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Figure 1. WHAM: World-grounded Humans with Accurate Motion. State-of-the-art methods like TRACE [43] and SLAHMR [53] fail
to capture global 3D human trajectories accurately when given in-the-wild videos captured using a moving camera, producing implausible
world-grounded motion (e.g., foot sliding). To address this, WHAM uses two novel strategies: (1) feature integration from 2D keypoints and
pixels to reconstruct precise and pixel-aligned 3D human motion and (2) contact-aware trajectory recovery to place the human in a global
coordinate system without foot sliding. Gray dots show the ground-truth global trajectory. See Supplemental Video.

Abstract

The estimation of 3D human motion from video has pro-
gressed rapidly but current methods still have several key
limitations. First, most methods estimate the human in cam-
era coordinates. Second, prior work on estimating humans
in global coordinates often assumes a flat ground plane and
produces foot sliding. Third, the most accurate methods rely
on computationally expensive optimization pipelines, limit-
ing their use to offline applications. Finally, existing video-
based methods are surprisingly less accurate than single-
frame methods. We address these limitations with WHAM
(World-grounded Humans with Accurate Motion), which ac-
curately and efficiently reconstructs 3D human motion in a
global coordinate system from video. WHAM learns to lift
2D keypoint sequences to 3D using motion capture data and
fuses this with video features, integrating motion context and
visual information. WHAM exploits camera angular velocity
estimated from a SLAM method together with human mo-
tion to estimate the body’s global trajectory. We combine
this with a contact-aware trajectory refinement method that

lets WHAM capture human motion in diverse conditions,
such as climbing stairs. WHAM outperforms all existing
3D human motion recovery methods across multiple in-the-
wild benchmarks. Code is available for research purposes
at http://wham.is.tue.mpg.de/.

1. Introduction

Our goal is to accurately estimate the 3D pose and shape
of a person from monocular video. This is a longstanding
problem and, while the field has made rapid progress, sev-
eral key challenges remain. First, human motion should be
computed in a consistent global coordinate system. Second,
the method should be computationally efficient. Third, the
results should be accurate, temporally smooth, detailed, nat-
ural looking, and have realistic foot-ground contact. Fourth,
the capture should work with an arbitrary moving camera.
These constraints need to be satisfied to make markerless
human motion capture widely available for applications in
gaming, AR/VR, autonomous driving, sports analysis, and
human-robot interaction. We address these challenges with
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WHAM (World-grounded Humans with Accurate Motion),
which enables fast and accurate recovery of 3D human mo-
tion from a moving camera; see Fig. 1.

It seems natural that, in estimating 3D humans from video,
we should be able to exploit the temporal nature of video.
Counter-intuitively, existing video-based methods for 3D
human pose and shape (HPS) estimation [5, 14, 16, 29, 42,
50] are less accurate than the best single-frame methods
[6, 13, 17, 20, 22, 24, 25, 57, 57]. This may be an issue of
training data. There are large datasets of single images with
ground-truth 3D human poses containing a diversity of body
shapes, poses, backgrounds, lighting, etc. In contrast, video
datasets with ground truth are much more limited.

To address this, WHAM leverages both the large-scale
AMASS motion capture (mocap) dataset [31] and video
datasets. Our key idea is to learn about 3D human motion
from AMASS and then learn to fuse this information with
temporal image cues from video, getting the best of both.
Similar to previous work [58, 59], we use AMASS to gen-
erate synthetic 2D keypoints and ground-truth motion se-
quence pairs, from which we pretrain a motion encoder,
which captures the motion context, and decoder that lifts se-
quences of 2D keypoints to sequences of 3D poses. Given the
robustness of recent 2D keypoint detection models [52, 56],
our pretrained model does a good job of predicting human
pose from video.

Keypoints alone, however, are too sparse for accurate 3D
mesh estimation. To improve accuracy, we jointly train a fea-
ture integrator network that merges information from video
and 2D-keypoint sequences. We use a pretrained image en-
coder from previous work [1, 6, 20, 24] and train the feature
integrator using video datasets [10, 14, 32, 47]. This integra-
tion process supplements the motion context extracted from
the sparse 2D keypoints with dense visual context, signifi-
cantly improving the recovered pose and shape accuracy.

While the above approach produces accurate motion, we
want this motion in global coordinates, unlike most previ-
ous methods that compute the body in camera coordinates.
Estimating the global human trajectory is challenging when
the camera is moving because the motions of the body and
the camera are entangled. Recent work addresses this with
optimization fitting based on a learned human motion prior
and camera information from SLAM methods [19, 40, 53] or
dense 3D scene information from COLMAP [27]. However,
these methods are computationally expensive and far from
real time. Recent regression-based methods are faster but
either constrain the problem with static or known camera
conditions [41, 58] or have temporal jitter and limited ac-
curacy [43]. We tackle this challenge with two additional
modules. First, we predict the global orientation and root
velocity of the human from the sequence of 2D keypoints
by training a global trajectory decoder. Specifically, we con-
catenate the camera’s angular velocity to the context and

train the global trajectory decoder to recursively predict the
current orientation and root velocity, effectively factoring
camera motion from human motion. WHAM takes the cam-
era’s angular velocity either from the output of a SLAM
method or from a camera’s gyroscope when available.

The above solution relies on knowledge of human motion
learned from AMASS. Therefore, it can fail to capture eleva-
tion changes when the surface is not flat, e.g. when ascending
the stairs because AMASS has a limited amount of such data.
To address this, we introduce foot contact as an additional
explicit form of motion context. We train WHAM to predict
the likelihood of foot-ground contact using estimated contact
labels from both AMASS and 3D video datasets. We then
train a trajectory refinement network that outputs an update
to the root orientation and velocity based on the informa-
tion about the foot contact/velocity. This refinement enables
WHAM to accurately estimate human motion in a global
coordinate system even when the terrain is not flat.

WHAM has very low computational overhead because
it is an on-line algorithm that recursively predicts the pose,
shape, and global motion parameters. The network, exclud-
ing preprocessing (bounding box detection, keypoint detec-
tion, and person identification), runs at 200 fps, significantly
faster than prior methods. Also, despite not using global opti-
mization like [53], we obtain accurate 3D camera trajectories
and global body motions with minimal drift. Through exten-
sive comparisons on multiple in-the-wild datasets as well as
detailed ablation studies, we find that WHAM achieves state-
of-the-art (SOTA) accuracy on 3D human pose estimation as
well as global trajectory estimation (see Fig. 1).

In summary, in this paper we: (1) introduce the first ap-
proach to effectively fuse 3D human motion context and
video context for 3D HPS regression; (2) propose a novel
global trajectory estimation framework that leverages motion
context and foot contact to effectively address foot sliding
and enable the 3D tracking of people on non-planar surfaces;
(3) efficiently perform HPS regression in global coordinates;
(4) achieve state-of-the-art (SOTA) performance on multi-
ple in-the-wild benchmark datasets (3DPW [47], RICH [9],
EMDB [15]). WHAM is the first video-based method to
outperform all image-based and video-based methods on
per-frame accuracy while maintaining temporal smoothness.

2. Related Work
Image-based 3D HPS Estimation. There are two broad
classes of methods for recovering 3D HPS from images:
model-free [21, 26, 33] and model-based [6, 11–13, 20, 24,
34, 35]. Here we focus on model-based methods, which
estimate the low-dimensional parameters of a statistical
body model [28, 36, 37, 51]. While early work explores
optimization-based methods [2], here we focus on direct
regression methods based on deep learning.

Many existing methods follow the architecture of HMR
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[13], which uses a pretrained backbone to predict image
features followed by a multilayer perceptron (MLP) that
regresses SMPL [28] pose parameters from image fea-
tures. Training such networks typically leverages paired
images with SMPL parameters; these parameters are often
pseudo-groundtruth (p-GT), estimated from 2D keypoints
[11, 20, 24, 34, 35]. Other architectures for HPS regression
have also been proposed [6, 17, 18, 22, 23, 57]. None of
these methods use video or estimate the body in global co-
ordinates. While quite accurate, when these image-based
models are applied independently to frames of a video se-
quence, the shape and pose can be temporally inconsistent.
In contrast, WHAM effectively aggregates temporal infor-
mation to provide frame-accurate and temporally-coherent
3D HPS estimation.
Video-Based 3D HPS. Video-based methods typically en-
code temporal information by combining static features ex-
tracted by a backbone from each frame. HMMR [14] uses a
convolutional encoder, while VIBE [16] and MEVA [29] em-
ploy recurrent neural networks. TCMR [5] divides sequences
into past, future, and whole frames, aggregating information
to strongly constrain the output with motion consistency.
MPS-Net [50] uses attention to capture non-local motion
context and a hierarchical architecture to aggregate temporal
features. Both MAED [48] and GLoT [42] use transformer
architectures [46] to encode videos. MAED encodes videos
in both temporal (across frames) and spatial (within each
frame) dimensions and leverages the kinematic tree to iter-
atively regress each joint angle. GLoT encodes long-term
temporal correlations and refines local details by focusing
on nearby frames. Despite integrating information across
frames, all existing video-based methods have lower accu-
racy than the best single-frame methods.

Given limited video training data with ground truth SMPL
poses, several single-frame methods infer a mesh from
2D/3D keypoints [4, 7, 30, 33, 38] and use the keypoints
as a proxy for training. Another set of approaches exploits
3D mocap data, which is plentiful [31], to train a network
to lift 2D joints to 3D poses, which are used as a proxy
for ground truth 3D. MotionBERT [59] synthesizes 2D key-
points through orthographic projection to learn a unified
motion representation. ProxyCap [58] projects synthetic 3D
keypoints into virtual cameras using a heuristic camera pose
distribution. Despite benefiting from the scale of mocap
datasets, these approaches do not fully utilize the visual
information available in the video at test time. Here, we pro-
pose a combined network architecture and training strategy
that leverages both proxy representations of human pose
(lifting) and visual context extracted from video.
Global 3D Motion Estimation with Dense Sensors. Sev-
eral methods augment video data with other sensors to es-
timate 3D HPS in world coordinates. The 3DPW dataset
[47] employs pre-calibrated body-worn inertial sensors and

a handheld camera to jointly optimize the camera and human
motion in challenging environments. Similarly, the EMDB
dataset [15] uses electromagnetic sensors with an RGB-D
camera, enabling accurate human motion capture in the
world. While body-worn sensors aid global human motion
reconstruction, they are intrusive, require cooperation, and
do not help with archival video. BodySLAM++ [8] uses
an optimization method with a visual-inertial sensor, com-
prising stereo cameras and an IMU. In contrast, we use a
standard monocular camera, balancing accessibility and ac-
curacy without using specialized equipment. While WHAM
can take the camera gyro as input, this is not required.
Monocular Global 3D Human Trajectory Estimation.
Estimating the global human trajectory from a monocular
dynamic camera is challenging. Previous work relies on
learned prior distributions of human motion to separate hu-
man motion from camera motion. GLAMR [55] computes
the global trajectory based on a predicted and infilled 3D
motion sequence and optimizes it across multiple individuals
in the scene. However, since GLAMR does not consider cam-
era motion cues, the output trajectory may be noisy when
the camera is rotating. SLAHMR [53] and PACE [19] use
off-the-shelf SLAM algorithms [44, 45] and jointly optimize
the camera and human motion to minimize the negative log-
likelihood of a learned motion prior [39]. While they achieve
good results, their optimization approach is computationally
expensive. TRACE [43] is a pure regression method that
utilizes optical flow as a motion cue and estimates multi-
ple people at once, but lacks temporal consistency. GloPro
[41] regresses the uncertainty of the global human motion
in real-time, but requires known camera poses. In contrast,
WHAM leverages both explicit and implicit prior knowledge
of human motion and efficiently reconstructs accurate and
temporally coherent 3D human motion in world coordinates.

3. Methods

3.1. Overview

An overview of our World-grounded Human with Accu-
rate Motion (WHAM) framework is illustrated in Fig. 2. The
input to WHAM is a raw video data {I(t)}Tt=0, captured by a
camera with possibly unknown motion. Our goal is to predict
the corresponding sequence of the SMPL model parameters
{Θ(t)}Tt=0, as well as the root orientation {Γ(t)}Tt=0 and
translation {τ (t)}Tt=0, expressed in the world coordinate sys-
tem. We use ViTPose [52] to detect 2D keypoints {x(t)

2D}Tt=0

from which we obtain motion features {ϕ(t)
m }Tt=0 using the

motion encoder. Additionally, we use a pretrained image
encoder [6, 20, 24] to extract static image features {ϕ(t)

i }Tt=0

and integrate them with {ϕ(t)
m }Tt=0 to obtain fine-grained mo-

tion features {ϕ̂(t)
m }Tt=0 from which we regress 3D human
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Figure 2. An Overview of WHAM. WHAM takes the sequence of 2D keypoints estimated by a pretrained detector and encodes it into a
motion feature. WHAM then updates the motion feature using another sequence of image features extracted from the image encoder through
the feature integrator. From the updated motion feature, the Local Motion Decoder estimates 3D motion in the camera coordinate system and
foot-ground contact probability. The Trajectory Decoder takes the motion feature and camera angular velocity to initially estimate the global
root orientation and egocentric velocity, which are then updated through the Trajectory Refiner using the foot-ground contact. The final
output of WHAM is pixel-aligned 3D human motion with the 3D trajectory in the global coordinates.

motion in the world coordinate system.

3.2. Network Architecture

Uni-directional Motion Encoder and Decoder. In contrast
to existing methods [5, 29, 42, 50, 59], which use windows
with a fixed time duration, we use uni-directional recurrent
neural networks (RNN) for the motion encoder and decoder,
making WHAM suitable for online inference. The objective
of the motion encoder, EM , is to extract the motion context,
ϕ
(t)
m , from the current and previous sequence of 2D keypoints

and the initial hidden state, h(0)
E :

ϕ(t)
m = EM

(
x
(0)
2D, x

(1)
2D, ..., x

(t)
2D|h(0)

E

)
.

We normalize keypoints to a bounding box around the person
and concatenate the box’s center and scale to the keypoints,
similar to CLIFF [24]. The role of the motion decoder, DM ,
is to recover SMPL parameters, (θ, β), weak-perspective
camera translation, c, and foot-ground contact probability, p,
from the motion feature history:(

θ(t), β(t), c(t), p(t)
)
= DM

(
ϕ̂(0)
m , ..., ϕ̂(t)

m |h(0)
D

)
.

Here, ϕ̂(t)
m is the motion feature integrated with the image

feature ϕ
(t)
i (described below). During pretraining on syn-

thetic data, the image feature is not available and we set
ϕ̂
(t)
m = ϕ

(t)
m . As the encoder and decoder are tasked with

reconstructing a dense 3D representation Θ from a sparse
2D input signal x2D, we design an intermediate task to pre-
dict the 3D keypoints x3D and use them as the intermediate
motion representation. This cascaded approach guides ϕm to
represent the implicit context of motion and the 3D spatial
structure of the body. Similar to PIP [54], we use Neural
Initialization that uses MLP to initialize the hidden state of

the motion encoder and decoder,
(
h
(0)
E , h

(0)
D

)
; see section

4.3 and Sup. Mat. for details.
Motion and Visual Feature Integrator. We use the AMASS
dataset to synthetically generate 2D sequences by projecting
3D SMPL joints into images with varied camera motions.
This provides effectively limitless training data that is far
more diverse than existing video datasets that contain ground
truth 3D pose and shape. Although we leverage the temporal
human motion context, lifting 2D keypoints to 3D meshes is
an ambiguous task. A key idea is to augment this 2D keypoint
information with image cues that can help disambiguate the
3D pose. Specifically, we use an image encoder [1, 6, 20,
24], pretrained on the human mesh recovery task, to extract
image features ϕi, which contain dense visual contextual
information related to the 3D human pose and shape. We
then train a feature integrator network, FI , to combine ϕm

with ϕi, integrating motion and visual context. The feature
integrator uses a simple yet effective residual connection:

ϕ̂(t)
m = ϕ(t)

m + FI

(
concat

(
ϕ(t)
m , ϕ

(t)
i

))
.

This supplements motion features pretrained on the 2D-to-
3D lifting task using AMASS with visual context, resulting
in enriched motion features that use image evidence to help
disambiguate the task.
Global Trajectory Decoder. We design an additional de-
coder, DT , to predict the rough global root orientation Γ

(t)
0

and root velocity v
(t)
0 from the motion feature ϕ(t)

m . Since ϕm

is derived from the input signals in the camera coordinates,
it is highly challenging to decouple the human and camera
motion from it. To address this ambiguity, we append the
angular velocity of the camera, ω(t), to the motion feature,
ϕ
(t)
m , to create a camera-agnostic motion context. This design

choice makes WHAM compatible with both off-the-shelf
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SLAM algorithms [44, 45] and gyroscope measurements
that are widely available from modern digital cameras. We
recursively predict global orientation, Γ(t)

0 , using the uni-
directional RNN.(

Γ
(t)
0 , v

(t)
0

)
= DT

(
ϕ(0)
m , ω(0), ..., ϕ(t)

m , ω(t)
)
.

Contact Aware Trajectory Refinement. Good 3D motion
in world coordinates in most scenarios implies accurate foot-
ground contact without sliding. We want WHAM to general-
ize beyond flat ground planes, which are typically assumed
in prior work. Specifically, our new trajectory refiner aims to
resolve foot sliding and enables WHAM to generalize well
to diverse motions, including climbing stairs. The refinement
involves two stages. First, we adjust the ego-centric root
velocity to ṽ(t) to minimize foot sliding, based on the foot-
ground contact probability p(t), estimated from the motion
decoder DM :

ṽ(t) = v
(t)
0 −

(
Γ
(t)
0

)−1
v̄
(t)
f ,

where v̄
(t)
f is the averaged velocity of the toes and heels

in world coordinates when their contact probability, p(t), is
higher than a threshold. However, this velocity adjustment
often introduces noisy translation when the contact and pose
estimation is inaccurate. Therefore, we propose a simple
learning mechanism in which a trajectory refining network,
RT , updates the root orientation and velocity to address this
issue. Finally, the global translation is computed through a
roll-out operation:(
Γ(t), v(t)

)
= RT

(
ϕ(0)
m ,Γ

(0)
0 , ṽ(0), ..., ϕ(t)

m ,Γ
(t)
0 , ṽ(t)

)
,

τ (t) =

t−1∑
i=0

Γ(i)v(i).

In summary, this full process reconstructs accurate 3D
human pose and shape in both the camera and world coordi-
nates from a single monocular video sequence (Fig. 2).

3.3. Training

Pretraining on AMASS. We train in two stages: (1) pretrain-
ing with synthetic data, and (2) fine-tuning with real data
(Fig. 3). The objective of the pretraining stage is to teach the
motion encoder to extract motion context from the input 2D
keypoint sequence. The motion and trajectory decoders then
map this motion context to the corresponding 3D motion and
global trajectory spaces (i.e. they lift the encoding to 3D).
We use the AMASS dataset [31] to generate an extensive set
of synthetic pairs consisting of sequences of 2D keypoints
together with the ground truth SMPL parameters.

To synthesize 2D keypoints from AMASS, we create vir-
tual cameras onto which we project 3D keypoints derived
from the ground truth mesh. Unlike MotionBERT [59] and
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Figure 3. WHAM’s Two-Stage Training Scheme. During pre-
taining, we generate synthetic 2D keypoint sequences from AMASS
[31] and train a motion encoder and decoder on the generated data
(top). We then leverage video datasets with ground truth SMPL
parameters, for which there is much less data. We use the fixed-
weight pre-trained image encoder and keypoints detector ( ) to
extract image features and 2D keypoints. In this stage, we train the
feature integration network while fine-tuning the motion encoder
and motion/trajectory decoders, marked (bottom).

ProxyCap [58], which use static cameras for keypoint pro-
jection, we employ dynamic cameras that incorporate both
rotational and translational motion. This choice has two main
motivations. First, it accounts for the inherent differences be-
tween human motions captured in static and dynamic camera
setups. Second, it enables the learning of a camera-agnostic
motion representation, from which the trajectory decoder
can reconstruct the global trajectory. We also augment the
2D data with noise and masking. For details of the synthetic
generation process see Sup. Mat.
Fine-tuning on Video Datasets. Starting with the pretrained
network, we fine-tune WHAM on four video datasets: 3DPW
[47], Human3.6M [10], MPI-INF-3DHP [32], and InstaVari-
ety [14]. For the human mesh recovery task, we supervise
WHAM on ground-truth SMPL parameters from AMASS
and 3DPW, 3D keypoints from Human3.6M and MPI-INF-
3DHP, and 2D keypoints from InstaVariety. For the global
trajectory estimation task, we use AMASS, Human3.6M,
and MPI-INF-3DHP. Additionally, during training we exper-
iment with adding BEDLAM [1], a large synthetic dataset
with realistic video and ground truth SMPL parameters.

The fine-tuning has two objectives: 1) exposing the net-
work to real 2D keypoints, instead of training it solely on syn-
thetic data, and 2) training the feature integrator network to
aggregate motion and image features. To achieve these goals,
we jointly train the entire network on the video datasets while
setting a smaller learning rate on the pretrained modules (see
Fig. 3). Consistent with prior work [5, 16, 29, 42, 50], we
employ a pretrained and fixed-weight image encoder [20] to
extract image features. However, to leverage recent network
architectures and training strategies, we also experiment with
different types of encoders [1, 6, 24] in the following section.
Implementation Details. For the pretraining stage, we train
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WHAM on AMASS for 80 epochs with the learning rate of
5× 10−4. Then we finetune WHAM on 3DPW, MPI-INF-
3DHP, Human3.6M, and InstaVariety for 30 epochs. We use
a learning rate of 1 × 10−4 for the feature integrator and
1× 10−5 for the pretrained components during finetuning.
During training, we use the Adam optimizer and a batch size
of 64 and split sequences into 81-frame chunks.

4. Experiments
Datasets. We evaluate WHAM on three in-the-wild bench-
marks: 3DPW [47], RICH [9], and EMDB [15]. Following
previous work [1, 5, 13, 16, 20, 24, 29], we perform the eval-
uation in camera coordinates. The estimated global trajectory
is evaluated on a subset of EMDB (EMDB 2) for which they
provide ground truth global motion with dynamic cameras
(used for evaluation). We also test on new sequences cap-
tured using an iPhone with the gyroscope. See Sup. Mat. for
more details on the datasets and iPhone results.
Evaluation metrics. To evaluate the accuracy of 3D hu-
man pose and shape estimation, we compute Mean Per
Joint Position Error (MPJPE), Procrustes-aligned MPJPE
(PA-MPJPE), and Per Vertex Error (PVE) measured in mil-
limeters (mm). We compute Acceleration error (Accel, in
m/s2)1 to measure the inter-frame smoothness of the recon-
structed motion. We also evaluate the motion reconstruc-
tion and trajectory estimation accuracy in the world-frame.
Following previous work [19, 53], we split sequences into
smaller segments of 100 frames and align each output seg-
ment with the ground-truth data using the first two frames
(W-MPJPE100) or the entire segment (WA-MPJPE100) in
mm. These previous metrics give an unrealistic picture of
3D performance as they do not measure drift over long se-
quences. Therefore, we also evaluate the error over the entire
trajectory after the rigid alignment and measure Root Trans-
lation Error (RTE in %) normalized by the actual displace-
ment of the person. We also assess the jitter of the motion
in the world coordinate system in 10m/s3 and foot sliding
during the contact (FS in mm).

4.1. 3D Human Motion Recovery

Per-frame accuracy. Table 1 presents a comprehensive com-
parison of WHAM and the existing state-of-the-art per-frame
and video-based methods across three benchmark datasets
[9, 15, 47]. Because none of the methods are exposed to
data from RICH or EMDB during training, results on these
datasets are indicative of each method’s ability to generalize.
WHAM (Res), WHAM (HR), and WHAM (ViT) correspond
to different architectures for the pretrained image encoders,
derived from SPIN (ResNet-50) [20], CLIFF (HRNet-W48)
[1, 24], and HMR2.0 (ViT-H/16) [6], respectively. Not sur-
prisingly, WHAM (HR) is more accurate than WHAM (Res),
1Previous work follows [14] in reporting Accel in mm/frame2. To remove
the dependency on frame rate, we convert all previous results to m/s2.
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Figure 4. Qualitative comparison with previous state-of-the-art
methods for 3D human pose and shape estimation. See text.

while the transformer-based version, WHAM (ViT), is the
most accurate. The backbone matters, with WHAM (ViT)
outperforming all previous methods on all per-frame metrics
(MPJPE, PA-MPJPE, and PVE) on all benchmarks. Even
with the simplest ResNet backbone, WHAM (Res) outper-
forms every method except for ReFit on RICH.

Training on BEDLAM consistently improves accuracy
in prior work (see [1, 3, 49]), and we find the same here as
shown in Table 2. However, compared to ReFit, WHAM ex-
hibits relatively smaller performance improvement by adding
BEDLAM. One possible reason for this is that, unlike ReFit,
we did not finetune the image encoder during training to
limit training time.
Inter-frame smoothness. We also evaluate the inter-frame
smoothness using the acceleration error. Compared with
state-of-the-art per-frame methods [1, 6, 22, 24], WHAM
has significantly lower acceleration error. This indicates that
WHAM reconstructs smooth and more plausible 3D human
motion across frames while not sacrificing high per-frame
accuracy. On the other hand, when compared to recent tem-
poral methods [5, 42, 50], WHAM exhibits comparable or
slightly higher acceleration error. However, we observe that
these video-based methods tend to over-smooth the human
motion, resulting in lower accuracy on per-frame metrics.

To provide intuition for these numbers, we qualitatively
compare WHAM with TCMR [5] and GLoT [42] in Fig. 4.
While producing smooth results, TCMR and GLoT fail to
capture the bending of the left knee when the subject is
ascending the stairs, while WHAM more accurately recon-
structs the 3D human pose.

4.2. 3D Global Trajectory Recovery

To evaluate global trajectory recovery, we compare
WHAM with the state-of-the-art methods and a baseline that
combines a SLAM method (DPVO [45]) and a per-frame
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3DPW (14) RICH (24) EMDB (24)

Models PA-MPJPE MPJPE PVE Accel PA-MPJPE MPJPE PVE Accel PA-MPJPE MPJPE PVE Accel
pe

r-
fr

am
e

SPIN [20] 59.2 96.9 112.8 31.4 69.7 122.9 144.2 35.2 87.1 140.7 166.1 41.3
PARE∗ [17] 46.5 74.5 88.6 – 60.7 109.2 123.5 – 72.2 113.9 133.2 –
CLIFF∗ [24] 43.0 69.0 81.2 22.5 56.6 102.6 115.0 22.4 68.3 103.5 123.7 24.5
HybrIK∗ [22] 41.8 71.6 82.3 – 56.4 96.8 110.4 – 65.6 103.0 122.2 –
HMR2.0 [6] 44.4 69.8 82.2 18.1 48.1 96.0 110.9 18.8 60.7 98.3 120.8 19.9
ReFit∗ [49] 40.5 65.3 75.1 18.5 47.9 80.7 92.9 17.1 58.6 88.0 104.5 20.7

te
m

po
ra

l

TCMR∗ [5] 52.7 86.5 101.4 6.0 65.6 119.1 137.7 5.0 79.8 127.7 150.2 5.3
VIBE∗ [16] 51.9 82.9 98.4 18.5 68.4 120.5 140.2 21.8 81.6 126.1 149.9 26.5
MPS-Net∗ [50] 52.1 84.3 99.0 6.5 67.1 118.2 136.7 5.8 81.4 123.3 143.9 6.2
GLoT∗ [42] 50.6 80.7 96.4 6.0 65.6 114.3 132.7 5.2 79.1 119.9 140.8 5.4
GLAMR [55] 51.1 – – 8.0 79.9 – – 107.7 73.8 113.8 134.9 33.0
TRACE∗ [43] 50.9 79.1 95.4 28.6 – – – – 71.5 110.0 129.6 25.5
SLAHMR [53] 55.9 – – – 52.5 – – 9.4 69.7 93.7 111.3 7.1
PACE [19] – – – – 49.3 – – 8.8 – – – –

WHAM (Res)∗ 40.2 62.7 75.1 6.3 51.8 89.5 103.2 5.0 57.8 84.0 99.7 5.2
WHAM (HR)∗ 39.0 62.6 74.8 6.4 49.1 84.6 96.4 5.2 57.1 85.7 103.2 5.6
WHAM (ViT)∗ 35.9 57.8 68.7 6.6 44.3 80.0 91.2 5.3 50.4 79.7 94.4 5.3

Table 1. Quantitative comparison of state-of-the-art models on the 3DPW [47], RICH [9], and EMDB [15] datasets. Ordering of per-frame
and temporal methods is done separately by descending MPJPE on EMDB (except for PACE). For testing on EMDB, we follow the protocol
of EMDB 1 [15]. Parenthesis denotes the number of body joints used to compute MPJPE and PA-MPJPE, and ∗ denotes models trained with
the 3DPW training set. Bold numbers denote the most accurate method in each column. Accel is in m/s2, all other errors are in mm.

3DPW (14)

Models Dataset PA-MPJPE MPJPE PVE Accel

CLIFF [1, 24]
R 43.6 68.8 82.1 19.2

R+B 43.0 66.9 78.5 31.0

ReFit [49]
R 40.5 65.3 75.1 18.5

R+B 38.2 57.6 67.6 21.4

WHAM (ViT) R 35.9 57.8 68.7 6.6
R+B 35.7 56.9 67.4 6.7

Table 2. Dataset ablation experiments on 3DPW [47]. R denotes
the use of real datasets and B denotes BEDLAM.

EMDB 2

Models WA-MPJPE100 W–MPJPE100 RTE Jitter FS

DPVO (+ HMR2.0) [6, 45] 647.8 2231.4 15.8 537.3 107.6
GLAMR [55] 280.8 726.6 11.4 46.3 20.7
TRACE [43] 529.0 1702.3 17.7 2987.6 370.7
SLAHMR [53] 326.9 776.1 10.2 31.3 14.5

WHAM (w/DPVO [45]) 135.6 354.8 6.0 22.5 4.4
WHAM (w/DROID [44]) 133.3 343.9 4.6 21.5 4.4
WHAM (w/ GT gyro) 131.1 335.3 4.1 21.0 4.4

Table 3. Global motion estimation accuracy on EMDB [15].

method (HMR2.0 [6]); see Table 3. WHAM is agnostic to
the source of the camera angular velocity and we compare
results using DPVO, DROID-SLAM [44] and the ground
truth angular velocity (gyro).

As shown in Table 3, WHAM outperforms the existing
methods on all metrics. Specifically, combining WHAM with
DPVO is more accurate than the global trajectory estima-
tion of DPVO combined with HMR2.0, illustrating that our
method actively refines the global trajectory instead of per-
forming a simple integration. DROID-SLAM gives slightly
better results than DPVO. Furthermore, WHAM significantly
outperforms the regression-based method, TRACE, on jit-
ter and foot sliding metrics. We further demonstrate this in
Figs. 5 and 1, where WHAM captures more consistent and
plausible human motion in the global coordinate system than
TRACE and SLAHMR for videos captured by dynamic cam-
eras. As depicted in Fig. 6, WHAM outperforms GLAMR,
TRACE, and SLAHMR in capturing the pattern of human
motion in the global coordinate system.

4.3. Ablation Study

To provide further insight into our approach, we con-
duct ablation studies to analyze the contribution of each
component to the performance. As shown in Table 4, our
entire system (WHAM) outperforms the different variants
of WHAM that ablate a single component. To be specific,
we first observe that adding feature integration improves
both motion and global trajectory estimation accuracy when
compared with an ablated version without feature integra-
tion (w/o FI ). Similarly, the removal of the pretraining on
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Screenshot from 2023-10-30 04-02-50.png

TRACE SLAHMR WHAM (Ours)

Figure 5. Qualitative comparison with TRACE [43] and SLAHMR
[53] on global human motion estimation with dynamic cameras.

Ground truth GLAMR TRACE SLAHMR WHAM (w/ DROID) WHAM (w/ GT gyro)

Figure 6. Comparison of global trajectory estimation on EMDB
[15]. Overall, WHAM shows better alignment to ground truth data
compared to GLAMR [55], TRACE [43], and SLAHMR [53].

the 2D-to-3D lifting task using AMASS [31] (w/o lifting)
shows significant performance degradation. WHAM also out-
performs the ablation of the Neural Initialization (w/o NI),
particularly in the MPJPE metric. In addition, we experiment
with WHAM to decode trajectory solely based on the motion
context without using the estimated camera angular velocity
(w/o ω). Although this version shows similar performance in
predicting 3D human pose, it suffers from the entanglement
of camera and human motion, resulting in significantly high
overall trajectory error (RTE). Last, we observe that WHAM
without the trajectory refinement (w/o traj. ref.) gives larger
global trajectory and foot sliding errors in return for less
jitter, indicating that our approach contributes to the global
trajectory accuracy and helps reduce foot sliding. Core de-
tails are presented here; see Sup. Mat. for more details and
information on run-time cost.

5. Conclusion
WHAM is a new method to recover accurate 3D human

motion in global coordinates from a moving camera more ef-

EMDB 2

Models PA–MPJPE MPJPE WA–MPJPE100 W–MPJPE100 RTE Jitter FS

w/o FI 44.2 69.0 147.6 377.9 6.3 23.1 5.5
w/o lifting 60.3 83.0 238.0 693.0 11.5 24.5 5.0
w/o NI 40.4 66.3 142.7 368.1 6.8 22.3 4.6
w/o ω 39.1 62.0 156.5 422.0 10.1 22.1 5.0
w/o traj. ref. 38.2 59.3 154.7 407.5 6.3 18.8 6.5
WHAM (Ours) 38.2 59.3 135.6 354.8 6.0 22.5 4.4

Table 4. Ablation experiments. See text.

ficiently and accurately than the state-of-the-art approaches.
Our approach leverages the AMASS dataset to train a net-
work to recursively lift 2D sequences of keypoints to se-
quences of 3D SMPL parameters. But keypoints alone lack
valuable information about the body and its movement. Con-
sequently, we integrate image context information over time
and learn to combine it with the motion context to better esti-
mate human body shape and pose. Additionally, our method
takes an estimate of the camera angular velocity, which can
either be computed from a SLAM method or from the cam-
era’s gyro when available. Finally, we combine all this in-
formation with an estimate of foot contact to recover the 3D
human motion in global coordinates from a monocular video
sequence. WHAM significantly outperforms the existing
state-of-the-art methods (both image-based and video-based)
on challenging in-the-wild benchmarks in both 3D HPS and
the world-coordinate trajectory estimation accuracy. Because
of its speed and accuracy, WHAM provides a foundation for
in-the-wild motion capture applications.

Limitations and future directions: WHAM learns about
human motion from AMASS, limiting generalization to mo-
tions that are out of distribution. While we employ random
masking as part of our data synthesis process, our generating
approach mainly assumes the scenario where the full body
is within the field of view. See Sup. Mat. for more details.

WHAM opens up many directions for future work. For
example, while we use SLAM to estimate the camera’s an-
gular velocity, SLAM could also provide camera intrinsics
and extrinsics as well as information about the 3D scene
that could be used to enforce consistency between the scene
and the human. While WHAM is an online method, de-
signed for real-time applications, it could also initialize an
optimization-based post-processing akin to bundle adjust-
ment, which would optimize the camera, scene, and human
motion together. Furthermore, a real-time and phone-based
implementation of WHAM should be feasible.
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