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Abstract

As an important and practical way to obtain high dy-
namic range (HDR) video, HDR video reconstruction from
sequences with alternating exposures is still less explored,
mainly due to the lack of large-scale real-world datasets.
Existing methods are mostly trained on synthetic datasets,
which perform poorly in real scenes. In this work, to fa-
cilitate the development of real-world HDR video recon-
struction, we present Real-HDRV, a large-scale real-world
benchmark dataset for HDR video reconstruction, featuring
various scenes, diverse motion patterns, and high-quality
labels. Specifically, our dataset contains 500 LDRs-HDRs
video pairs, comprising about 28,000 LDR frames and
4,000 HDR labels, covering daytime, nighttime, indoor, and
outdoor scenes. To our best knowledge, our dataset is the
largest real-world HDR video reconstruction dataset. Cor-
respondingly, we propose an end-to-end network for HDR
video reconstruction, where a novel two-stage strategy is
designed to perform alignment sequentially. Specifically,
the first stage performs global alignment with the adap-
tively estimated global offsets, reducing the difficulty of sub-
sequent alignment. The second stage implicitly performs lo-
cal alignment in a coarse-to-fine manner at the feature level
using the adaptive separable convolution. Extensive exper-
iments demonstrate that: (1) models trained on our dataset
can achieve better performance on real scenes than those
trained on synthetic datasets; (2) our method outperforms
previous state-of-the-art methods. Our dataset is available
at https://github.com/yungsyu99/Real-HDRV.

1. Introduction

The demands for high dynamic range (HDR) video have
drastically increased in recent years since it can bring a
better visual experience for users [2, 10, 19, 40]. How-
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Figure 1. Row 1 shows a real-world sample from the Chen21
dataset[4]. Row 2-3 show the HDR frames reconstructed by mod-
els trained on the synthetic dataset [4] and our Real-HDRV, re-
spectively. Obviously, models trained on our dataset are able to
recover more and better details of the over-exposed regions.

ever, most cameras cannot capture HDR videos directly
due to the limitations of sensors. Therefore, some special-
ized hardware devices [12, 17, 27, 30, 32] are developed to
capture HDR videos. However, these devices are typically
bulky and expensive, which are not widely adopted [6].

In contrast, the computational-based HDR video recon-
struction [20, 24] is more practical and affordable for ob-
taining HDR videos. It captures low dynamic range (LDR)
sequences with alternating exposures (e.g., sequences with
exposure values of {-3,0,-3,0,...}), which are then used to
reconstruct the corresponding HDR video. The common
reconstruction pipeline is to align the input frames and then
merge the aligned inputs to reconstruct the HDR videos.
Before the era of deep learning, some optimization-based
reconstruction methods [19, 20, 24] are proposed. Recently,
learning based methods [4, 6, 18] have shown their effec-
tiveness on HDR video reconstruction, which significantly
improve the performance over optimization-based methods.

Despite remarkable progress, the development of deep
models for HDR video reconstruction is relatively slow,
mainly due to the lack of suitable training datasets. The
only publicly accessible labeled real-world dataset of HDR
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video reconstruction [4] is built for evaluating HDR video
reconstruction methods. The number of distinct scenes and
the motion patterns in their dataset are limited, making it
unsuitable for supervised training. Therefore, existing mod-
els are still trained on synthetic datasets. However, the syn-
thetic datasets are not well suited for the study of real-world
HDR video reconstruction. Models trained on synthetic
datasets are hard to generalize to real scenes (see Fig. 1 Row
2) since the synthetic degradations are far different from the
real degradations (e.g., the noise in under-exposed areas, the
saturation in over-exposed areas). It is highly desired for a
large-scale real-world dataset to facilitate the development
of real-world HDR video reconstruction.

Besides the datasets, another key issue of HDR video re-
construction lies in the alignment of input frames. Previous
methods [18–20] usually use optical flow or both optical
flow and deformable convolution [4, 45] to align the inputs.
However, the estimated flows are prone to be inaccurate due
to the noise and saturation in alternatingly-exposed inputs,
resulting in ghosting artifacts. Recently, Chung et al. [6]
proposed a luminance-based attention module to align the
inputs. However, it cannot properly deal with the under-
exposed and over-exposed areas of inputs, resulting in un-
pleasing artifacts. Additionally, the global motion (caused
by camera movements) is not properly modeled in most ex-
isting methods [6, 45], which further increases the difficulty
of alignment, leading to inferior performance.

Based on the above observations, to facilitate the devel-
opment of real-world HDR video reconstruction, we build
a large-scale real-world dataset, named Real-HDRV. In or-
der to get LDRs-HDRs video pairs and ensure the quality of
HDR labels, we capture the scene in a frame-by-frame man-
ner using a camera with high continuous shooting speed (up
to 40 frames/sec). Specifically, we carefully select the rel-
atively static scenes and manually create different types of
motion between neighboring frames. For each static frame,
we capture a multi-exposure image stack (7 differently-
exposed LDR images guarantee the quality of HDR labels).
The images in each multi-exposure stack are then used to
synthesize the corresponding HDR label. We collected 500
LDRs-HDRs video pairs, comprising about 28,000 LDR
frames and 4,000 HDR labels. Our Real-HDRV cannot only
serve as a benchmark for HDR video reconstruction but also
be applied to other HDR tasks (e.g., HDR Deghosting [42],
single-image HDR reconstruction [46]).

Correspondingly, we propose an end-to-end network for
HDR video reconstruction, in which we design a two-
stage strategy to align the inputs sequentially. Specifi-
cally, the first stage performs global alignment with the
designed global alignment module (GAM), which can ef-
fectively handle the global motion and reduce the difficulty
of subsequent alignment. The second stage implicitly per-
forms local alignment at the feature level in a coarse-to-fine

manner with the designed local alignment module (LAM).
The pyramid structure of LAM facilitates the feature align-
ment under large motion. The adaptive separable convo-
lution [31] used in LAM enables flexibly integrating the
useful information in neighboring frames to compensate for
the missing content in the reference frame, which facilitates
the feature alignment under noise and saturation. Then, a
reconstruction module is applied to reconstruct the HDR
video from the aligned features. Our two-stage alignment
network can effectively handle complex motion and recon-
struct high-quality HDR video. In summary, our contribu-
tions are as follows:

• We propose a large real-world HDR video reconstruction
dataset, featuring various scenes, diverse motion patterns,
and high-quality labels. Our dataset cannot only serve as
a benchmark for HDR video reconstruction but also be
applied to other HDR imaging tasks.

• We propose an end-to-end network for HDR video re-
construction, in which we design a two-stage strategy to
perform alignment sequentially. Our network can effec-
tively handle complex motion and achieve high-quality
HDR video reconstruction.

• Extensive experiments demonstrate the superiority of our
dataset and our method. Our work provides a new plat-
form for researchers to explore real-world HDR video re-
construction techniques.

2. Related Work

HDR Image Reconstruction Many methods[5, 16, 22,
33, 34] attempt to perform HDR reconstruction from a sin-
gle LDR image. However, these methods cannot effec-
tively handle the noise and saturation due to the limited
information in a single image. There are methods[15, 35]
for HDR reconstruction from multi-exposure LDR images.
Although these methods work well for static scenes, they
generally suffer from ghosting artifacts when tackling dy-
namic scenes. Therefore, many HDR deghosting methods
[3, 9, 23, 42, 43] are proposed to alleviate this issue.

HDR Video Reconstruction Datasets Kalantari et al. [19]
captured 5 LDR sequences with two alternating exposures.
To quantitatively evaluate HDR video reconstruction meth-
ods, Chen et al. [4] collected 76 dynamic image pairs, 49
static image pairs, and 50 unlabeled LDR sequences with
two alternating exposures. However, the number of distinct
scenes and the motion patterns in their dataset are limited,
making it unsuitable for supervised training. Recently, Yue
et al. [45] collected 85 real-world LDRs-HDRs video pairs
using a mobile phone, but, until now, they are not publicly
accessible. In addition, they use two images with different
exposures to generate an HDR label, which may not cover
the full dynamic range of the scene, resulting in limited-
quality HDR labels. Due to the lack of publicly accessi-
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Table 1. Comparison between different datasets.

Dataset GT Numbers Motion patterns Scenes
Chen21 (Dynamic) [4] central frame 76 LM ID

Chen21 (Static) [4]
only one

static frame 49 Static ID, IN, OD, ON

Ours per frame 500 GM, LM, FM ID, IN, OD, ON

1. Our dataset contains per-frame HDR labels, while the Chen21 dataset only contains
the HDR labels for the center frames.
2. GM and LM denote global motion (where only the camera is moving) and local
motion (where only the foreground is moving), respectively. FM denotes full motion
(where both foreground and camera are moving).
3. OD, ON, ID and IN denote outdoor daytime, outdoor nighttime, indoor daytime
and indoor nighttime, respectively.

ble large-scale real-world datasets, existing models are still
trained on the synthetic dataset [4], which hinders the de-
velopment of real-world HDR video reconstruction.
HDR Video Reconstruction There are mainly two types
of methods to obtain HDR videos: hardware-based methods
and computational-based methods. The hardware-based
methods [12, 27, 30, 32] typically rely on specialized hard-
ware systems (e.g., beam splitter), which are typically too
expensive to be widely adopted.

The computational-based methods reconstruct the HDR
video from alternatingly-exposed sequences. Kang et
al. [20] proposed the first method in this direction, which
used optical flow to align the input frames and then merged
the aligned frames to generate HDR videos. Mangiat et
al. [24] improved [20] by introducing a block-based mo-
tion estimation method with a refinement stage for ghost re-
moval. Kalantari et al. [19] proposed a patch-based method
to synthesize the missing exposures at each frame, and these
synthesized images are then fused into an HDR frame.

Recently, learning based methods have shown their ef-
fectiveness on HDR video reconstruction. Kalantari et
al. [18] proposed a flow-based framework, which consists
of an optical flow network for alignment and a weight net-
work for merging images. Chen et al. [4] and Yue et al. [45]
used both optical flow and deformable convolution to per-
form alignment for reconstructing HDR videos. Unfortu-
nately, these methods typically generate ghosting artifacts
since the estimated flows are prone to be inaccurate due to
the noise and saturation. More recently, Chung et al. [6]
proposed a luminance-based alignment network for HDR
video reconstruction. However, it cannot properly deal with
the under-exposed and over-exposed areas of inputs, result-
ing in unpleasing artifacts.

3. Proposed Dataset
To favor the development of real-world HDR video re-
construction, we construct a large-scale real-world HDR
video reconstruction dataset, named Real-HDRV. Actu-
ally, it is extremely challenging to simultaneously capture
alternatingly-exposed LDR sequences and the correspond-
ing HDR sequences for dynamic scenes. One may use a
beam splitter and two cameras to build a complex optical

system to capture two videos with different exposures si-
multaneously and then generate the HDR video using the
captured two videos. However, the amount of light is halved
by the beam splitter[8, 38], which limits the quality of HDR
labels. Instead of relying on complex optical systems, to get
LDRs-HDRs video pairs and ensure the quality of the HDR
labels, we capture LDRs-HDRs video pairs in a frame-by-
frame manner. We manually create motions between neigh-
boring frames and capture a multi-exposure image stack (7
LDR images) for each static frame.

One crucial problem that needs to be addressed is how to
ensure that the high-quality HDR label can be obtained af-
ter capturing each multi-exposure image stack. The details
are as follows: (1) We use a camera with high continuous
shooting speed (up to 40 frames/sec), the Canon R6 Mark2,
which enables us to capture a multi-exposure image stack
in a very short period of time with one depression of the
wireless shutter. During the capturing, the camera can al-
most avoid introducing extra motion, such as camera shake,
object movement, etc. (2) We carefully select the relatively
static scenes and manually create different types of motion
(i.e., global motion, local motion, and full motion) between
neighboring frames to make the motion controllable and di-
verse. In addition, the camera is mounted on a tripod, and a
wireless remote controller is used to avoid introducing extra
motion caused by the shutter release.

Thanks to the high-speed shooting performance of the
camera and the careful shooting procedure, we can ensure
there is almost no motion between the images in each multi-
exposure image stack. Also, each multi-exposure image
stack can provide enough images with different exposures
(7 images with different exposures guarantee to cover the
full dynamic range of a scene). Then, the per-frame high-
quality HDR label can be generated from images in each
multi-exposure image stack by using the method in [7], and
the LDR images can be arranged in a periodic exposure to
generate sequences with alternating exposures1. Therefore,
we can collect LDRs-HDRs video pairs in a frame-by-frame
manner. Specifically, for each frame, we capture a multi-
exposure image stack of 7 LDR images spaced by ±i-EV
difference where i ∈ 1, 2, 3 around the reference exposure.
Then, we manually create different types of motion between
neighboring frames to capture the following image stacks.
Finally, all the image stacks are grouped in their temporal
order to generate the LDRs-HDRs video pairs.

In total, we collected 500 LDRs-HDRs video pairs, each
containing 7 to 10 frames. For each frame, 7 differently-
exposed LDR images and a high-quality HDR label can be

1Since we focus on HDR video reconstruction from sequences with two
alternating exposures, we selected LDR frames in a periodic exposure (i.e.,
{EV-3, EV0, EV-3, EV0, ...}, {EV-2, EV+1, EV-2, EV+1, ...} or {EV-1,
EV+2, EV-1, EV+2, ...}.) to generate the sequences with two alternating
exposures. Note that the LDR frames can be selected in different exposure
orders for HDR video reconstruction.
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Figure 2. (a) Some typical scenes in our dataset, which can be categorized into 4 categories: indoor daytime (ID), indoor nighttime (IN),
outdoor daytime (OD), and outdoor nighttime (ON) scenes. (b) Our dataset contains three kinds of motion: global motion (where only the
camera is moving), local motion (where only the foreground is moving), and full motion (where both foreground and camera are moving).
(c) Scene and motion distributions of our dataset. (d) Diversity comparison: our dataset vs. the Chen21 dataset [4]. (e) Statistics of motion
directions in our dataset. We plot a circular histogram, where the color of each bin represents the direction of motion, and the height of the
bar represents the proportion of specific directions to all the directions. The per-pixel flow in each frame is computed via RAFT[36].

Table 2. Metrics to assess the diversity of different datasets.
Metrics on the extent of HDR

FHLP Fraction of HighLight Pixel: defined in [11]
EHL Extent of HighLight: defined in [11]

Metrics on intra-frame diversity
SI Spatial Information: defined in [1]
CF ColorFulness: defined in [14]

stdL standard deviation of Luminance: defined in [11]
Metrics on the overall-style

ALL Average Luminance Level: defined in [11]

DR
Dynamic Range [16]: calculated as the log10 differences between

the highest 2% luminance and the lowest 2% luminance.
Among these aspects, greater extent of HDR represents more probability for the network to learn pixel in ad-
vanced HDR volume beyond LDR’s capability, higher intra-frame diversity means that the network may learn
better generalization capability. We use these metrics to verify the diversity of our dataset

provided. All the images are captured in RAW format with
resolution of 6000×4000. We performed the demosaicing,
white balancing, color correction, and gamma compression
(γ = 2.2) to convert the raw data to RGB data. In this work,
we rescaled the images to 1500×1000 for training and test-
ing. Figure 2 shows some typical scenes in our dataset and
the statistical indicators of our dataset. In addition, since
our dataset provides data in RAW format, the data process-
ing pipeline is highly flexible. Therefore, our dataset can
be easily adjusted to make training data for different HDR
tasks for future research.
Analysis of Our Dataset To quantitatively evaluate the
superiority of our dataset, we analyzed the diversity of the
Chen21 dataset[4] and our dataset. Following [11, 16], the
7 metrics defined in Table 2 are utilized to assess the diver-
sity of different datasets from 3 aspects, including the ex-
tent of HDR, the intra-frame diversity and the overall style
of HDR. For each HDR label, 7 different metrics are calcu-
lated according to Table 2. Then, we use the t-SNE [37]

Table 3. Statistics of HDR labels in different datasets. Besides the
DR, all numbers are in percentage.

Extent of HDR Intra-frame Diversity Overall-style
Dataset FHLP EHL SI CF stdL ALL DR

Chen21 [4] 8.85 2.46 8.93 2.77 11.35 5.29 2.54
Ours 13.75 2.72 9.16 4.30 12.13 5.05 2.73

to project the single frame’s 7-D vector (consisting of 7
metrics from Table 2) to the corresponding 2D-coordinate
for plotting the frame distribution of our dataset and the
Chen21 dataset. As shown in Fig. 2 (d), our dataset con-
tains wider frame distribution than the Chen21 dataset, in-
dicating that the networks trained with our dataset may be
better generalized to different scenarios. And the statistics
of different datasets are shown in Table 3. In addition, our
dataset contains more diverse motion patterns (see Table 1
and Fig. 2 (c)). The diversity in both scenes and motion
patterns makes that our dataset can naturally be used for
training deep networks and assessing the generalization ca-
pability of the networks across different scenes.

4. Proposed Method
Global motion (caused by camera movements) and local
motion (caused by object motion) are almost inevitable
when capturing videos, which imposes a core issue for HDR
video reconstruction: how to perform alignment for the
alternatingly-exposed inputs. Without effective alignment,
the areas with motion in neighboring frames cannot be prop-
erly utilized to reconstruct the HDR frame, leading to severe
ghosting artifacts. In this work, considering the differences
between the global motion and local motion, we introduce
a two-stage alignment network for HDR video reconstruc-
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Figure 3. The architecture of our proposed network.

tion, which firstly performs alignment for the inputs (from
global to local) and then adaptively fuses the aligned fea-
tures to reconstruct the HDR video.
Overview Given an input LDR video {Ii |i = 1,...,n} with
alternating exposures {ti |i = 1,...,n} 2, our target is to recon-
struct the corresponding HDR video {Hi |i = 1,...,n}. Fol-
lowing [4, 18], the input images are firstly mapped into the
linear HDR domain by applying gamma correction:

Īi = Iγi /ti , (γ = 2.2) . (1)

where ti is the exposure time of Ii . Then, the input im-
age Ii and the linear image Īi are concatenated into a 6-
channels input Xi . Our network takes three continuous
frames {Xi−1 , Xi , Xi+1} as input and predicts the HDR
frame Ĥi for the center frame. As shown in Fig. 3, our net-
work consists of the global alignment module (GAM) for
compensating global motion, the local alignment module
(LAM) for compensating local motion, and the reconstruc-
tion module for reconstructing the HDR frame.
Global Alignment Module The global motion is rela-
tively simple, which does not need to be modeled by dense
pixel-wise optical flow with high Degree-of-Freedoms. In-
spired by [39, 44], we use the pre-defined offset bases with
8 Degree-of-Freedoms (with each 2 for translation, rotation,
scale, perspective [13]) to model the global motion. Specif-
ically, we design the GAM to estimate a weighted sum of
8 pre-defined offset bases for generating the global offsets.
The global offsets are then used to spatially transform the
inputs. Since all the operations in the GAM are differen-
tiable, the GAM can be optimized through end-to-end train-
ing. In this way, the GAM can adaptively learn to compen-
sate for the global motion between neighboring frames.

As shown in Fig. 3, given the input {Xj |j = i −1, i , i +
1}, the GAM firstly uses a shared encoding layer to extract
feature maps Gj with 16 channels from inputs. Then, the

2For example, the input sequences can alternate between two exposures
{EV0, EV+3, EV0, EV+3, ...} or three exposures {EV-2, EV0, EV+2,
EV-2, EV0, EV+2, ...}. In this work, we reconstruct the HDR video from
sequences with two alternating exposures, while our network can be easily
extended to other cases (e.g., three exposures).

features {Gj |j = i − 1, i + 1} of neighboring frames are
fed into the weights estimation module E (.) (see our sup-
plementary file for the detailed architecture) along with the
feature map Gi of the reference image to obtain the corre-
sponding weights {α1k, α2k}, generating the global offsets:

Oi−1 ,i =

8∑
k=1

α1knk (k = 1, 2, ..., 8) , (2a)

Oi+1 ,i =

8∑
k=1

α2knk (k = 1, 2, ..., 8) . (2b)

where the pre-defined offset bases nk are computed with
the same settings in [44]. The global offsets are then used
to spatially transform the neighboring frames for compen-
sating global motion between neighboring frames.
Local Alignment Module The LAM is designed to per-
form local alignment, which estimates the kernel weights
at multiple scales in a coarse-to-fine manner and then
performs a transformation for input features using adap-
tive separable convolution[31] with the estimated kernel
weights. In this way, the LAM can adaptively learn to inte-
grate useful information in neighboring frames to compen-
sate the missing content in reference frame, which facili-
tates the feature alignment under the noise and saturation.

First, the shallow features {Fj |j = i − 1, i , i + 1} of in-
put images are extracted. Inspired by Mertens et al. [28], the
contrast maps cj , exposure wellness maps ej , and saturation
maps sj are extracted to provide the exposure information
of the inputs. All three maps are concatenated together to
generate the adaptive masks Mj for input images. To handle
large motions, the pyramidal processing is adopted, we gen-
erate an L-level pyramid of feature representation {F l

j |j =
i − 1, i , i +1; l = 1, ..., L} for input images and an L-level
pyramid of masks {M l

j |j = i − 1, i , i + 1; l = 1, ..., L}.
Then, we concatenate the corresponding masks and fea-
tures along the channel dimension at each level to obtain the
pyramid of tensors {Kl

j |j = i − 1, i , i + 1; l = 1, ..., L},
which are then utilized to predict kernel weights W l

j for
neighboring features. With the predicted kernel weights, the
aligned features Al

j can be obtained after performing adap-
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Figure 4. The architecture of local alignment module (LAM).

tive separable convolution for neighboring features. Specif-
ically, at the l-th level, kernel weights and aligned features
are predicted also with the ×2 upsampled kernel weights
and aligned features from the upper (l + 1)-th level, respec-
tively (red dot lines in Fig. 4):

W l
i−1,W

l
i+1 = g

(
[Kl

i−1 ,K
l
i ,K

l
i+1 ,(

W l+1
i−1

)↑×2
,
(
W l+1

i+1

)↑×2
]
)
,

(3a)

Al
i−1 = h

(
ASConv

(
F l
i−1 ,W

l
i−1

)
,
(
Al+1

i−1

)↑×2
)
, (3b)

Al
i+1 = h

(
ASConv

(
F l
i+1 ,W

l
i+1

)
,
(
Al+1

i+1

)↑×2
)
. (3c)

where (.)
↑×2 is the upscaling operation with a factor of

2, [.] is the concat operation, g (.) is the kernel weights pre-
dictor consisting of several convolution layers, ASConv (.)
denotes the adaptive separable convolution, h (.) is the gen-
eral function with several convolution layers. We use three-
level pyramid, i.e., L=3, in LAM. The kernel size is set to
31 in the adaptive separable convolution.
Fusion and Reconstruction The fusion module is used
to fuse the aligned features, which can suppress the harm-
ful features from under-exposed and over-exposed areas. As
shown in Fig. 5, the aligned features are concatenated as the
input of the fusion module, generating fusion masks for fus-
ing the aligned features Aj . Then, the fused feature Ffusion

is passed through a series of residual blocks. Two skip con-
nections are added to concatenate shallow features of the
reference frame. Finally, the HDR frame Ĥ can be obtained
after a convolution layer and a sigmoid activation layer.
Loss Function Since HDR images are typically displayed
after tonemapping, following [4, 18, 42], we use the µ-law
tonemapping function to the HDR image:

T (H) =
log (1 + µH)

log (1 + µ)
, µ = 5000. (4)

where T (H) denotes the tonemapped HDR image. We
train the network by minimizing the l1 loss distance L =
||T

(
Ĥ
)
− T

(
H
)
|| between the tonemapped estimated Ĥ

and ground truth H .
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Figure 5. The architecture of fusion module.

5. Experiments
5.1. Experimental Settings

Datasets There are three datasets adopted, including
our Real-HDRV, the Chen21 dataset [4] and the synthetic
dataset [4]. As for our dataset, it is divided into the training
collection (450 videos) and the testing collection (27 videos
for indoor daytime and outdoor daytime scenes, 23 videos
for indoor nighttime and outdoor nighttime scenes). Each
video in the testing collection provides 8 LDR frames with
two alternating exposures and the corresponding HDR la-
bels. As for the synthetic dataset, we utilized 21 existing
HDR videos from [8, 21] and Vimeo-90K [41] to synthe-
size the dataset with the same settings as in [4]. The Chen21
dataset contains 76 dynamic image pairs, 49 static image
pairs augmented with random global motion, and 50 unla-
beled sequences with two alternating exposures.
Implementation Details We generate LDR sequences
with two alternate exposures separated by three stops for
each video in our training collection. We then sample three
LDR frames as input and produce the HDR label for the
center frame to generate a training sample. We crop patches
of size 256×256 with a stride of 128 from the training set
for training. Random rotation and flipping augmentation
are applied. We use Adam optimizer, and set the batch size
and initial learning rate as 4 and 0.0001, respectively. We
implement our model using PyTorch with 6 NVIDIA 3090
GPUs and train for 100 epochs.
Evaluation Metrics We use six common metrics for test-
ing, i.e., HDR-VDP-2 [25], PSNR-µ, SSIM-µ, PU-PSNR,
PU-SSIM and HDR-VQM [29]. PSNR-µ and SSIM-µ are
computed after tonemapping with µ-law function (in Equa-
tion (4)). PU-PSNR and PU-SSIM are computed after per-
ceptually uniform encoding [26]. When computing the
HDR-VDP-2, the diagonal display size is set to 30 inches.

5.2. Evaluation of Our Proposed Dataset

To evaluate the effectiveness of our dataset, we compare our
dataset with the synthetic dataset [4]. We train representa-
tive HDR reconstruction models [4, 6, 18, 23, 42] on our
dataset and the synthetic dataset, and evaluate the perfor-
mance of trained models on the Chen21 dataset [4].
Quantitative Results As shown in Table 4, the models
trained on our dataset can achieve better performance on
the real-world dataset [4] than the models trained on the
synthetic dataset, demonstrating the effectiveness of our
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Table 4. Quantitative comparison for training on the synthetic dataset [4] or our dataset, while evaluating on the Chen21 dataset [4]. The
better results are highlighted in bold. Among these evaluation metrics, the higher quality of the tested HDR image leads to the higher score.

Training Evaluation on the dynamic set Evaluation on the static set
Methods dataset PSNR-µ SSIM-µ PU-PSNR PU-SSIM HDR-VDP-2 HDR-VQM PSNR-µ SSIM-µ PU-PSNR PU-SSIM HDR-VDP-2 HDR-VQM

AHDRNet [42]
Synthetic 44.34 0.9668 38.48 0.9718 62.05 84.56 38.38 0.9329 32.99 0.9422 58.19 71.40

Our 45.02 0.9741 39.17 0.9808 62.51 89.60 40.16 0.9589 34.69 0.9638 59.53 77.84

Kalantari19 [18]
Synthetic 44.15 0.9637 38.39 0.9728 59.44 86.56 40.59 0.9316 35.22 0.9429 57.53 74.60

Our 45.31 0.9689 39.37 0.9757 61.39 86.95 41.19 0.9336 36.03 0.9429 59.69 81.83

Chen21 [4]
Synthetic 45.46 0.9706 39.46 0.9760 61.26 87.40 41.21 0.9412 35.81 0.9483 59.19 78.98

Our 45.65 0.9716 39.79 0.9768 61.39 90.33 41.37 0.9419 36.20 0.9516 59.46 81.43

CA-ViT [23]
Synthetic 44.76 0.9664 38.81 0.9714 61.95 88.78 38.26 0.9252 32.84 0.9368 58.27 71.90

Our 45.19 0.9744 39.33 0.9814 62.43 90.41 39.91 0.9570 34.30 0.9609 59.05 77.69

LAN-HDR [6]
Synthetic 44.81 0.9714 38.64 0.9773 61.64 88.86 39.34 0.9424 33.87 0.9490 57.12 70.47

Our 45.38 0.9743 39.53 0.9804 62.83 88.96 40.09 0.9565 34.63 0.9595 59.78 79.29
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Figure 6. Visual comparison of different models trained on the
synthetic dataset [4] and our dataset.

dataset. For example, compared with Kalantari19 trained
on the synthetic dataset, the same model trained on our
dataset can achieve more than 1 dB gain (PSNR-µ) on the
dynamic set of Chen21 dataset, which is significant. Similar
improvements can also be observed in other methods.

Qualitative Results The visual comparison for the mod-
els trained on different datasets is provided in Fig. 6. Obvi-
ously, the models trained on our dataset yield better visual
quality, while the models trained on the synthetic dataset
typically yield severe ghosting artifacts or color distortions.
The superior performance of the models trained with our
datasets comes from the real degradation distribution in our
dataset (more qualitative comparisons are provided in sup-
plementary file). In summary, models trained on our Real-
HDRV can better handle real-world scenes, demonstrating
the effectiveness of our dataset.

Evaluation on Unlabeled Real-World Dataset We also
evaluate the varying models on unlabeled sequences of the
Chen21 dataset [4]. The visual comparison is provided in
Fig. 7. As seen, when the reference frame is low-exposure,
the models trained on our dataset can recover clear details,
while the models trained on the synthetic dataset generate
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Kalantari19[18] Chen21[4] LAN-HDR[6]

Figure 7. Visual example of models trained on different datasets.

corrupted details or color distortions. Similar improvements
can be observed when the reference frame is high-exposure,
please refer to our supplementary file for more details.

5.3. Evaluation of Our Proposed Method

We compare our method with prevalent state-of-the-art
HDR video reconstruction methods [4, 6, 18, 19, 45] and
state-of-the-art HDR deghosting methods [23, 42] on our
dataset for a comprehensive evaluation. For a fair compar-
ison, we use their officially released codes, if accessible,
otherwise, we re-implement their methods based on their
papers. Note that the AHDRNet [42] and CA-ViT [23] are
adapted for HDR video reconstruction by changing the net-
work input. In addition, we evaluate our method on the
Chen21 dataset[4] to demonstrate the generalization of our
method (more details can be found in supplementary file).
Quantitative Results The quantitative comparison be-
tween our method and other methods is listed in Table 5.
Compared to other methods, our method achieves the best
average performance in all the evaluation metrics, demon-
strating the effectiveness of our method. In addition, eval-
uated in different scenes, our method can also acquire the
best performance, demonstrating that our method can better
handle sequences under different real scenes.
Qualitative Results The visual comparison of varying
methods on our dataset is shown in Fig. 8. Obviously, our
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Table 5. Quantitative comparison of our method with state-of-the-art methods on our dataset. Red text indicates the best and blue text
indicates the second best result, respectively. ID&OD denotes indoor daytime and outdoor daytime scenes. IN&ON denotes indoor
nighttime and outdoor nighttime scenes.

PSNR-µ SSIM-µ PU-PSNR PU-SSIM HDR-VDP-2 HDR-VQM
Methods ID&OD IN&ON Avg ID&OD IN&ON Avg ID&OD IN&ON Avg ID&OD IN&ON Avg ID&OD IN&ON Avg ID&OD IN&ON Avg

Kalantari13[19] 41.27 37.24 39.41 0.9697 0.9246 0.9490 35.11 31.76 33.57 0.9738 0.9439 0.9601 58.03 56.42 57.30 90.67 78.80 85.21
AHDRNet[42] 45.02 40.72 43.06 0.9840 0.9613 0.9736 38.96 35.08 37.17 0.9831 0.9666 0.9755 60.53 57.78 59.27 90.20 77.60 84.40
Kalantari19[18] 43.90 39.23 41.75 0.9769 0.9437 0.9616 38.07 33.99 36.19 0.9797 0.9576 0.9695 61.61 59.05 60.43 92.13 82.16 87.54

Chen21[4] 44.42 39.43 42.12 0.9789 0.9466 0.9640 38.70 34.29 36.67 0.9832 0.9612 0.9731 63.89 60.70 62.41 94.22 83.93 89.49
CA-ViT [23] 44.65 40.16 42.58 0.9834 0.9603 0.9728 38.44 34.34 36.55 0.9820 0.9651 0.9743 60.62 57.38 59.13 90.38 77.63 84.51
Yue23 [45] 45.42 41.20 43.48 0.9849 0.9626 0.9746 39.37 35.65 37.66 0.9845 0.9682 0.9770 62.93 59.70 61.44 93.23 82.99 88.52

LAN-HDR[6] 44.23 40.54 42.53 0.9836 0.9607 0.9731 38.16 34.93 36.67 0.9823 0.9646 0.9742 60.89 58.38 59.73 91.28 78.73 85.51
Ours 45.81 41.58 43.86 0.9856 0.9643 0.9758 39.83 36.10 38.11 0.9860 0.9711 0.9792 65.34 61.40 63.53 94.47 84.13 89.71

LDR inputs        Our Results      Kalantari13      AHDRNet Kalantari19 Chen21 CA-ViT Yue23 LAN-HDR Ours HDR label

Figure 8. Visual comparison of different networks trained on our dataset. Please zoom in for more details.

Table 6. Computation complexity comparison. All methods are
executed on a Nvidia 3090 GPU.

Methods Kalantari19[18] Chen21[4] Yue23[45] LAN-HDR[6] Ours
Params. (M) 10.39 6.44 3.5 7.31 5.98

Flops (T) 2.13 5.29 3.96 1.24 2.07
Time (s) 0.24 0.87 0.76 0.55 0.34

method achieves more excellent visual quality than other
methods, which can recover the missing content of the over-
exposed areas without introducing artifacts when the ref-
erence frame is high-exposure (see the 1st row in Fig. 8).
Also, our method can better remove the noise and faithfully
preserve the structure of the under-exposed areas when the
reference frame is low-exposure (see the 2nd row in Fig. 8).
In contrast, due to the inaccurate-prone flow, the flow-based
methods [4, 18, 19, 45] usually suffer from unpleasing arti-
facts for the over-exposed areas, and they cannot faithfully
recover the details in the under-exposed areas. Additionally,
due to the lack of effective alignment, the attention-based
methods [23, 42] can easily introduce ghosting artifacts.

Complexity Comparisons For each test method, we
record the quantity of the model parameters, the execution
time and the floating point operations (flops) of generating
an HDR frame with the size of 1500 × 1000. As shown
in Table 6, our model can achieve the best trade-off between
the performance and the computational cost.

Ablation Study To analyze the effectiveness of each com-
ponent in our network, we conduct comprehensive ablation
studies on our dataset. As shown in Table 7, the GAM and
LAM both improve the performance, demonstrating the ef-
fectiveness of the GAM and the LAM. On the one hand, the
model (Baseline) performs poorly when directly conducting

Table 7. Quantitative results of the ablation studies. Our baseline
network uses the same architecture as our full model (Model4),
but with the GAM and the LAM removed

Models Baseline GAM LAM HDR-VDP-2 PSNR-µ HDR-VQM
Model1 ✓ × × 59.49 42.67 85.34
Model2 ✓ ✓ × 61.72 43.07 87.62
Model3 ✓ × ✓ 62.58 43.61 88.45
Model4 ✓ ✓ ✓ 63.53 43.86 89.71

HDR video reconstruction without performing alignment,
demonstrating that the alignment is very critical to HDR
video reconstruction. On the other hand, by using the GAM
to perform global alignment, our full model can more ef-
fectively handle the complex motion, obtaining the higher
HDR-VDP-2 score and the higher HDR-VQM score than
ours (w/o GAM). Also, our full model can achieve better
performance than ours (w/o LAM).

6. Conclusion
We constructed a novel dataset for HDR video recon-
struction, which contains various scenes, diverse motion
patterns, and high-quality labels. Our dataset can also be
applied to other HDR tasks for future research. Then, we
proposed a novel framework for HDR video reconstruction,
which considers the differences between global motion
and local motion. The designed GAM enables our frame-
work to better handle global motion. And the designed
LAM can adaptively integrate the useful information
in neighboring frames to help reconstruct the reference
HDR frame, effectively decreasing the ghosting artifacts
caused by large local motion. Extensive experiments
demonstrate the superiority of our dataset and our method.
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Leonardis, Gregory Slabaugh, and Eduardo Pérez-Pellitero.
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[32] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide
Scaramuzza. High speed and high dynamic range video with
an event camera. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(6):1964–1980, 2021. 1, 3

[33] Erik Reinhard, Michael Stark, Peter Shirley, and James Fer-
werda. Photographic tone reproduction for digital images.
ACM Transactions on Graphics, 21(3):267–276, 2002. 2

[34] Allan G. Rempel, Matthew Trentacoste, Helge Seetzen,
H. David Young, Wolfgang Heidrich, Lorne Whitehead, and
Greg Ward. Ldr2hdr: on-the-fly reverse tone mapping of
legacy video and photographs. In ACM International Con-
ferenceon Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 39–es, 2007. 2

[35] Pradeep Sen, Nima Khademi Kalantari, Maziar Yaesoubi,
Soheil Darabi, Dan B Goldman, and Eli Shechtman. Ro-
bust patch-based hdr reconstruction of dynamic scenes. ACM
Transactions on Graphics, 31(6):203–1, 2012. 2

[36] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European Conference on
Computer Vision (ECCV), pages 402–419, 2020. 4

[37] Laurens vd Maaten and Geoffrey Hinton. Visualizing data
using t-sne. Journal of machine learning research, 9(11):
2579–2605, 2008. 4

[38] Ruixing Wang, Xiaogang Xu, Chi-Wing Fu, Jiangbo Lu, Bei
Yu, and Jiaya Jia. Seeing dynamic scene in the dark: A high-
quality video dataset with mechatronic alignment. In IEEE
International Conference on Computer Vision (ICCV), pages
9700–9709, 2021. 3

[39] Jonas Wulff and Michael J. Black. Efficient sparse-to-dense
optical flow estimation using a learned basis and layers. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 120–130, 2015. 5

[40] Gangwei Xu, Yujin Wang, Jinwei Gu, Tianfan Xue, and Xin
Yang. Hdrflow: Real-time hdr video reconstruction with
large motions, 2024. 1

[41] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision, 127:1106–
1125, 2019. 6

[42] Qingsen Yan, Dong Gong, Qinfeng Shi, Anton van den Hen-
gel, Chunhua Shen, Ian Reid, and Yanning Zhang. Attention-
guided network for ghost-free high dynamic range imaging.

In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1751–1760, 2019. 1, 2, 6, 7, 8

[43] Qingsen Yan, Weiye Chen, Song Zhang, Yu Zhu, Jinqiu Sun,
and Yanning Zhang. A unified hdr imaging method with
pixel and patch level. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 22211–22220,
2023. 2

[44] Nianjin Ye, Chuan Wang, Haoqiang Fan, and Shuaicheng
Liu. Motion basis learning for unsupervised deep homog-
raphy estimation with subspace projection. In IEEE In-
ternational Conference on Computer Vision (ICCV), pages
13097–13105, 2021. 5

[45] Huanjing Yue, Yubo Peng, Biting Yu, Xuanwu Yin, Zhenyu
Zhou, and Jingyu Yang. Hdr video reconstruction with a
large dynamic dataset in raw and srgb domains, 2023. 2, 3,
7, 8

[46] Yunhao Zou, Chenggang Yan, and Ying Fu. Rawhdr: High
dynamic range image reconstruction from a single raw im-
age. In IEEE International Conference on Computer Vision
(ICCV), pages 12334–12344, 2023. 2

2888


