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Abstract

We investigate whether region-based representations are
effective for recognition. Regions were once a mainstay
in recognition approaches, but pixel and patch-based fea-
tures are now used almost exclusively. We show that re-
cent class-agnostic segmenters like SAM can be effectively
combined with strong self-supervised representations, like
those from DINOv2, and used for a wide variety of tasks,
including semantic segmentation, object-based image re-
trieval, and multi-image analysis. Once the masks and fea-
tures are extracted, these representations, even with linear
decoders, enable competitive performance, making them
well suited to applications that require custom queries. The
representations’ compactness also makes them well-suited
to video analysis and other problems requiring inference
across many images.

1. Introduction
Over the past ten years, recognition capabilities have im-
proved dramatically. For broader application, developing
scalable, flexible, and interpretable representations has be-
come more important than ever. For example, we may want
to search large image collections with custom queries, cre-
ate an interactive learning system, or perform complex in-
ferences over many images or video frames.

Region-based representations could serve an important
role in these applications. Consider if an image could be
fully represented with a few dozen embeddings that rep-
resent surfaces, objects, parts, and other meaningful por-
tions of the scene. Compared to embeddings over 16x16
patches, we could then reduce computation and memory
for downstream tasks by 10-20x, enabling aggregation of
information across regions from many images and efficient
object-based searches of image collections. We could sim-
plify interaction by enabling people to operate on the level
of regions that correspond to intuitive portions of the scene,
rather than at the pixel or patch level. In the past, region-
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Figure 1. Our framework revisits the use of region features for
downstream applications. We generate region features by first seg-
menting an image, extracting image features, then pooling the im-
age features across the region masks.

based representations were seen as a critical part of the
recognition solution (e.g. [25, 29, 30, 42, 48, 52]), but have
fallen to the wayside as deep network architectures excel at
processing pixels and patches. Now, given advances in au-
tomatic segmentation and unsupervised feature learning, it
is time to reexamine the capabilities, potential, and limita-
tions of region-based representations.

In this paper, we explore design choices for region-based
representations and investigate their effectiveness for a va-
riety of applications. Some of the design decisions include:
• How to generate regions? We ideally want a small num-

ber of regions that provide good segmentations for all the
surfaces, objects, and salient parts. We explore SAM and
some of its recent variants [32, 59], and SLIC [34] as a
complementary mechanism to improve completeness.

• What features are effective in regions? We compare fea-
tures from CLIP [49], ImageNet [13], DINOv1 [6] and
DINOv2 [44].

• How to pool features? We find upsampling the features
and then averaging to work better than alternatives.
We explore applications of image semantic segmenta-

tion, object-based image retrieval, multi-view semantic seg-
mentation, and activity classification. With semantic seg-
mentation, we explore the design decisions of regions and
features and region and image-level decoders. We evalu-
ate one-shot object-based image retrieval, which is useful
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for image search and a foundation for efficient image label-
ing in an interactive learning setting. For multi-view scene
analysis, we explore using 3D positional embeddings and
prediction based on multiple viewpoints. For multi-frame
activity classification, we further explore using transform-
ers to aggregate region information across frames. These
take advantage of the compactness of region-based repre-
sentations for multi-image inference.

Altogether, our investigations show that region-based
representations are much more powerful than would have
been possible just one or two years ago and also point to
where more work is needed to increase their effectiveness.

In summary, our main contributions are:
1. Investigate key design decisions for region-based repre-

sentations, including recent methods for mask genera-
tion and feature generation, and the efficacy of simple
decoders.

2. Propose SAM+SLIC as a simple method to achieve good
coverage with few regions.

3. Demonstrate competitive performance across several ap-
plications and discuss the current applicability, limita-
tions and potential of region-based representations.

2. Related Work

Region-based representations have a long history in recog-
nition. Recently, feature learning has progressed to create
patch-based encodings that are effective for recognition and
correspondence, even without full fine-tuning. Recent work
has also made tremendous progress in generating a small
number (dozens, not thousands) of regions that correspond
well to surfaces, objects, and parts. We describe some of
the most relevant.

2.1. Region-based Recognition

Segmentation has long been proposed as a pre-process to
image analysis. Compared to pixels or patches, well-
segmented regions provide better spatial support for fea-
tures and more compact image representations, enabling
faster inference or retrieval and reduced memory usage. Un-
supervised segmentation methods (e.g. [23, 34, 53]) are un-
reliable, so many methods [25, 29, 30, 42, 48, 52] use hi-
erarchies [4] or bags of regions from multiple segmenta-
tions [29, 48, 55] generated with different parameters, or
formed during the image analysis [25, 54]. Object proposal
methods [3, 7, 16] aim to produce a small number of regions
that could represent the most depicted objects. Such pro-
posal mechanisms, particularly Selective Search [55], were
important components in early deep network object recog-
nition methods like Fast-RCNN [24], but, for speed, archi-
tectural simplicity, and end-to-end training, the use of pre-
processed regions has given way to generating boxes or la-
bels based on feature grids [50] or tokens, aggregating infor-
mation across the image using convolution, pooling, and/or
attention mechanisms [15].

2.2. Feature learning for patch-level representations
Self-supervised pre-training on large amounts of data has
been shown to be an effective visual representation learn-
ing approach [6, 27, 28, 44, 49]. Using self-supervised pre-
training techniques, both DINO models (DINOv1 [6], DI-
NOv2 [44] produce image encodings that perform well on
a wide variety of correspondence, dense prediction, and im-
age classification tasks, even when using simple decoders.
DINOv2 incorporates data curation to build a larger pre-
training dataset than in DINOv1. CLIP [49] is contrastively
trained to match images with text, enabling open vocabulary
image classification, and MaskCLIP [62] provides mecha-
nisms to extract useful patch-level features from the CLIP
image encoder for open vocabulary semantic segmentation.

We investigate the effectiveness of many of these fea-
tures when mask-pooled to create region representations.
While many of these representations are similarly effective
when tuned for downstream tasks, we find large differences
when used as region representations.

2.3. Segmentation
SAM [36] is a class-agnostic segmentation model com-
posed of a prompt encoder, vision encoder, and mask de-
coder. Given a prompt in the form of a point or bound-
ing box, SAM generates a set of pixel masks and selects
those with the highest scores. The generation and scoring
models are learned from a large training set. To automati-
cally generate many masks for an image (“segment every-
thing”), SAM can be provided a set of points, e.g. on a
32x32 grid, then generate many regions, selecting a subset
based on stability scores, quality scores, and non-maximum
suppression. SAM does not partition the image: one pixel
may be in multiple regions while another is in none.

In short order, others have built on SAM. For example,
MobileSAMv1 [59] distills a smaller encoder from the orig-
inal SAM encoder for faster mask generation, while claim-
ing performance “on par” with SAM. HQ-SAM [33] aug-
ments SAM’s decoder to produce higher quality masks.
Concurrent to SAM, SEEM (Segment Everything Every-
where All at Once) [63] generates high quality masks based
on text and a variety of user annotations. Also concurrent,
Qi et al. [41] propose a dataset and model that achieves high
quality semantic segmentation on many labels.

Prior to the deep learning era, superpixel [37, 43, 51, 56],
algorithms were widely used for many tasks including un-
supervised segmentation. Starting with a grid of points,
Simple Linear Iterative Clustering (SLIC) [34] performs lo-
cal K-means clustering to efficiently generate superpixels,
small regions that partition the image consistent with image
boundaries. Later implementations, such as FastSLIC [35],
improves the speed by an order of magnitude to 30 ms per
image.

The SAM-based methods mainly evaluate based on gen-
eration of individual masks from points or bounding boxes
based on detections or ground truth masks, leaving their
relative efficacy for complete image segmentation largely
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Figure 2. Method overview. We generate masks using class-agnostic segmenters, such as SAM, and patch-based features using strong
representations, such as DINOv2. The features are average-pooled in the masks, creating region-based representations, which can then be
decoded with linear classifiers or decoders for a variety of tasks.

untested. We evaluate and compare SAM, MobileSAM(v1),
HQ-SAM, and FastSLIC for speed, compactness, coverage,
and utility in semantic segmentation tasks. We also propose
a simple method to improve coverage without adding many
regions by combining SAM and SLIC.

2.4. SAM-based Recognition
Many works and software repositories have sought to com-
bine SAM with recognition. Grounded SAM [26] applies
SAM to segment boxes from Grounding DINO [40], which
in turn builds on DINOv1 [6] and BERT [14]. Semantic
Segment Anything [8] refines labels from semantic seg-
mentation models with SAM. These mainly use SAM as
a region refinement post-process. Segment Anything with
CLIP [46] generates regions with SAM, crops the image
around each region, and classifies each crop using CLIP. By
contrast, we directly encode regions by pooling features in
masks and use the region representations directly for down-
stream tasks, which is simpler, faster, and often more effec-
tive than encoding crops with CLIP.

3. Methods
We first describe how to build region representations by
generating masks and image features, and then pooling the
features within the masks. Despite our method’s simplic-
ity, our experiments show that the details matter. Next, we
describe how to use these region representations for seman-
tic segmentation of images, object-based image retrieval,
multi-view semantic segmentation, and activity classifica-
tion.

3.1. Generating and Representing Regions
See Figure 2 for an overview.

SAM. Masks produced by SAM [36] tend to correspond
to intuitive portions of the scene, such as whole objects,
parts of objects, surfaces, and shadows. The masks may
overlap. For example, one mask may contain all pixels per-
taining to a car, while others correspond to a tire or license
plate. The quality and number of masks produced depends
on the set of input point prompts and parameters such as the
stability threshold. Denser grids of points tend to increase

Original Image SAM Masks SAM + SLIC Masks

Figure 3. A comparison of region coverage when using SAM and
SAM with SLIC. SLIC fills in many of the uncovered regions,
leaving few holes.

coverage but take more time to process. A higher stability
score increases the quality of the masks but decreases the
number (and coverage) of masks generated.

Augmenting SAM with SLIC. As shown in Figure 3,
SAM-generated masks may fail to cover significant portions
of an image. Reducing the stability threshold alleviates the
problem, but results in many poor-quality masks. Iterative
use of SAM to try to cover unmasked regions would be pro-
hibitively slow. Instead, we use the FastSLIC implementa-
tion of SLIC [34] to generate a moderate number of regions
and intersect them with pixels that are not covered by any
SAM mask. We generate superpixels with fifty components
and a compactness of 8, keeping masks which intersect at
least 300 pixels of unmasked image regions. We find the
combination of SAM and SLIC to be an efficient and ef-
fective way to increase coverage without greatly increasing
the number of regions. In Figure 3, we see the increase in
region coverage when augmenting SAM with SLIC.

Features and Pooling. For a given SAM mask, we
wish to aggregate image features within the mask. We fo-
cus on patch-based feature representations produced by vi-
sion transformers [15] due to their usage in state-of-the-art
methods [28, 44]. In a vision transformer, an input image
of shape (h,w) is divided into a flattened sequence of N
patches of resolution (p, p) where N = hw

p2 (assuming h, w
are divisible by p; padding or cropping may be applied to
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achieve this). The output is a sequence of N patches which
can be reshaped to have dimension d ⇥ h/p ⇥ w/p, where
d is the embedding size and p is the patch size.

To create features for a SAM mask, we require the im-
age feature maps and generated masks to be the same size
so they can be superimposed. Two straightforward options
include downsampling the masks to the feature map dimen-
sions, or to upsample the features to the image dimensions.
We found that upsampling the d ⇥ h/p ⇥ w/p features to
d⇥ h⇥w was most effective across datasets—, downsam-
pling the SAM masks sometimes reduced small regions to a
single point in the patch features, or shrank them to nonex-
istence. Upsampling the image features to the image size
retains the regions’ fine granularity.

With the region masks and feature maps the same size,
the features are pooled within each mask to serve as each re-
gion’s representation. We experiment with max and average
pooling and choose the latter as it works best. After pool-
ing, each region is represented by a d-dimensional vector,
and an image can be represented by its collection of region
vectors and their masks.

3.2. Application of Region Based Representations
We apply region-based representations to several applica-
tions. The same representation can be used for semantic
segmentation, retrieval, or classification, and its compact-
ness enables fast and flexible queries and information to be
aggregated across many images.

Semantic Segmentation is the task of predicting a label
for every pixel. Producing accurate label maps is challeng-
ing, since patch-based representations and convolutional
layers typically have much lower resolution than the input
image. A common approach is to fine-tune and augment
patch-level representations with adapters [9] and special-
ized decoders [10, 11, 57] to improve the precision.

Once we encode regions, we can treat semantic segmen-
tation as a region classification problem. Given a region
represented by its region features, we predict the label prob-
abilities for the entire region. We set the probability that a
pixel is assigned a label to the average probability that its
containing regions are assigned that label.

To derive region labels for training, we assign a region
a label if it contains at least some threshold percent of pix-
els with that label, according to the pixel-level ground truth.
Regions without any assigned label are excluded from train-
ing. We train with cross-entropy loss, weighting regions
proportionally to the number of pixels they contain. We ex-
periment with linear, MLP, and transformer [15] decoders.

Multi-view Semantic Segmentation. A 3D scene may
be represented by multiple views, e.g. based on video or
photos, and one may wish to recognize, count, or infer ob-
jects and properties within the scene. Such processes cur-
rently require 3D models and cumbersome inference.

We explore a region-based approach to multi-view se-
mantic segmentation that is a simple extension of image-
based semantic segmentation. We add a 3D positional en-
coding to each region based on underlying 3D points, and

Query Object Database Image Similarity Heatmap

Figure 4. Examples of object retrieval with region representations.
The query object is highlighted in the first column. The second
column contains the database images, and the third column shows
the similarity score between all of the regions in the database im-
age and the query object. Our method matches objects in database
images to the query object under different settings.

use a transformer decoder to jointly process regions across
many images of the same scene. This is only possible as
each image can be represented with a few dozen region en-
codings instead of ⇡ 1000 patch encodings.

Object-based Image Retrieval is the task of retrieving
images containing a query object. This task has many prac-
tical applications: for example, this might enable a field en-
gineer to find all the step ladders on a job site, or an indi-
vidual to recall where they put their keys. These problems
can be solved by showing an example of the desired item
and retrieving images containing similar objects. Object-
based image retrieval is also highly useful in an interac-
tive learning loop. Starting from an initial example, im-
ages are retrieved containing other examples of the object, a
model is updated, and more examples are found. The main
challenges lie in creating a query from a single example,
then efficiently and effectively searching an image collec-
tion based on that query. Whole-image representations such
as CLIP [49] may inadequately represent small objects, and
powerful detectors [5, 22] are difficult to train from a few
examples and slow to search through thousands of images.

Object-based image retrieval is a natural application for
region representations. Given an encoding of a region or
a linear classifier trained on encoded regions, we can ef-
ficiently search a database of regions using FAISS [31] or
similar libraries. We experiment with one-shot retrieval, us-
ing a single query object based on a ground truth mask and
pooled features. Dot-product similarity between the query
and all region encodings in the image collection is used to
sort images, based on the most similar region in each image.
In Figure 4, we visualize the similarity scores between all
regions in the database image and query image. Our method
can detect multiple instances of query objects in an image
even when the objects are small or are not the focus of the
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Figure 5. Video Activity Classification Method Overview. By
pooling regions across video frames, we can categorize a video
using a small fraction of the number of tokens that would be re-
quired for patch-based representations.

image. In the first row of Figure 4, our method is able to
differentiate between the query object (apple) and objects
of similar shape and size (oranges).

Activity Classification. Many works have successfully
adapted image-based foundation models to the video do-
main by integrating adapters or through fine-tuning [39, 45,
58]. Despite the success of these models, it remains difficult
to process multiple images or frames and to capture tempo-
ral dynamics. For example, ViT-L/14 creates 1,369 patches
for one 518x518 image. Joint training on patches across
many images is therefore not tractable with commonly used
GPUs. Some approaches, e.g. [58], decouple self-attention
to operate on one patch position across frames and many
patch positions within each frame, but this approach may
not fully aggregate information across moving objects.

A region-based representation is ideal for multi-frame
inference. In our approach, frames have on average 20 to
30 SAM-generated masks. If we sample 8 frames per video,
self-attention is computed at most 240 times for the entire
video without separating the spatial and temporal compo-
nents. Additionally, we can track regions across frames and
use such temporal information as part of our representation.

We pick eight evenly spaced frames from each video and
extract region features for each frame. These features are
then combined as a collection of tokens to get the video
representation. Since the number of masks can vary from
one video to another, we pad the region features to 400 per
video. We then train a classifier to identify video activities
using three transformer blocks.

4. Experiments
In Sec. 4.1, we experiment with a variety of region gen-
eration methods, feature types, architectures, and pooling
methods on semantic segmentation. This informs our de-
sign choices for applications. In Sec. 4.2, we test on per-
image and multi-view semantic segmentation, object-based
image retrieval, and activity classification.

Unless otherwise specified, regions are generated using
SAM ViT-H [36] with features generated by the DINOv2
ViT-L/14 backbone [44]. Baseline methods use the same
frozen DINOv2 features. Pascal VOC [21] and ADE20K
[60, 61] results are evaluated on the validation sets unless

otherwise indicated. Additional parameters are included in
the supplemental material.

4.1. Region Representation
Region Generation. In Table 1, we compare region gen-
eration approaches, including three SAM [36] variants and
SLIC [34] superpixels. We report the time to compute re-
gions, the average number of regions produced, the actual
segmentation accuracy, and the “oracle” segmentation accu-
racy. Actual uses predictions from a trained linear decoder,
and oracle assigns regions with the most common label of
its pixels. Of the SAM variants, HQ-SAM performs best
with the fewest regions and highest actual and oracle perfor-
mance. Mobile-SAMv1 is only slightly faster, as the time
is dominated by the decoder, and generates worse results
for this use case. Surprisingly, the unsupervised and super-
fast SLIC outperforms MobileSAMv1 in generating regions
for semantic segmentation. Inspection showed that Mobile-
SAMv1 would frequently leave large amounts of the image
unsegmented (and unsegmented regions receive a score of
zero), whereas SLIC segments the entire image. We find
SAM has a good trade-off between speed and quality, so we
use it with the default hyperparameters as our primary re-
gion generation method. Combining SLIC with SAM adds
only 15 regions on average and almost no time, but signifi-
cantly boosts performance. A breakdown of total inference
time for each step using SAM (ViT-H) and DINOv2 (ViT-
L/14) is in Table 2.
Pooling. In Table 3, we compare average vs. max pooling
and upsampling features vs. downsampling masks. Upsam-
pling features and average pooling gives the best results.
Feature Type and Model Size. We experiment with sev-
eral types of image features: DINOv1 [6], DINOv2 [44],
CLIP [49], MaskCLIP [62], and a pre-trained ImageNet
vision transformer, as well as different model sizes. For
MaskCLIP, we use the vanilla version, as we found no ben-
efit to the other augmentations used in MaskCLIP+ when
pooled with SAM masks. In early tests, we also found that
region-pooled vanilla MaskCLIP outperforms MaskCLIP+
on ADE20K zero-shot semantic segmentation. As shown
in Table 4, DINOv2 outperforms all other models by a large
margin. Based on the results for different DINOv2 vari-
ants (Table 5), we choose DINOv2 ViT-L/14 for our exper-
iments.

4.2. Applications
Semantic Segmentation. In Table 6, we compare patch-
based representations to region-based representations for
semantic segmentation using linear classifiers. The patch-
features are bilinearly interpolated to the image resolution
to compute per-pixel prediction and loss. Region features
soundly outperform patch features on both datasets across
all feature types. Although DINOv2 performs best, the
biggest patch-to-region performance jump is in MaskCLIP,
likely because the smoothing that mask-pooling provides is
more important for MaskCLIP features.
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Table 1. Comparison between region generation approaches on semantic segmentation. In order: average time to process an image;
average number of regions per image; actual and (oracle) mIoU on PASCAL VOC 2012 and ADE20K. Oracle performance assigns the
label probability of a region as the fraction of the pixels in the region with that label. Average time and number of regions are measured on
ADE20K.

s/im reg/im VOC ADE20K

SAM (ViT-H) [36] 4.61 90.3 83.6 (91.9) 50.2 (77.5)
Mobile-SAMv1 (ViT-T) [59] 3.22 38.7 52.4 (58.1) 29.9 (46.5)
HQ-SAM (ViT-H) [33] 7.36 74.8 85.1 (92.6) 50.7 (79.5)
SLIC [2] 0.027 47.6 74.1 (82.8) 40.7 (62.1)
SAM + SLIC 4.64 106 87.2 (95.6) 52.8 (77.9)

Table 2. Time (s/img) for region representations on 1 A40.
SAM SLIC DINOv2 Pooling Classification

4.61 0.03 0.01 0.46 0.13

Table 3. Comparison of pooling methods on semantic segmen-
tation. Upsampling the DINOv2 ViT-L feature grid to the mask
size and average pooling works best.

Pooling Type Pascal VOC ADE20K

None (Patch based) 82.1 47.7
Upsample Features, Max 81.6 47.3
Downsample Masks, Average 76.3 44.5
Upsample Features, Average 83.6 50.2

Table 4. Comparison of region features on semantic segmenta-
tion.

Feature Type Architecture Pascal VOC ADE20K

DINOv1 ViT-B/16 66.2 33.0
DINOv2 ViT-L/14 83.6 50.2
CLIP ViT-B/32 65.7 28.6
MaskCLIP ViT-L 76.7 41.2
ImageNet ViT-L 54.6 24.2

Table 5. Comparison of DINOv2 model sizes.

Architecture Pascal VOC ADE20K

DINOv2 ViT-S 75.1 46.1
DINOv2 ViT-B 81.2 48.6
DINOv2 ViT-L 83.6 50.2
DINOv2 ViT-G 84.2 49.7

In Table 7, we find further gain using a per-region MLP
(hidden layer of 1000 nodes) or transformer decoder (1
block), with not much difference between the two. These
experiments also add the original DINOv2 positional em-
bedding to the patch features before pooling, which pro-
vides a negligible gain of 0.001. Our SAM+SLIC result on
VOC 2012 Test is the highest of all existing methods that
do not use extra training data1, outperforming dozens of re-
cent approaches. On ADE20K (Table 8), our performance is

1https://paperswithcode.com/sota/semantic-
segmentation-on-pascal-voc-2012

Table 6. Comparison between region and patch represen-
tations for semantic segmentation. Regions are generated by
SAM with ViT-H. Region features outperform patch-based fea-
tures across several different models.

Architecture Pascal VOC ADE20K
Patch Region Patch Region

DINOv1 ViT-B/16 58.1 66.2 26.7 33.0
DINOv2 ViT-L/14 79.9 83.6 43.4 50.2
CLIP ViT-B/32 51.1 65.7 22.3 28.6
MaskCLIP ViT-L/14 59.2 76.7 30.5 41.2

Table 7. Comparison of decoders on semantic segmentation.
MLP and transformer decoders with SAM+SLIC regions per-
form best. All decoders outperform patch based metrics. * de-
notes scores reported by DINOv2 [44]. The top section contains
evaluations on validation splits, the bottom section on test splits
(ADE20K does not have a test split).

Feature Type Architecture Pascal VOC ADE20K

Patch [44] Linear 81.2⇤ 47.7⇤

SAM+SLIC Linear 86.9 52.9
SAM+SLIC MLP 88.4 53.3
SAM+SLIC Transformer 88.1 53.5

Patch [44] Linear 83.0 (Test)⇤ -
SAM+SLIC MLP 88.4 (Test) -

Table 8. Comparison of Semantic Segmentation Methods

Method Decoder Extra Training
Data ADE20K

InternImage [20] Mask2Former+
ViT-Adapter 3 62.5

DINOv2 Mask2Former+
ViT-Adapter 3 60.2

DINOv2 Linear 7 47.7
Region Representation Linear 7 52.9

lower than SotA but the linear performance of 52.9 mIOU
is quite good considering we have only 154K tunable pa-
rameters, along with no data augmentation, test-time aug-
mentation, long-tail modifications, or other tricks.
Multi-view Semantic Segmentation. In Table 9, we eval-
uate multi-view semantic segmentation on the ScanNet [12]
2D semantic label benchmark. Standard approaches use
provided 3D point clouds to aid prediction and fuse per-
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ADE20K Pascal VOC ScanNet

ScanNet 
Color Map

Figure 6. Semantic segmentation examples. In the first column, the ceiling lights may be missed because SAM did not segment out each
light, or a region over the ceiling and its lights had more weight. The adherence to image boundaries and ability to segment fine objects
is not perfect, but very good, e.g. chairs, bottles, cups as shown in column 2. The scores for the images in the last two columns show that
our predictions are very precise, while the ground truth is often more noisy. However, the mIoU scores of 68.1 and 49.6 in the last two
columns indicate that these numerical evaluations do not fully capture the actual performance.

Original SAM HQ-SAM Mobile SAM SLIC SAM + SLIC

Figure 7. Region generation examples. Regions are indicated by different colors. SAM and HQ-SAM regions are high-quality but
frequently do not cover the entire image. MobileSAMv1 regions have considerably less coverage. SLIC completely partitions the image
but frequently does not respect object boundaries. SAM+SLIC guarantees excellent coverage while benefiting from high quality SAM
regions.

image predictions. Our region representations enable a sim-
pler approach, embedding each region with 2D and 3D po-
sitional embeddings and using a transformer to predict on
all images (or a large subset) within each scene.

We evaluate different design decisions, comparing per-
region linear probe against per-image transformers and
multi-view transformers, and we compare the impact of 2D
and 3D embeddings. We use the author-provided train, val,
and test splits, and measure the mIOU per pixel for all the
validation scenes. The embeddings are not very helpful for
per-region prediction. The per-image transformer performs

slightly better than the per-region linear probe, and the per-
scene transformer improves further.

In Table 10 we compare our region-based approach with
current state-of-the-art methods for multi-view segmenta-
tion. While our method does not have SotA performance,
we found that the ground truth labels are not very accurate
(Fig. 6), and the actual performance of our approach is often
much better than the numbers indicate.
Object-based Image Retrieval. We use the COCO dataset
[1] for one-shot object-based image retrieval. For each class
or object type in COCO, we sample 50 ground truth masks
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Table 9. Multi-View Semantic Segmentation with regions on
ScanNet [12]. “ An “Image” input source implies the use of re-
gions from a single image, whereas “Scene” indicates the use of
regions from the whole scene. Each “Emb.” represents addition
of embedding features to the visual features. Evaluations are per-
formed on the validation set.

Model Input Source Embeddings mIOU "Image Regions 2D Pos. 3D Pos.

Linear Probe Image 3 66.0
Linear Probe Image 3 3 66.0
Linear Probe Image 3 3 3 66.1

Transformer Image 3 3 66.4
Transformer Image 3 3 3 66.6
Transformer Scene 3 3 3 67.5

Table 10. Comparison of Multi-View Segmentation Methods
Method ScanNet (Val)

Virtual Multi-view Fusion [18] 74.9
Region Representation 67.5
BPNet [17] 66.5

Table 11. Object retrieval results. Region representations signif-
icantly outperform single token-based representations

Method COCO mAP COCO@50

CLIP-Crop [49] 0.27 0.38
DINOv2 [44] 0.13 0.33
Region Representation (Ours) 0.45 0.58

of the object. Each mask comes from a different image.
These masks become the query instances for that particular
class. The COCO validation set acts as the image database.
We compare our method as described in Section 3.2 to two
baselines. Our method compares the query region features
to all the database regions and sorts images by their max-
imum region similarity scores. “DINOv2” [44] computes
the similarity between the average (DINOv2) feature in the
query object (mask) and the CLS token for each of the im-
ages. “CLIP-cropped” [49] computes the CLIP CLS token
of an image cropped around the region. The extracted CLS
token of the cropped image is used to compute the similar-
ity with the CLS token of database images. For each query
image, we compute the mAP and precision@50, averaging
over the 50 images in each class and across classes.

As shown in Table 11, using a region representation
greatly outperforms the two baselines. Both baselines use
a single token for the entire image, so objects from dif-
ferent parts of the image are unlikely to be well-encoded.
Based on these results, region-based representations have
the potential to be highly effective for retrieval and interac-
tive learning applications.
Activity Classification. To compare the effectiveness of re-
gion features with patch features, we follow DINO’s linear
probe setting on video action recognition. We pick eight
evenly-spaced frames in the video, extract region features
for the selected frames, and train a three-layer transformer
with the region features. Training a full cross-attention

Table 12. Comparison of Activity Classification Methods

Method Decoder Kinetics-400

ATM [19] Temporal
Transformer 89.4

DINOv2 Linear 76.3
Region Representation Transformer 79.5

patch-based transformer would require 10,952 patch tokens,
whereas our approach needs at most 400 region tokens. The
results (Table 12) on the Kinetic 400 dataset indicate that
using the region features yields a decent improvement over
the patch-based method without using video-specific archi-
tecture like in ATM [19].

5. Conclusion
One year ago, region-based representations would not have
performed well. Now, simple mask-pooled feature rep-
resentations, while not SotA, perform competitively even
with linear classifiers. The main advantage of region-based
representations is that, once region masks and features are
computed, image collections can be efficiently queried and
inference performed jointly on many related images. This
is especially beneficial for multiview and multiframe infer-
ence and applications that require customizable queries.

The main disadvantage currently is that SAM is slow.
If efficient prediction is needed for one well-defined task,
it makes more sense to use patch-based decoders. How-
ever, continued advances in region and feature generation
will likely make region-based representations increasingly
useful. For example, the PyTorch team released an imple-
mentation of SAM that is 8x faster and of the same qual-
ity [47].

Beyond better mask and feature extractors, region-based
representations have much untapped potential. For exam-
ple, for activity classification, embeddings of human pose
and optical flow could be added to the appearance-based re-
gion features. Multi-view scene analysis could potentially
count objects in a scene and do other tasks that require many
images, even without an underlying 3D model.

In conclusion, we provide insights on how to best con-
struct region-based representations and demonstrate their
efficacy on a range of tasks. These representations are
already useful when customizability or interaction is im-
portant and will become increasingly useful as methods
progress. True progress, one might argue, is not advancing
the state-of-the-art but advancing the baseline, and region-
based representations advance the baseline.
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