

intensity with respect to varying scanline pattern index.

[I1(p, c), · · · , IKs
(p, c)]. For the first-order cases (m =

−1 or 1), the intensity stems from a specific wavelength λ,

hence narrow-band illumination.

Index Mapping for First-order Diffraction We exploit

first-order diffractions for accurate hyperspectral recon-

struction. We find the scanline pattern index i of which

m-order diffracted light with wavelength λ illuminates the

camera pixel p. In fact, we already obtained this index map-

ping in the form of the correspondence function ψ:

δm,i = px2index (ψ (p, z,m, λi)) , (11)

where δm,i is the corresponding scanline pattern index and

px2index is the conversion function that simply returns

the scanline pattern index that lights up at the input projec-

tor pixel location.

We then collect the intensity captured under narrow-band

illumination for all target wavelengths in [λ1, · · · , λN ] for

each diffraction order m:

Im = [Iδm,1
(p, c), · · · , Iδm,N

(p, c)] ∈ R
N×3. (12)

Optimization We formulate a per-pixel optimization

problem for accurate hyperspectral reconstruction:

argmin
H

1∑
m=−1

κm‖AmH− Im‖22︸ ︷︷ ︸
Data term

+ κλ‖∇λH‖22︸ ︷︷ ︸
Regularization term

, (13)

where κm is the spatially-varying per-pixel balancing

weight for the diffraction order m. Refer to the Supple-

mental Document how we set the balancing weight. Am is

the system matrix defined as

Am =

{∑
λ Ω

cam
c,ληm,λL(qm,λ, λ) for zero order,

Ωcam
c,ληm,λL(qm,λ, λ) for first orders.

(14)

∇λ is the gradient operator along the spectral axis. The first

term in Equation (13) accounts for the reconstruction loss

across the multiple diffraction orders. The second term is

the spectral smoothness prior [3]. We use gradient descent

for the optimization, which takes three minutes to converge.

Our hyperspectral reconstruction method operates on a per-

pixel basis and exploits first-order diffractions, enabling ac-

curate hyperspectral image reconstruction.

5. Calibration
We calibrate the image formation parameters of the projec-

tor, camera, and diffraction grating, as briefly described in

the following. A detailed description of the calibration pro-

cedure can be found in the Supplemental Document.

Diffraction Efficiency To calibrate the diffraction effi-

ciency ηm,λ, we measure the intensity of m-order diffracted

light at each wavelength λ projected onto a Spectralon sam-

ple. We use spectral bandpass filters at 10 nm intervals,

from 430 nm to 660 nm. Diffraction efficiency is then com-

puted as the intensity ratio of each first-order wavelength

measurement over the zero-order intensity.

Spectral Response and Emission Functions The projec-

tor spectral emission function, Ωproj
λ,c , was obtained by pro-

jecting red, green, and blue dots onto a Spectralon target,

measuring the reflected radiance with a spectroradiome-

ter (JETI Specbos 1211), and normalizing the results with

Spectralon reflectance. For the camera response function,

Ωcam
λ,c , we use the data provided by the camera manufacturer.

For both emission and response functions, we perform re-

finements of which details can be found in the Supplemental

Document. Figure 3(a) shows the calibrated functions.

First-order Correspondence Model To calibrate the

first-order correspondence model described in Section 3.2,

we acquired images of flat Spectralon surfaces at five dif-

ferent depth positions with scanline illumination patterns

present. These images were captured using multiple band-

pass filters. For sampled camera pixels, denoted p′, we

identified the corresponding projector pixel q′m,λ from the

captured images. Using the samples, we obtain the data-

driven corresponding model ψ.

6. Assessment
Hyperspectral 3D Reconstruction DSL enables accu-

rate hyperspectral 3D imaging. We estimate a hyperspectral

25002
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Figure 6. Hyperspectral 3D imaging. (a) Reconstructed hy-

perspectral image visualized in sRGB, (b) reconstructed depth

map, (c) estimated hyperspectral intensity for three different points

compared with spectroradiometer measurements, (d) estimated

hyperspectral image.

image with 46 channels, from 430 nm to 660 nm at 5 nm in-

tervals, along with a depth map. Figures 1 and 6 shows

reconstruction results for two real-world scenes.

Reconstruction of High-frequency Spectral Curves
Figure 7 shows the results of our DSL in comparison with Li

et al. [21], state-of-the-art practical hyperspectral 3D imag-

ing method. We captured a scene containing nine band-

pass spectral filters, each with a bandwidth of 10 nm. DSL

accurately identifies the center wavelengths and achieves

an average FWHM of 18.8 nm. In contrast, Li et al. [21]

rely on broadband RGB illuminations of projector, result-

ing in a significantly broader FWHM of 83 nm, due to the

limited capability in differentiating high-frequency spectral

features. This performance gap mainly originates from our

use of first-order diffractions. We test the DSL without

using the first-order term in Equation (13). As expected,

the resuting spectra is overly smooth with 50 nm FWHM

and cannot detect the high-peak spectral features. This is

aligned with the results of Li et al.[21], demonstrating the

importance of using first-order diffractions.
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(e) Reconstructed hyperspectral intensity of the spectral filters
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(d) Reconstructed hyperspectral image
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Figure 7. High-frequency spectral imaging. (a) Filter layout,

(b) reconstructed hyperspectral image in sRGB, (c) reconstructed

depth, (d) reconstructed hyperspectral images, (e) spectral curves

for the nine bandpass filters.

Colorchecker and Metamerism Figure 8 shows the

spectral accuracy of our DSL measured on a ColorChecker

and metameric fake and real leaves. For smooth spectral

curves of color patches, DSL successfully reconstructs the

hyperspectral intensity. Also, DSL enables telling clear

difference between fake and real leaves. We obtained the

ground-truth intensity using a spectroradiometer.

Depth Accuracy To assess the depth accuracy of our ex-

perimental prototype, we assess both relative and absolute

depth errors. Figure 9(a) show that DSL accurately esti-

mates the distance between two boxes, with a marginal error
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(a) Reconstructed
hyperspectral image in sRGB (b) Reconstructed depth map

(d) Colorchecker evaluation
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Figure 8. Evaluation on a ColorChecker and metameric sam-
ples. (a) Reconstructed hyperspectral image in sRGB, (b) recon-

structed depth map, (c) spectra of metameric samples (real and

fake leaves), (d) reconstructed spectra of each color patch.

of only 1 mm. Figure 9(b) evaluates the absolute depth error

by capturing a planar object mounted on a linear translation

stage (Thorlabs #LTS150C). Across the working range of

the translation stage with a 10 mm step size, DSL achieves

an average depth error of 1.35mm. Note that these exper-

imental results are aligned with our synthetic experiments

shown in Figure 4.

7. Conclusion
In this paper, we introduced DSL, an accurate, low-cost,

and compact hyperspectral 3D imaging method. Our

dispersion-aware image formation, per-pixel hyperspectral

3D reconstruction, and calibration enables accurate hyper-

spectral 3D imaging. DSL can be implemented in an af-

fordable experimental prototype by using a diffraction grat-

ing adding sub-millimeter thickness at a cost of 10 USD.

Our experimental prototype achieves depth error of 1 mm
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Figure 9. Depth accuracy. We estimate (a) the distance between

two boxes and (b) the depth of the box mounted on a translation

stage. We obtain the depth errors of 1 mm for the relative-depth

experiment and 1.35 mm for the absolute depth experiment.

and spectral FWHM of 18.8 nm, outperforming prior work

on practical hyperspectral 3D imaging. We find that DSL

makes a step towards practical hyperspectral 3D imaging

for applications beyond computer vision and graphics.

Limitations and Future Work While accurate and low-

cost, our current experimental prototype takes around

10 minutes to capture a scene, restricting it to static scenes.

Also, the low intensity of first-order diffracted light limits

the working depth range to be less than a meter.

For handling dynamic scenes and increasing depth range,

we leave developing a light-efficient capture system and

joint depth-spectrum reconstruction method as an interest-

ing direction for future research. Another unexplored direc-

tion is to find the optimal design of the diffraction pattern

for efficient and accurate hyperspectral 3D imaging. Re-

cent differentiable optimization of imaging systems could

be employed to achieve the goal. Lastly, the core princi-

ple of DSL can be applied to other spectral ranges beyond

visible spectrum.
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