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Abstract

As the mainstream technique for capturing images of bi-
ological specimens at nanometer resolution, electron mi-
croscopy (EM) is extremely time-consuming for scanning
wide field-of-view (FOV) specimens. In this paper, we inves-
tigate a challenging task of large-factor EM image super-
resolution (EMSR), which holds great promise for reducing
scanning time, relaxing acquisition conditions, and expand-
ing imaging FOV. By exploiting the repetitive structures
and volumetric coherence of EM images, we propose the
first generative learning-based framework for large-factor
EMSR. Specifically, motivated by the predictability of repet-
itive structures and textures in EM images, we first learn
a discrete codebook in the latent space to represent high-
resolution (HR) cell-specific priors and a latent vector in-
dexer to map low-resolution (LR) EM images to their cor-
responding latent vectors in a generative manner. By in-
corporating the generative cell-specific priors from HR EM
images through a multi-scale prior fusion module, we then
deploy multi-image feature alignment and fusion to further
exploit the inter-section coherence in the volumetric EM
data. Extensive experiments demonstrate that our proposed
framework outperforms advanced single-image and video
super-resolution methods for 8 x and 16 x EMSR (i.e., with
64 times and 256 times less data acquired, respectively),
achieving superior visual reconstruction quality and down-
stream segmentation accuracy on benchmark EM datasets.
Code is available at ht tps://github.com/jtshou/
GPEMSR.

1. Introduction

Electron microscopy (EM) is a commonly used imaging
technique in life sciences to investigate the ultrastructure of
cells, tissues, organelles, and macromolecular complexes,
which captures images of biological specimens at nanome-
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ter resolution. However, high-quality EM image acquisition
typically requires a strict and time-consuming process, in-
volving careful adjustments of beam current, aperture size,
and detector settings. This process may take up to years
to scan wide field-of-view (FOV) specimens. For exam-
ple, Zheng et al. [57] spent approximately 16 months to ac-
quire a ~106TB whole-brain dataset of an adult drosophila
melanogaster. The long acquisition time greatly limits the
application of EM imaging in analyzing complete biolog-
ical structures in large specimens, such as neuron connec-
tions in mammalian brains.

Image super-resolution (SR), which is capable of restor-
ing high-resolution (HR) images from their corresponding
low-resolution (LR) observations, has the potential to rev-
olutionize EM imaging by allowing for faster and less re-
strictive data acquisition, while also providing high-quality
images with a wide field of view. By applying SR to EM
images (shorted as EMSR hereafter), the capturing time
can be significantly reduced, and the strict capturing con-
ditions can be relaxed. By deploying a simple ResNet-
based UNet model, Fang er al. [13] have demonstrated
the promising performance of EMSR for 4 x magnification
(i.e., with 16 times less data acquired). However, achieving
even larger-factor EMSR to further reduce capturing time
remains challenging. This is in accordance with existing
methods [5, 18, 30, 35, 50, 58] for natural images, which
can achieve satisfactory results for up to 4x magnification,
but fail to meet the demand for larger factors.

On the other hand, recent advances in generative mod-
els, such as ChatGPT and diffusion-based models [9, 16,
21, 43], reveal powerful capability in automatic content
generation, including natural languages and images. This
motivates us to consider the EMSR task from a genera-
tive perspective. Especially, compared with natural images
that possess diverse structures and textures, EM images of-
ten exhibit repetitive structures and textures due to the pre-
dictability of imaging specimens, making it more suitable to
leverage generative learning for accurate reconstruction. In
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this paper, we propose a novel deep learning-based frame-
work tailored to the challenging task of large-factor EMSR,
by 1) exploiting the repetitive structures and textures in EM
images with generative cell-specific priors learned from HR
EM images, and 2) exploiting the inter-section coherence
in the volumetric EM data by aggregating features learned
from multiple consecutive images.

Specifically, our framework explores cell-specific pri-
ors using a VQGAN:-Indexer network, consisting of VQ-
GAN [12] and our proposed latent vector indexer. We first
learn a discrete codebook to represent the distribution of
HR EM images in the latent space. The codebook captures
both structure and texture information, while the decoder
establishes relationships between latent vectors and image
patches. We then train a latent vector indexer to acquire
the corresponding latent vectors and integrate the indexer
with the codebook and the decoder for generating HR EM
images. By treating the generation process as an indexing
task, we can match LR EM images with their corresponding
HR feature representations from the latent space, thereby
obtaining priors solely derived from HR EM images.

To maintain reconstruction quality while prioritizing
downstream segmentation accuracy, we propose a Multi-
Scale Prior Fusion (MPF) module for incorporating the
above learned cell-specific priors in EMSR. We use the
VQGAN-Indexer output as reference images and learn a
mask for fusing reference features based on the patch-level
cosine similarity between LR EM images and correspond-
ing reference images. To fully utilize the latent vectors and
relationships learned by the decoder, we use multi-scale ref-
erence features from different layers of the decoder with
varying resolutions. Following the MPF module, our frame-
work includes two key steps for exploiting inter-section co-
herence in the volumetric EM data: multi-image feature
alignment (along the axial direction) and multi-image fea-
ture fusion. To this end, we introduce a Pyramid Optical-
flow-based Deformable convolution alignment (POD) mod-
ule and a 3D Spatial-Attention fusion (3DA) module. The
former leverages a pre-trained optical-flow network SPyNet
[42] and deformable convolutions [6, 60], while the latter
leverages the spatial attention mechanism and 3D convolu-
tions. Both improve reconstruction quality and downstream
segmentation accuracy for large-factor EMSR.

In summary, this paper offers the following contribu-
tions. 1) We present the first generative learning-based
framework for the challenging task of large-factor EMSR.
2) We introduce the VQGAN-Indexer network to explore
generative cell-specific prior information from HR EM im-
ages. 3) We propose the MPF module to effectively utilize
the generative priors while preserving image fidelity with
LR observations, followed by the POD and 3DA modules
for multi-image feature alignment and fusion. 4) Extensive
experiments demonstrate the superiority of our framework

in terms of both reconstruction quality and downstream seg-
mentation accuracy for 8x and 16x EMSR.

2. Related Work

Electron microscopy image super-resolution. Existing
EMSR methods can be categorized into two types: restor-
ing isotropic volumes from anisotropic ones, i.e., SR along
the axial dimension [8, 20], and reconstructing HR images
from corresponding LR observations in the lateral dimen-
sions [7, 13, 40, 46, 53]. We focus on the latter task in this
paper, while our proposed framework may also apply to the
former task. As a pioneering work in the field of EMSR,
Sreehari et al. [46] introduce a Bayesian framework and uti-
lize a library-based non-local means (LB-NLM) algorithm
to achieve up to 16x EMSR without requiring a training
process. However, this non-learning-based method limits
performance and is not specifically designed for large-factor
EMSR. Along the deep learning line, Nehme er al. [40]
train a fully convolutional encoder-decoder network on sim-
ulated data to reconstruct super-resolved images. Hann et
al. [7] train a GAN model using pairs of test specimens
captured from the same region of interest. Xie et al. [53]
leverage the attention mechanism to capture inter-section
dependencies and shared features among adjacent images.
Compared to previous EMSR methods, our framework not
only utilizes adjacent EM images but also explores and inte-
grates generative cell-specific priors to tackle the challeng-
ing task of large-factor EMSR.

Video super-resolution. Video super-resolution (VSR)
aims to restore HR frames by leveraging adjacent temporal
information in multiple LR frames. To align temporal fea-
tures, optical flow [3, 5, 26, 44, 49, 52, 54] and deformable
convolution [47, 50], have been widely adopted. Recently,
transformer-based approaches [4, 36] yield remarkable ad-
vancements in VSR, owing to the utilization of diverse at-
tention mechanisms. Inspired by these VSR methods, to ex-
ploit the inter-section coherence in the volumetric EM data,
we utilize optical-flow networks and deformable convolu-
tions for multi-image feature alignment, and spatial atten-
tion mechanisms for multi-image feature fusion.

Generative priors in image restoration. Generative im-
age restoration methods [11, 31-33] employ the priors from
the pre-trained generative adversarial network (GAN), such
as StyleGAN [24] and BigGAN [2], to approximate the nat-
ural image manifold and synthesize high-quality images.
Given the superior performance of discrete codebook-based
generative methods in semantic image synthesis, structure-
to-image, and stochastic super-resolution tasks [12, 48], re-
cent methods explore codebook-based facial priors [17, 59]
by leveraging VQGAN [12] for training. Different from
these methods, we propose a latent vector indexer to exploit
the information contained within the input LR images, and
the MPF module to fuse generative priors.
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3. Method

3.1. Overview

As illustrated in Figure 1, the goal of large-factor EMSR
is to obtain the super-resolved I3, € R™*"Wx1 given a
sequence of 2N + 1 consecutive LR EM images, I7 , €
REIXWx1 " which should be close to the ground truth
image 12, € RH>X™Wx1 o where 2 € {-N,—N +
1,-+-,0,---,N — 1, N} and r is the large scale factor. In
this paper, we set N = 2 and r = 8, 16.

To achieve this, we propose a generative learning-based
framework consisting of three stages. Stage I involves ex-
ploring generative cell-specific priors through the VQGAN
model, which identifies a discrete latent space of HR EM
images and generates the HR EM image Iyges from the la-
tent space. This latent space is represented using vectors
from the VQGAN codebook C'. In Stage II, we train a la-
tent vector indexer and connect it with the VQGAN code-
book C' and VQGAN decoder @ obtained from Stage I.
This connection allows us to generate the reference HR EM
image Ir.r and its corresponding multi-scale generative fea-
tures F}; from the LR EM image I; . Finally, in Stage III,
we fuse the multi-scale generative features F}i.; using the
MPF module, align adjacent image features in the axial di-
rection using the POD module, and fuse the adjacent image
features using the 3DA module. We finally use sub-pixel
convolution to reconstruct the HR output /9.

3.2. Exploring Generative Cell-Specific Priors

EM images are characterized by their repetitive structures
and textures, such as cellular membranes and subcellular or-
ganelles. These features offer an opportunity to exploit their
regularity and predictability, motivating our exploration of
the generative cell-specific prior in EM images for large-
factor EMSR. As shown in Figure 1 (a), our framework for
exploring generative cell-specific prior exploration consists
of two main steps. First, we identify a discrete latent space
that represents the features of HR EM images. Then, we
generate the HR EM images from this latent space, leverag-
ing its compact and representative nature.

Identifying a discrete latent space. We aim to identify
a discrete latent space that represents HR EM images. To
achieve this, we utilize an encoder FE to parameterize the
posterior categorical distribution of HR EM images ¢4 (¢ |
0), where £ represents the variable for latent vectors, o rep-
resents the variable for HR EM images and ¢ represents the
encoder’s parameters. Specifically, we quantize the output
feature Z, from E by mapping it to its closest latent vector
in C and obtain the quantified feature Z; and one-hot index
of each mapped HR patch, denoted as s"*"

2
2>

{1, k = argmin, || Z,[j] — Zgln“g M

Zi = argming, ;)1 Z,lj] - 20"

s™ k] =

)

0, otherwise

where Z,[j] denotes the j-th latent vector stored in C.
Z™™ denotes the encoder output feature element at posi-
tion (m,n) within Z,, while Z;"" denotes the quantified
feature element at position (m,n) within Z;. s"™" is a v-
dimensional vector and s™"[k] denotes the k-th element in
s™"  The codebook C consists of v latent vectors, each
with a dimensionality of d. Thus, the posterior categorical
distribution g, (£ | 0) is defined as

1, Z, k| =argming 4| Z,[5] — 2"
go(E =k |o0) = alk] = 24051 1Z4ld)
0, otherwise
2

Generating the HR EM image. Given the quantified fea-
ture Z4, we can generate HR EM image Iygreer through the
decoder. We parameterize the prior distribution of HR EM
images pg(o | &) through the decoder Q, where 0 is the
parameters of the decoder.

The encoder is composed of multiple Res-blocks [19]
and convolution blocks for downsampling, while the de-
coder is composed of multiple Res-blocks and deconvolu-
tion blocks for upsampling. The compression patch size for
downsampling is set to p. Both the encoder and decoder
leverage self-attention mechanisms to enhance generaliza-
tion quality. We optimize the latent vector Z,[j] along with
the encoder E and decoder Q.

3.3. Generating LR Reference

With the parameterization of the latent space using C' and
the prior distribution of HR EM images using ), we can
generate HR EM images given real HR EM images as in-
put. However, in the large-factor EMSR task, only highly
degraded LR images are available as input. Hence, we need
to map the LR images to their corresponding quantified fea-
ture Z, to utilize the generative cell-prior stored in C.

To achieve this, one straightforward approach is to in-
terpolate the LR images and feed them into the encoder
[17]. This straightforward approach approximates the pos-
terior categorical distribution of LR EM images ¢(£ | oy)
by utilizing the parameterized posterior categorical distri-
bution of HR EM images ¢, (£ | [o,],) with the interpola-
tion operation. Here, o) represents the LR image variable,
and []+ denotes the interpolation operation. However, in
scenarios where significant degradation occurs in LR input
images, the interpolation operation struggles to restore the
rich details and textures in HR EM images. Consequently,
this mismatch leads to discrepancies between the real HR
EM image distribution p(o) and the interpolated HR EM
image distribution p([o,] +), thereby resulting in disparities
between ¢(¢ | o) and g4( | [o0)];). Despite the loss of
fine-grained details in LR images, the partial preservation
of information enables the utilization of such details as pri-
ors in mapping LR images to their corresponding quantified
feature Z,4. To fully utilize these priors, we propose a latent
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(a) Stage I: Exploring Generative Cell-Specific Priors
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Figure 1. Overview of our framework. The proposed generative learning-based framework consists of three stages. In Stage I, the encoder,
the codebook, and the decoder are trained by self-generating the input HR EM image. In Stage II, a latent vector indexer is trained and
connected with the codebook and the decoder with fixed parameters to generate the reference HR EM image and multi-scale generative
features from the LR EM image. In Stage III, the HR output is reconstructed by fusing multi-scale generative features and exploiting
inter-section coherence in volumetric EM data with the POD module and the 3DA module. Rec denotes reconstruction layers composed of

convolution layers and pixel shuffle operation.

vector indexer W' to predict probabilities of corresponding
latent vectors in C' given LR EM images as input, as shown
in Figure 1 (b). We denote the output of the latent vector
indexer as Z,,, where the element at position (m, n) is de-
noted as Z;"'" and represents a v-dimensional vector. Then,
by selecting the latent vector with the highest probability,
we can effectively model the posterior categorical distribu-

tion ¢(& | o)) as

1, k= argmax; ey 20T
4 (E=F o)) = Bmaxie (1,23, v} 257"l
0, otherwise

3)
where ¢ denotes the parameters of the latent vector indexer
W. Z™"[i] denotes the i-th element of the vector Z"™.

This quantization operation allows us to capture the most
representative latent vector that corresponds to the LR im-
age. Then the predicted quantified feature Z%" is obtained
and fed into the decoder to generate the reference HR EM
image Igrer and its corresponding multi-scale generative fea-
tures F,; through the decoder. Note that all the latent vec-
tors used to generate Irer and F, are obtained from the
codebook, which contains the generative cell-specific pri-

ors of HR EM images.

3.4. Reconstructing HR Image

MPF module. The complete process of reconstructing
HR image is depicted in Figure 1 (c). The discrepancies be-
tween the generated HR image Irer and real EM image Igt
pose a challenge in achieving accurate multi-scale genera-
tive feature fusion. To overcome this challenge, we propose
the MPF module, which focuses on identifying and fusing
the multi-scale generative features. The MPF module com-
prises two essential processes: a mask-learning process and
a multi-scale fusion process.

The mask-learning mechanism within the MPF module
enables us to identify and mask out multi-scale generative
features in regions that show significant boundary differ-
ences compared to real HR images. As shown in Figure 1
(d), we first embed the interpolated LR image [I.r], and
the reference image Ir.; from the decoder into the feature
space by a pre-trained VGG19 encoder [45]. We extract
16 x 16 patches from LR feature maps and reference (Ref)
feature maps without overlap. Then, We calculate cosine
similarity vector C'S between LR feature patches and Ref
feature patches, where C'S; denotes cosine similarity be-
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tween the i-th LR feature patch and the i-th Ref feature
patch. We refine the mask by employing three 2D convo-
lutions. Finally, we apply a sigmoid function to obtain the
mask M with the same spatial resolution as LR features.
To effectively fuse features from different layers of the
decoder across L levels, we employ a multi-scale fusion
scheme, as illustrated in Figure 1 (e). As the decoder learns
the relationship between latent vectors, each layer of the de-
coder contains varying levels of detailed information about
EM images. Additionally, since the decoder is responsi-
ble for reconstructing HR EM images, layers closer to the
output represent shallower features. Given these consid-
erations, we begin fusing features from F}%e 7 and its cor-
responding LR features F , with the same resolution and
gradually incorporate features with lower resolution

B = RY (BY (Fip Fhep) @ M1 )

P4t = R (Rl (P, gy Fhoop)) © M0 0, F1))

F=RE! (<FL—1, FLL,;l,Fégﬁ) ® M,
FOut — RL-1 (<F7FL71’FLL§1>> ’
“)

where ® denotes element-wise multiplication, (-) denotes
concatenation operation, and HT denotes interpolation op-

eration. ! denotes output features from downsample con-
volution at the I-th level. R}, R, and R5 ™" denote down-
sample convolution, fusion convolution, and output convo-
lution, respectively. F' denotes the output feature of the last
fusion convolution. FO“ represents the final multi-scale
fusion feature.

POD module and 3DA module. To exploit the inter-
section coherence in volumetric EM data and leverage the
correlation between adjacent EM images, we design two
modules: the POD module and the 3DA module. The POD
module is responsible for aligning the adjacent EM image
output features from the MPF module in a coarse-to-fine
manner. It utilizes a pyramid architecture and incorporates
a pre-trained optical-flow network SPyNet and deformable
convolutions to achieve accurate feature alignment. The
3DA module employs spatial attention mechanisms and 3D
convolutions to effectively fuse the aligned features. More
detailed information about the POD module and 3DA mod-
ule can be found in the supplementary material.

3.5. Training Strategy

In Stage I, we adopt three loss functions: a reconstruction
loss L,_j, a codebook learning loss L., and an adversarial
loss Lagy

LT‘—I = ||IHRref - IGT||1 aLadv = D(IGT) + D(leRref)7

Lc = |lsg[Za) = Zell3 + lIsg [Ze) = Zall3
)

where D represents a PatchGAN discriminator [23] and
sg[-] denotes the stop-gradient operation. As Eq. 1 is non-
differentiable, we propagate the gradients from the decoder
to the encoder [12, 48]. We utilize R1 regularization [39]
for GAN training stability. The complete objective of the
first stage is

Lst = erl + )\CLC + )\adeadv- (6)

In Stage II, we optimize the latent vector indexer W
while keeping the parameters of C' and @ fixed. The ob-
jective of the second stage is

exp (Z;;"[i])
> exp (Zuw " [4])
In Stage III, we train our network with two loss func-

tions: a reconstruction loss L, _;r; and a multi-Ref fidelity
loss Lz iq [28]. The objective of the third stage is

LS—II = — Z Sm’n[l] IOg

m,n,t

(M

Ly—rir = HIgR - IgTHl )
2eq 20 (IgR7IIZ?,Ief) "G
ZZ’GQ Zl Czl i ’

Lo_rr1 = Le_111 + ArgsiaLasfia,

®)

Lryia =

where Q = {-N,-N+1,---,0,--- ,N—1,N} & (-,")
denotes contextual loss in [38] and c,- ; is the matching con-
fidence weight based on cosine similarity.

4. Experiments
4.1. Settings

Datasets. We conduct experiments under two different
settings to demonstrate the superior performance of our
framework in both reconstruction quality and downstream
segmentation accuracy. For the first setting, we select the
adult drosophila melanogaster brain dataset FAFB [57] and
its subset CREMI [14] acquired at 4 x 4 x 40nm? resolution.
In Stage I and Stage II, we train our framework on a subset
(~38G) of FAFB to obtain a cell-specific prior. In Stage III,
we utilize the padded version of the CREMI dataset, exclud-
ing the CREMI C subset, to train for large-factor EMSR. We
use the cropped version of CREMI C, which has segmenta-
tion labels, as the test set consisting of 125 images. We
fine-tune two pre-trained segmentation networks, Superhu-
man [29] and MALA [15], on the first 75 images of CREMI
C. Therefore, we test all 125 images for reconstruction eval-
uation metrics and the last 50 for segmentation evaluation
metrics. For the second setting, we select the mouse so-
matosensory cortex dataset Kasthuril5 [25] and its subset
AC3/AC4 dataset [25] acquired at 3 X 3 X 29nm?® resolu-
tion. As the AC3/AC4 datasets are too small, we use the
data partitioning strategy from [22] and train three stages on
a subset (~11.2G, i.e., Subset3 in [22]) of Kasthuril5 and
AC3. We fine-tune two pre-trained segmentation networks
on AC3 and test them on AC4.
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Table 1. Quantitative comparison of reconstruction quality and EM image segmentation results on CREMI C for 16 x and 8 x EMSR. The

best and the second-best results are highlighted in bold and underline. * Parameters optimized in Stage IIL.

Reconstruction Metrics Segmentation Metrics
Methods Scale Fidelity Perceptual Superhuman MALA Params/M
PSNRt SSIMT LPIPS| DISTS] | VOI) ARAND| VOI| ARAND ]

Bicubic 16x | 21.5557 0.4801 | 0.7338  0.4842 | 6.6627 0.7043 6.5599 0.8830 -
RCAN [56] 16x | 23.1238 0.5779 | 0.5336  0.3429 | 52762  0.6193 2.9353 0.2325 12.9080
SwinlR [35] 16x | 23.1098 0.5781 | 0.5332  0.3416 | 5.1254  0.4955 2.9302 0.2317 12.1426
BSRN [34] 16x | 229161 0.5645 | 0.5453  0.3402 | 5.5728  0.6809 3.2034 0.2694 0.4719
Real-ESRGAN [51] | 16x | 22.7631 0.5537 | 0.5333 03134 | 4.0823 0.4890 3.3806 0.2973 16.6957
EDVR [50] 16x | 23.8894 0.6147 | 0.5022 0.3182 | 4.1709 04132 2.3229 0.1969 3.4455
BasicVSR [5] 16x | 23.3877 0.5924 | 0.5107 0.3176 | 4.5825 0.5053 2.5428 0.2115 3.9339
Ours 16x | 23.6767 0.6020 | 0.4790  0.2927 | 2.9639  0.3075 2.2571 0.1786 5.4627*
Bicubic 8x | 25.5897 0.6607 | 0.4779  0.2982 | 59304  0.8754 2.4748 0.2036 -
RCAN [56] 8x | 29.3926 0.7914 | 0.3729  0.2339 | 3.3858  0.3288 1.5634 0.1333 12.7603
SwinlR [35] 8x | 29.4334 0.7921 | 03724  0.2340 | 3.3494  0.3267 1.5400 0.1306 11.9949
BSRN [34] 8x | 29.1464 0.7832 | 0.3791  0.2313 | 3.5928  0.3461 1.5621 0.1315 0.3611
Real-ESRGAN [51] | 8x | 29.1457 0.7843 | 0.3774  0.2317 | 3.5740  0.3363 1.5555 0.1309 16.6957
EDVR [50] 8x | 29.7326 0.8016 | 0.3642 0.2316 | 3.1739  0.3159 1.5107 0.1324 3.2978
BasicVSR [5] 8x | 29.0828 0.7831 | 0.3774  0.2305 | 3.4619  0.3336 1.5879 0.1349 4.0445
Ours 8x | 29.7027 0.8002 | 0.3568  0.2291 | 2.9376  0.3076 1.5011 0.1298 4.4257*

Table 2. Quantitative comparison of reconstruction quality and EM image segmentation results on AC4 for 16x and 8 x EMSR. The best

and the second-best results are highlighted in bold and underline. * Parameters optimized in Stage III.

Reconstruction Metrics ‘ Segmentation Metrics
Methods Scale Fidelity Perceptual Superhuman MALA Params/M
PSNRT SSIMt LPIPS| DISTS| | VOI, ARAND| VOI, ARAND |
Bicubic 16x | 19.0078 0.2518 | 0.7758  0.4639 | 6.9300  0.9688 | 6.8144 0.9664 -
RCAN [56] 16x | 19.5938 0.2981 | 0.6661  0.3970 | 6.4535  0.9351 6.4716 0.9294 12.9080
SwinlR [35] 16x | 19.5949 0.2956 | 0.6671 0.3893 | 6.8796 0.9496 6.5417 0.9322 12.1426
BSRN [34] 16x | 19.5613  0.2928 | 0.6725 0.3914 | 7.1961  0.9615 | 6.6168 0.9395 0.4719
Real-ESRGAN [51] | 16x | 19.4254 0.2893 | 0.6427  0.3706 | 6.3853  0.8745 | 6.0659 0.9140 16.6957
EDVR [50] 16x | 19.9374 0.3283 | 0.6232  0.3731 | 4.8178  0.7158 | 5.0029 0.8282 3.4455
BasicVSR [5] 16x | 19.4293  0.2888 | 0.6747  0.3747 | 6.8608  0.9598 | 6.7548 0.9513 3.9339
Ours 16x | 19.7468 0.3114 | 0.5748  0.3584 | 4.3655  0.6126 | 4.8362 0.8233 5.4627*
Bicubic 8x | 21.0979 0.3720 | 0.5896  0.3361 | 6.7694  0.9675 | 6.1346 0.9157 -
RCAN [56] 8x | 223167 0.4773 | 0.5200 0.3162 | 2.2101 0.2826 | 2.3571 0.3886 12.7603
SwinlR [35] 8% 224909 0.4931 | 0.5104  0.3213 | 1.7867 0.2107 2.3635 0.5242 11.9949
BSRN [34] 8% 222736 0.4736 | 0.5231 0.3132 | 2.2630 0.2860 2.5120 0.3746 0.3611
Real-ESRGAN [51] | 8x | 22.3439 0.4889 | 0.5000 0.3127 | 1.8839  0.2584 | 2.0680 0.3445 16.6957
EDVR [50] 8x | 22,9314 0.5270 | 0.4890 0.3176 | 1.2946  0.2532 1.6486 0.4027 3.2978
BasicVSR [5] 8x | 22.2444 04757 | 05180 0.3114 | 2.1716  0.3242 | 2.5117 0.4953 4.0445
Ours 8x | 229251 0.5270 | 0.4654 0.3075 | 1.1501  0.1377 | 1.5862 0.3134 4.4257*
Metrics. To evaluate the difference between SR results for 8x EMSR during Stage III training phase. The com-

and ground truth, we use various reconstruction metrics.
These encompass two fidelity metrics, PSNR and SSIM,
alongside two perceptual metrics, LPIPS [55] and DISTS
[10]. For EM image segmentation evaluation, we use VOI
[41] and ARAND [1] as our metrics. In our segmentation
evaluation, we consider both split error and merge error to
ensure a comprehensive and accurate assessment.

Training setting. We train the networks in three stages
using Adam [27] optimizer with 5, = 0.9, 83 = 0.99
and employ Cosine Annealing scheme [37]. In our exper-
iments, we set all initial learning rates to 4 x 10~* except
for Stage III on the mouse somatosensory cortex training
dataset, where we adjust the initial learning rate to 1 x 10~4
to ensure the convergence of deformable convolution layer.
To generate paired data, we use bicubic downsampling to
reduce the image resolution by factors of 8 and 16. The LR
patch size is set to 16 x 16 for 16x EMSR and 32 x 32

pression patch size p is set to 16 based on our ablation stud-
ies. We select the weights for our loss functions as follows:
Ae = 10, Agagp = 0.05, and Apspig = 0.01 for 16x EMSR,
and A pspig = 0.001 for 8x EMSR. These weights are cho-
sen through empirical experimentation aimed at striking the
right balance for optimal performance. We also set the num-
ber of latent vectors to v = 1024 and their dimension to
d = 512 in the codebook based on our ablation studies.

4.2. Comparisons with Existing Methods

We compare our framework with (1) single-image SR
methods including RCAN [56], SwinIR [35], BSRN [34],
and Real-ESRGAN [51], (2) video SR methods including
EDVR [50] and BasicVSR [5]. All these models are re-
trained on the same EM datasets for fair comparisons. The
quantitative results of image reconstruction and EM image
segmentation are summarized in Table 1 and Table 2.
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Figure 2. Top: Qualitative comparison for 16 x EMSR. Our framework exhibits sharper boundaries and preserves a more complete
structure. Bottom: Qualitative comparison for 16 x EMSR in terms of segmentation.

Blcublc SwinIR

Real ESRGAN

EDVR BasicVSR Ours

Figure 3. Top: Qualitative comparison for 8 x EMSR. Our framework exhibits sharper boundaries and preserves a more complete structure.
Bottom: Qualitative comparison for 8 x EMSR in terms of segmentation.

Reconstruction quality. While our framework performs
the second-best in terms of PSNR and SSIM, slightly be-
hind EDVR, these fidelity metrics do not necessarily align
with human perception of image quality. On the other hand,
our framework surpasses all other methods in terms of per-
ceptual metrics LPIPS [55] and DISTS [10]. As shown in
Figure 2 and Figure 3, our framework produces images with
sharper boundaries, richer texture details, and more com-
plete structures for 16x and 8x EMSR. This demonstrates
that our cell-specific generative priors and the MPF mod-
ule can effectively incorporate fine-grained details from HR
EM images instead of producing smoothed results at the
pixel level. It is noteworthy that although Real-ESRGAN
[51] partially alleviates over-smoothing by incorporating
the adversarial loss, it introduces noticeable noise-like ar-
tifacts in the super-resolved images. Additionally, a general
comparison between single-image and video SR methods
supports the effectiveness of incorporating adjacent EM im-
ages in the context of large-factor EMSR.

EM image segmentation accuracy. We evaluate the ac-
curacy of two pre-trained segmentation networks by using
the super-resolved EM images as inputs. Our framework
outperforms all other methods with two different segmen-
tation networks, demonstrating exceptional image fidelity
in terms of downstream tasks achieved by our framework.
Moreover, our framework effectively addresses the issue of
over-segmentation caused by excessive smoothing of ex-

Table 3. Ablation studies on prior exploration and prior indexing
trade-off. p denotes the compression patch size.

Stage I Stage 1T

P PSNRT LPIPS| | PSNRT LPIPS)
8 | 35.0731 0.2618 | 20.1212  0.5240
16 | 28.6876 0.3715 | 21.7423  0.4996
32 | 23.1879 0.4693 | 21.5291 0.5024
64 | 20.2832  0.6226 | 20.1609  0.6263

APSNR  ALPIPS
-14.9519  0.2622
-6.9453  0.1281
-1.6588  0.0331
-0.1223  0.0037

isting methods, which is particularly prominent in the Su-
perhuman segmentation network (see supplementary mate-
rial for detail). Visualization examples of segmentation, as
shown in Figure 2 and Figure 3, confirm the superiority of
our framework over existing methods.

4.3. Ablation Studies

Effectiveness of prior exploration. Table 3 presents a
quantitative analysis of the prior exploration process. As
the mapping from the HR space to the latent space involves
a compression process, the size of the compression patch
is a crucial hyperparameter. In Stage I, a smaller compres-
sion patch size captures more detailed information and leads
to more realistic generated images. We observe a signif-
icant improvement in both PSNR and LPIPS as the com-
pression patch size decreases, indicating improvements in
reconstruction quality and fidelity.

Trade-off between prior exploration and prior indexing.
There exists a trade-off between the quality of generated im-
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Figure 4. Qualitative comparison of prior indexing results and the
effectiveness of the latent vector indexer. p denotes the compres-

sion patch size.

Table 4. Ablation studies on the quantity v and dimensions d of
latent vectors in the codebook on prior exploration.

v d PSNRT LPIPS|
512 512 | 283165 0.3806
1024 256 | 28.5227 0.3728
1024 512 | 28.6876 0.3715
2048 512 | 28.7159 0.3712
1024 1024 | 28.7574  0.3743

ages in Stage I and the accuracy of predicting latent vectors
through the latent vector indexer in Stage II. This trade-off
arises from the fact that as the compression patch size de-
creases and less information is available when feeding LR
images into the latent vector indexer in Stage II, the learned
posterior distribution of LR EM images ¢, (£ | o) deviates
further from the true posterior distribution ¢(¢ | o} ). Con-
sequently, reducing the compression patch size allows the
first stage network to preserve more image details, but it
poses challenges for the indexing task in Stage II. This can
be observed from the changes in APSNR and ALPIPS val-
ues presented in Table 3, which indicate a decrease in the
indexing accuracy as the compression patch size decreases.
In consideration of the trade-off between prior exploration
and prior indexing, we set p = 16, as depicted in Table 3
and Figure 4. Moreover, as illustrated in Figure 4, removing
the latent vector indexer and directly utilizing bicubic inter-
polation along with the decoder in Stage I leads to notably
blurry gy outcomes.

Impact of the quantity and dimensions of latent vec-
tors in the codebook. We systematically investigate the
impact of the quantity and dimensions of latent vectors in
the codebook by selecting several sets of representative pa-
rameters. The results are summarized in Table 4. From
the experimental results, we observe that augmenting v to
2048 or d to 1024 does not yield significant improvements
in prior exploration, despite doubling the codebook’s size.
Conversely, reducing v to 512 or d to 256 results in a notice-
able performance decline. Based on these insightful results,
we set v = 1024 and d = 512 for our codebook. This
decision strikes an optimal balance between computational
efficiency and performance.

Effectiveness of POD module and 3DA module. We
evaluate the effectiveness of the proposed POD and 3DA
modules for multi-image feature alignment and multi-image

Table 5. Ablation studies of our proposed modules. VOI-S and
VOI-M denote segmentation using Superhuman and MALA, re-
spectively.

MPF POD 3DA

PSNRT LPIPS| VOI-S| VOI-M|
235287 0.5168  4.5912  2.7265
237354  0.5063  4.2429  2.3410
23.5422  0.4858  3.1500 2.5144
23.5548 04815 3.0193  2.3794
23.6767 0.4790 29639  2.2571

NN XX
ANENEE NG
CUXNNX

feature fusion, respectively. To ensure a fair comparison, we
replace these modules with residual blocks with compara-
ble parameters. Table 5 shows the results of our ablation
study. We observe that even without incorporating genera-
tive prior, the introduction of the POD module or 3DA mod-
ule leads to improvements in both reconstruction evaluation
metrics and segmentation metrics, as demonstrated in row 1
and row 2. Furthermore, when the generative prior is intro-
duced, both the POD module and the 3DA module provide
additional gains in reconstruction and segmentation metrics,
as shown in rows 3 to 5. Notably, the POD module exhibits
a larger improvement compared to the 3DA module, indi-
cating its significance in multi-image feature alignment for
large-factor EMSR. These results demonstrate the effective-
ness of the proposed POD and 3DA modules in enhancing
visual reconstruction quality and segmentation accuracy.

Effectiveness of MPF module. The effectiveness of our
MPF module is further demonstrated in row 2 and row 5
of Table 5, where it exhibits substantial improvements in
perceptual metric LPIPS and segmentation metric VOI. It
is important to note that the introduction of L ;4 in Stage
III leads to a decrease in PSNR. This observation highlights
the inconsistency between PSNR and visual quality as well
as segmentation outcomes and reinforces the importance of
using perceptual metrics and segmentation metrics to eval-
uate reconstruction quality.

5. Conclusion

In this paper, we present a generative learning-based frame-
work for large-factor EMSR. By exploring and indexing
cell-specific priors using a VQGAN-Indexer network, our
framework leverages generative learning to capture the
repetitive structures and textures of EM images. The MPF
module effectively fuses generative priors obtained from
the VQGAN-Indexer network while ensuring the image fi-
delity. Extensive experiments demonstrate the superiority
of our framework in terms of both reconstruction quality
and segmentation accuracy for 8x and 16 x EMSR.
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