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Abstract

Neural radiance field (NeRF) is an emerging technique
for 3D scene reconstruction and modeling. However, current
NeRF-based methods are limited in the capabilities of adding
or removing objects. This paper fills the aforementioned
gap by proposing a new language-driven method for object
manipulation in NeRFs through dataset updates. Specifically,
to insert an object represented by a set of multi-view images
into a background NeRF, we use a text-to-image diffusion
model to blend the object into the given background across
views. The generated images are then used to update the
NeRF so that we can render view-consistent images of the
object within the background. To ensure view consistency,
we propose a dataset update strategy that prioritizes the
radiance field training based on camera poses in a pose-
ordered manner. We validate our method in two case studies:
object insertion and object removal. Experimental results
show that our method can generate photo-realistic results
and achieves state-of-the-art performance in NeRF editing.

1. Introduction

Editing of 3D scenes by insertion or removal of objects has
been a fundamental task in computer graphics and computer
vision. The task has often been performed using traditional
3D scene authoring tools [5, 9]. For example, to insert an
object into a 3D scene, traditional approach requires user to
manually select the object and position it into the scene. This
manual pipeline has been adopted in a wide range of appli-
cations, such as furniture arrangement in interior design [15]
and asset creation in game development [10, 13].

Recent advances in deep learning have opened new direc-
tions to scene modeling. Neural radiance field (NeRF) [40]
is a pioneer to render view-consistent photo-realistic im-
ages using neural networks. Generative models such as
generative adversarial networks (GANs) [12] and diffusion
models [17] learn to output photo-realistic images from un-

• • •

Input: multi-view object images & object text prompt

“ a ∗ [object noun] ”

• • •

• • •

Input: multi-view background images & background text prompt

“ a ∗ [background noun] ”

• • •

Output: multi-view object-blended images & novel view synthesis

• • •

Input: target text prompt “ a ∗ [object noun] on a ∗ [background noun] ”

Figure 1. Object insertion. We propose a language-driven method
for view-consistent 3D object insertion into a background NeRF
scene. Given an object defined by a set of multi-view images, our
method generates plausible text-guided insertion results that require
geometry manipulation of the original background NeRF.

constrained image collections. Recent text-guided diffusion
models [50, 51, 53] have shown great promise in generating
high-quality and diverse images from a single text prompt.

Such successes inspire us to revisit 3D scene editing via
language-driven image synthesis techniques. Particularly,
for object insertion (see Fig. 1), our method performs view-
consistent edits by taking as input a set of multi-view object
images, multi-view background images, and a target text
prompt. We utilize a text-to-image diffusion model to con-
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tinuously synthesize multi-view images containing both a
target object and a background during NeRF training. These
synthesized images can be iteratively used to refine the NeRF
of the background to learn geometric and appearance fea-
tures of the object. This approach to refining a radiance
field is also known as dataset update [14]. However, a par-
ticular challenge is that the refinement process may result
in unstable NeRF training, degrading its rendering quality
due to inconsistent views synthesized. To address this is-
sue, we propose a pose-conditioned dataset update strategy
that gradually engages the target object into the background,
beginning at a randomly selected pose (view), then views
close to the already-used views before propagating to views
further away. We observe that this pose-conditioned strategy
significantly improves the NeRF learning, reducing render-
ing artifacts and maintaining view-consistent rendering. In
summary, we make the following contributions in our work.
• We propose a new framework for object manipulation in

NeRFs via text-to-image diffusion. Our work can create
high-quality 3D scenes from simple inputs (text prompts
and multi-view images). It, therefore, has the potential for
conveniently building a variant of 3D object libraries that
is applicable for the scene editing task.

• We propose a pose-conditioned dataset update strategy that
stabilizes the fusion of objects into a background NeRF,
enabling view-consistent rendering. Our method requires
no priors on the geometry or texture of the objects, unlike
existing works relying on accurate meshes [7, 20, 31, 81],
depth maps [42, 67], fine masks [58, 63], semantics [1], or
lighting assumption [69, 78].

• We showcase our method in two case studies: object inser-
tion and object removal via a user-friendly manner. Specif-
ically, we use a 3D bounding box to define the location
for object insertion/removal. Box-based location requires
only a rough orientation, which is easy to be adjusted and
visualized using real-time NeRF GUIs [43, 59].

• We conduct extensive experiments to validate key tech-
niques of our method and demonstrate its state-of-the-art
performance in NeRF editing.

2. Related work
Image synthesis. Early attempts in deep learning-based
image synthesis have utilized generative models such as
GANs [12]. Several methods combine supervised losses with
adversarial losses to learn class-conditional GANs [41] and
image-to-image translations [21, 65, 80]. StyleGAN [22]
and its variants [23, 24] perform image editing directly on
latent representations, but such editings are not intuitive and
thus difficult to control the output.

Recently, diffusion models [17] have made significant
progress in image synthesis with high-quality data samples
constructed from sophisticated forward and denoising dif-
fusion steps. In addition, vision-language models such as

CLIP [49] have made text prompts an intuitive condition to
generate and edit images. These developments have led to
text-guided diffusion models [50, 51, 53] which offer excel-
lent synthesis quality. Downstream applications then can be
built by fine-tuning these text-guided models to fit with the
application domains [4, 25, 36, 52, 70, 77]. Our method fol-
lows this streamline where we use a text-to-image diffusion
model [52] to guide the fusion of objects into a background.

Neural 3D modeling. Image-based 3D modeling methods
use convolutional neural networks (CNNs) [29] to learn 3D
structures from multiple images [11, 18, 33, 60, 79]. How-
ever, CNNs often struggle to deal with complex shapes, tex-
ture, and lighting captured in the images. Follow-up works
integrate differentiable rendering and represent 3D structures
as neural surfaces [39] or shapes [8]. 3D-aware GANs inte-
grates volume rendering into their generators to synthesize
novel views from a single image [6, 45, 56, 57]. NeRFs [40]
apply the same neural rendering approach, but are optimized
on a ray rendering loss on multi-view input images. There
are methods addressing the limitations of NeRFs in various
aspects such as visual artifacts [2], data complexity [37],
camera poses [74], and computational efficiency [43, 76].

NeRF editing. NeRF editing has often been carried out
by parameter tuning [35], layer feature fusion [61], or de-
formable rays [75]. An alternative to editing a NeRF is
to directly amend the multi-view images used to learn it.
For example, NeRF stylization methods [19, 44, 46, 62]
freeze the geometry branch and optimize the color branch
in a NeRF to stylize multi-view images. Several methods
attempt to decompose an existing NeRF, which in turn holds
color information and separates voxels considering multi-
view masks [30] or semantics [27, 28]. NeRF inpainting fills
simple unseen background geometry and colors with help of
depth priors [42] or filtering inpainted multi-views [67].

Creation of complex geometry and vivid colors for a
NeRF is challenging due to higher-level requirements of
consistency. DiscoScene [72] fuses background and object
NeRFs, thus is unable to condition customized contents. Fo-
calDreamer [31] and DreamEditor [81] rely on fine meshes
to function, disregarding the advantage of multi-view rep-
resentation of NeRFs. Our method is perhaps most similar
to Instruct-NeRF2NeRF [14] which shares a related data
updating schema. However, Instruct-NeRF2NeRF [14] al-
ways generates geometry aligned with the original geometry
(e.g., transfer a sneaker to a sneaker-shape apple), thus fails
in most cases of object insertion or removals. Besides, it
requires heavy retraining of a diffusion model on large-scale
self-constructed datasets.

Recently, text-to-image diffusion has been applied to gen-
erate 3D contents. DreamFusion [47] introduced a score dis-
tillation sampling (SDS) loss that progressively consolidates

5177



(   )

“ a ∗ sneaker on a ∗ table ”“ a ∗ table ”“ a ∗ sneaker ”

fine-tuning on diffusion model loss

  most-updated NeRF training dataset

remaining pose-conditioned update list
refined images

projected masks

object images

   Diffusion Model
freeze

• • •

background images

• • •

NeRF renderings

• • •

• • •

random masks

• • • • • •

Locked Fine-tuned 
Diffusion Model

• • • • • •

• • •

• • •
• • •

start view already-included nearby views

next nearby views to add not included far views

pe
rio

di
c u

pd
at

es

NeRF       being trained
         with loss 

NeRF 

renderer

pose-ordered 

updates

bounding box 

to project

masking

add to

IbIo

M

Dθ Dθ

synthesis

R 𝝓

R𝝓 ·

B

Îb

NeRF

(   )·

B

mask-guided 
concatenation

Figure 2. Overview of our pipeline. We customize and fine-tune a text-to-image diffusion model for view synthesis in an inpainting manner
(left). We then apply the model to progressively fuse an object into background views to update a background NeRF (right). The process of
view synthesis and NeRF updating is performed repeatedly. Views generated by the diffusion model are added to an on-going dataset to
strengthen the NeRF. In return, the NeRF renders color hints for the diffusion model to create new views.

view information from a diffusion model into NeRFs. This
loss has been applied with additional treatments to image
resolution [32], conditional images [38], photo-realism [66],
or scene geometry [71]. We also adopt the SDS loss but
develop a novel training schedule to address challenges in
multi-view object and background fusion for NeRF editing.

3. Method
3.1. Overview

For the ease of presentation, we first describe our method
for object insertion. We then extend it to object removal. An
overview of our method for object insertion is illustrated in
Fig. 2. Here we aim to insert an object into a background
NeRF in two steps. In the first step, we synthesize training
views for the NeRF with the target object embedded in the
background. In the second step, the NeRF is updated with
the synthesized views to learn the geometry and appearance
of the object. There are two key challenges in this approach.
First, background preserving is required in the synthesized
views for the NeRF updating. Second, image synthesis may
generate view-inconsistent images, causing artifacts in the
resulting NeRF.

To address the first challenge (i.e., object-blended image
synthesis with background preserving), we leverage a state-
of-the-art diffusion model to image synthesis, and opt to
customize the model with text prompts for object blending
(see Sec. 3.2). We formulate this task as image inpainting
where we place a binary mask on each background image
to indicate the location where the object is inserted in, and
adjust the text prompts with both the object and background.

To achieve view-consistent renderings, we propose a new

strategy, namely pose-conditioned dataset updates, to sched-
ule the data used in the NeRF updating (see Sec. 3.3). Our
strategy is inspired by an important observation about the
nature of NeRF: a view rendered by a NeRF maintains an
extent of pose-aware color information from nearby already-
used views, the nearer the more noticeable. Therefore, if we
pass nearby renderings to the diffusion model with properly
controlled noise, view-consistent results can be generated
based on the learned color hints. From such an observation,
we design a novel data scheduler for our NeRF updating. We
initially train the NeRF using regular method on a dataset of
multi-view background images. We then progressively fuse
the object into the NeRF by iteratively updating the dataset
with object-blended background images in a pose-ordered
manner, i.e., views are sorted in such a way that new views
are acquired nearby already-used views. Our method can
also be adapted to implement object removal (see Sec. 3.4).

3.2. Object-blended image synthesis

We present our target object and background by a set of
multi-view object images Io and background images Ib. Our
goal is to build an image synthesis model that can blend the
object (from Io) into the background (from Ib) at custom
locations specified by binary masks M .

Let Dθ (with parameters θ) be such an image synthesis
model. Here we adopt a pre-trained Stable Diffusion [51] to
implement Dθ. The model Dθ includes a denoising model
ϵθ that learns the noise component ϵα ∼ N (0,1) added
in the diffusion process, where α ∈ [0, 1] is a denoising
strength. We customize Dθ with our background and object
images in an inpainting fashion. Specifically, for each image
I ∈ Ib ∪ Io, we make a masked-out (background-preserved)
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version I ⊙ M where M ∼ U is a random square binary
mask whose coordinates are sampled from a uniform dis-
tribution U and ⊙ is a pixel-wise product. The image I is
associated with a text prompt p where we use “∗” to indi-
cate our object/background identifiers [52], e.g., “∗ sneaker”
means that our target object is a sneaker and “∗ table” is our
target background. We fine-tune Dθ with the following loss:

Lsynthesis(θ) = EI,M∼U,p,ϵα∼N (0,1)

[
∥ϵα − ϵθ(I)∥22

]
(1)

Eq. 1 represents a general form for the fine-tuning process.
Intermediate steps, e.g., input formation, latent encoding-
decoding, are presented in our supplementary material.

We fine-tune the diffusion model Dθ with all the images
in Ib and Io for nbg and nobj times. After fine-tuning, we
can use Dθ to synthesize images Îb that blend the object
presented in Io into the background images Ib ∈ Ib via a
combined text prompt p̃, e.g., “a ∗ sneaker on a ∗ table”,

Dθ (Ib ⊙M, p̃, α) → Îb (2)

where α is set manually to control how much object content
in the masked area to be inpainted by Dθ (we demonstrate
how we set α for different purposes in Sec. 3.3).

3.3. Pose-conditioned dataset updates

Let Rϕ (with parameters ϕ) be our NeRF, which is initially
trained with the multi-view background images in Ib using
an existing approach [43]. We also retrieve a set of camera
poses {π(Ib)} (4× 4 matrices) for the images Ib ∈ Ib using
the pose estimation method COLMAP [54, 55].

We propose to update the NeRF Rϕ progressively with
object-blended background images generated by the fine-
tuned diffusion model Dθ. Our idea is to build a progres-
sive multi-view and pose-conditioned object-blended image
dataset Îb from Ib to be used to update Rϕ. We initialize
Î
(0)
b = ∅ and I

(0)
b = Ib. We start with a random background

image Ib ∈ Ib. Let B be a 3D bounding box, and B(Ib)
be the projection mask of B onto Ib using the camera pose
π(Ib). We generate an object-blended image Îb as,

Dθ (Ib ⊙B(Ib), p̃, α) → Îb (3)

where we set α = 1 (maximum strength) to blend the object
into the masked area by using only the knowledge that Dθ

learns from p̃ (during the fine-tuning), and colors from the
background image Ib as there is no existing color clue in the
masked area Ib ⊙B(Ib).

We update Î
(1)
b = Î

(0)
b ∪ {Îb} and I

(1)
b = I

(0)
b \ {Ib}.

We then update Rϕ using Î
(1)
b , and keep doing so by adding

images into Îb sequentially. In particular, let Î(n−1)
b be the

dataset at the (n− 1)-th step. The next image I
(n)
b ∈ Ib for

step n is selected so as it is closest (in terms of the camera
poses) to already-used images,

I
(n)
b = argmin

Ib,k∈I
(n)
b

min
Ib,j∈I

(n−1)
b

∥πT (Ib,k)− πT (Ib,j)∥2 (4)

where πT is the translation component of the pose π. This
view selection reflects the standard multi-view reconstruc-
tion pipeline where the multi-view data are collected with a
smoothly connected, inward-surrounding camera trajectory.
This requirement is also fulfilled by most NeRF datasets.

Given a background image I
(n)
b in Eq. 4, to utilize the

nearby color hints learned by Rϕ, we create a background-
preserved foreground-rendered image Ĩ

(n)
b as,

Ĩ
(n)
b = (I

(n)
b ⊙B(I

(n)
b ))⊕ (Rϕ(π(I

(n)
b ))⊙ B̄(I

(n)
b )) (5)

where Rϕ(π(I
(n)
b )) is the rendering result of Rϕ in the pose

π(I
(n)
b ) (for the background image I

(n)
b ), B̄ is the comple-

ment of B (as we want to maintain the foreground rendered
by Rϕ), and ⊕ is a pixel-wise addition.

We then generate a view-consistent image Î
(n)
b by apply-

ing Dθ to Ĩ
(n)
b defined in Eq. 5 as,

Dθ

(
Ĩ
(n)
b ⊙B(I

(n)
b ), p̃, α

)
→ Î

(n)
b (6)

where we set α to a low value to allow Dθ to utilize
color hints from previous nearby views, provided from the
rendering results Rϕ(π(I

(n)
b ). We empirically found that

α ∈ [0.3, 0.4] gives best view-consistent rendering.
Again, we update Î

(n)
b with Î

(n)
b , and update Rϕ accord-

ingly by minimizing the loss:

LNeRF(ϕ) = E
Îb∈Î

(n)
b

[
∥Rϕ(π(Îb))− Îb∥2

]
. (7)

During the updating process, we include nnear views into
the ongoing dataset for every nnew NeRF updating steps. In
addition, we periodically replace each old view by a new one
using Eqs. 5 and 6 for every nold NeRF updating steps. The
updating procedure is completed once all the background
images in Ib have been processed, i.e., I(n)b = ∅.

3.4. Adapting to object removal

Our framework can be adapted to object removal. In particu-
lar, we also fine-tune the diffusion model Dθ as in Sec. 3.2.
However, we do not fine-tune Dθ with object images as we
want to remove objects. Instead, we first individually in-
paint all background images on projection masks using back-
ground prompts without identifier (e.g., “a table”). These
inpainted images are then treated as pseudo ground-truth
and used to customize Dθ with the background text prompts
containing identifiers (e.g., “a ∗ table”). The pseudo ground-
truth backgrounds are visually pleasing but still remain cross-
view inconsistencies. To circumvent this issue, we perform
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NeRF updating using dataset updates as in Sec. 3.3. How-
ever, only background prompts are used during the NeRF
updating. We found that this joint 2D-3D interaction gradu-
ally transforms disruptive inpainted image regions into view-
consistent background images. We show the necessity of
the pseudo ground-truth and the NeRF updating in making
view-consistent object removal in our experiments.

4. Experiments
4.1. Datasets

For object insertion, we propose a dataset comprising multi-
view images of 8 backgrounds and 10 objects. The number
of images for each background and object ranges from 60
to 100 and 40 to 80, respectively. We collected the images
using an iPhone camera and resized the images to 512 ×
512 resolution for the ease of training. Except for our self-
captured data, we also test on synthetically rendered multi-
view images [40, 47].

For object removal, we run experiments on the commonly
used inpainting datasets from Mip-NeRF-360 [3] and IBR-
Net [64]. We centrally cropped images in those datasets to
make 512× 512 images to fit with our pipeline.

4.2. Baselines

For comparisons, we select SOTA baselines from different
branches of work that can perform object insertion. To
ensure the fairness, we barely modify the baselines, only
when necessary to fit them with our settings.
Traditional 3D editing pipeline. This pipeline creates a 3D
model from multi-view images. Scene editing is then per-
formed directly on the 3D model. To simulate this traditional
pipeline, we use COLMAP [54, 55] to reconstruct the mesh
for the background and object, and then manually crop and
place the object mesh into the background mesh.
Image inpainting. We adopt the inpainting variant of Stable
Diffusion [51] as a baseline. However, since image inpaiting
treats each view independently, for a fair comparison, we
perform single-view inpainting on each background image.
Single-image-to-3D NeRF. NeRF-based view synthesis par-
tially fulfills scene editing. Here we select Zero123 [34], a
SOTA that uses a distillation prior [47] from a 2D diffusion
model to synthesize novel views for comparison.
Instruct-NeRF2NeRF [14]. This work also applies dataset
updates for NeRF training. However, it fails to add/remove
objects with noticeable non-uniform appearance. To test this
method, we re-format text prompts, e.g., we replace “a ∗
sneaker on a ∗ table” by “add/make a sneaker on a table”.

4.3. Implementation details

We fine-tune the diffusion model Dθ with object images
(nobj = 5, 000 times) more than background images (nbg =
500 times) as we found the model needs extra training to

learn objects with complex geometry and texture. For NeRF
training, we empirically found nnear = 3, nnew = 500, and
nold = 10 balance well the quality and efficiency.

We run all experiments on a Nvidia RTX 3090 GPU. Dif-
fusion fine-tuning takes around 30 minutes. NeRF updating
speed relies on the number of background images while each
backpropagation takes 0.5 seconds. Inference speed of the
diffusion model is 8 seconds/image. Our NeRF training costs
around 2.7 times more than the standard NeRF training.

4.4. Qualitative results

Object insertion. We present qualitative results of object
insertion in Fig. 3. As shown, our method (Fig. 3-f) can gen-
erate plausible contents with view consistency. Moverover,
the outputs of our method also match well the text prompts
and the generated objects are precisely located.

In contrast, the traditional 3D pipeline (Fig. 3-b) suffers
from seamed object-background boundaries and unrealistic
lighting. The geometry in obscure regions, e.g., corners, is
not accurately reconstructed. The image inpainting baseline
(Fig. 3-c) produces reasonable results on individual views
but generates view-inconsistency. Single-image-to-3D NeRF
(Fig. 3-d) fails on complex scenes. A larger camera pose
shift can result in background mismatch or even content
collapse. Instruct-NeRF2NeRF (Fig. 3-e) is known to be
strong at stylizing existing geometry but weak at generating
new geometry. Under our setting, it performs random view-
consistent editing, but fails to accomplish object insertion.
Object removal. We illustrate several results of object re-
moval in Fig. 4, which shows that our method can generate
view-consistent backgrounds. We also observed that with-
out using pseudo ground-truth background, the removal can
cause gradual background collapse, which we discuss further
in our ablation study in Sec. 4.6.

4.5. Quantitative results

Since there is no real-world ground-truth for scene editing,
direct quantitative evaluations are not possible. Instead, we
adopt the CLIP Score [16], a well-known metric to measure
how well an image correlates to a target prompt in the CLIP
space. Let E(I) and E(p) be the CLIP embeddings of an
image I and a text prompt p. The CLIP Score is defined as,

CLIPScore(I, p) = cos+ (E(I), E(p)) (8)

where cos+(a, b) = max(0, cos(a, b)). We average the
CLIPScore(Îb, p̃) for all the edited images Îb ∈ Îb paired
with their target prompts p̃, and use this average value as a
performance metric for scene editing; higher score means
better performance.

We also use the CLIP Directional Consistency (CLIPDC)
in [14] to measure the editing quality and consistency across
views in the CLIP space. This metric relies on an assumption
that the difference in the CLIP space between a background
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sneaker on table backpack on wall table set in room car on road

(a) Input

(b) Traditional 3D Pipeline (COLMAP mesh reconstruction [54, 55] + manual placement)

(c) Image Inpainting (Stable Diffusion Inpainting [51])

(d) Single-image-to-3D NeRF (Zero123 [34])

(e) Instruct-NeRF2NeRF [14]

(f) Ours

Figure 3. Qualitative results of object insertion. Inputs include multi-view object/background images, a 3D bounding box where the object
is inserted in, and a text prompt. Note that some baselines use parts of the inputs due to the nature of their techniques.

image Ib and its edited version Îb should match with the
difference between the original prompt p (paired with Ib)
and the customized prompt p̃ (paired with Îb). Moreover,
a good editing should make consistent differences between
every pair of Ib and Îb, especially for adjacent views. We
follow [14] to calculate the CLIPDC between two adjacent

edited views Î(i)b and Î
(i+1)
b as,

CLIPDC(Î
(i)
b , Î

(i+1)
b ) =

cos+
(
E(p̃)− E(p), E(Î

(i)
b )− E(I

(i)
b )

)
×

cos+
(
E(Î

(i)
b )− E(I

(i)
b ), E(Î

(i+1)
b )− E(I

(i+1)
b )

) (9)

We measure the CLIPDC of an edited scene by averaging
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(a) Original BG with ob-
ject bounding box

(b) Pseudo ground-truth
BG

(c) View-consistent edit-
ing result

Figure 4. Qualitative results of object removal where we show the
importance of pseudo ground-truth background (BG) in generating
view-consistent editing results.

Method CLIPScore ↑ CLIPDC ↑
Traditional 3D [54, 55] 0.2648 0.1169
Inpainting [51] 0.2683 0.1325
Zero123 [34] 0.2197 0.0361
Instruct-NeRF2NeRF [14] 0.2347 0.0263

Ours 0.2743 0.1642

Table 1. Quantitative results. Higher CLIP metrics scores indicate
higher image editing quality or consistency.

the CLIPDC(Î
(i)
b , Î

(i+1)
b ) for all the adjacent image pairs

(Î
(i)
b , Î

(i+1)
b ) in the scene. We report both the CLIPScore

and CLIPDC of our method and other baselines on 35 unique
edits (cross editing on the more generalizable 5 scenes ×
7 objects) in Tab. 1. Experimental show that our method
outperforms all the baselines on both the CLIPScore and
CLIPDC metrics.

4.6. Ablation Study

In this ablation study, we validate the effectiveness of techni-
cal components in our method. We suggest readers observe
the results in Fig. 5, which shows two views of an edited
scene. We provide detailed analyses on these results below.
Diffusion model fine-tuning. Recall that we fine-tune the
diffusion model Dθ on both object and background images
(in Sec. 3.2). Here we prove that such a fine-tuning is nec-
essary. Fine-tuning on object images makes the diffusion
model aware of the same object during the dataset updates
(in Sec. 3.3). We verify this in Fig. 5-a, where we skip the
fine-tuning of Dθ on object images. As shown, without us-
ing object images, the diffusion model cannot generate the
same object across views.

Likewise, fine-tuning the diffusion model with back-
ground images helps to preserve the background at inpainted
borders (areas in between mask boundary and inner-mask
object boundary). As shown in Fig. 5-b, without fine-tuning
on background images, the model cannot inpaint the back-
ground within the mask region properly. The inpainted back-
ground gets darker at latter NeRF updating steps, and finally
ends up with a noticeable error. We hypothesize this collapse
that the model, without being fine-tuned on relevant back-
ground images, applies the bias from pre-learned knowledge
which does not align with the surrounding background.
Pose-conditioned dataset updates. To prove the effective-
ness of the pose-conditioned dataset update strategy, we
experiment with another scheme in which the dataset used to
refine the NeRF is updated with random views. We present
the results of this experiment in Fig. 5-c. We observe that,
with view-random updates, objects in different views can
converge into inconsistent poses (e.g., the hats in the left and
right view are generated in different poses).

The above inconsistency commonly happens with many
text-to-3D NeRF generation or editing methods. We hypoth-
esize this phenomenon as follows. Initially the diffusion
model can generate the object in inconsistent poses across
views due to little 3D-aware hint available. This inconsis-
tency is continually introduced to the NeRF updating and
then, in return, passed partially as input to the diffusion
model (as in Eq. 6), making further pose divergence eventu-
ally. Without considering nearby-views, the diffusion model
cannot fix this inconsistency as objects generated on individ-
ual views match well their given text prompts.

Our proposed pose-conditioned dataset update strategy
simulates the nature of NeRF construction, in which a view
rendered closed to already-used views should contain sim-
ilar but slightly blurry and distorted object content. Pose-
conditioned view arrangement thus gives the diffusion model
enough hints to generate objects with view-consistent appear-
ance and poses, specified in nearby views. View-consistency
is thus achieved progressively in the training dataset and is
integrated into the constructed NeRF (see Fig. 5-e).
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(a) Fine-tuning of the diffusion model without using object images

(b) Fine-tuning of the diffusion model without using background images

(c) Dataset updates with random poses (without pose-conditioned updates)

(d) Without periodic dataset updates

(e) Full pipeline

Figure 5. Ablation study results. Each row shows the results of a variant of our pipeline. The left and right columns include images of
two different views of an edited scene. For each column, from left to right are the results of increasing training steps, where the most left
image in each column is an early-stage result and the most right is the final output. The left column is a view near the starting view, which
converges faster than the right column from a farther view (except for the variant in (c) where both views converge equally fast).

Periodic dataset updates. We observe that periodically
updating of training views during the NeRF updating is im-
portant to achieve high-quality renderings. We verify this
by keeping all the training views from the pose-conditioned
dataset updates fixed during the NeRF updating. We found
that although objects are rendered at fairly accurate orienta-
tions, their texture and geometry still suffer from inconsis-
tencies (see Fig. 5-d). Having periodically updates on the
training data fixes these minor defects and facilitates a more
consistent convergence of the NeRF updating (see Fig. 5-e).

5. Conclusion

We propose a new language-driven method for object manip-
ulation in NeRFs. Our method is built upon a novel idea of
joint 2D-3D interaction, keeping both 2D image synthesis

and 3D NeRF reconstruction in a loop. This idea is en-
abled by an advanced text-to-image diffusion technique that
generates object-blended background images, and a novel
pose-conditioned dataset update strategy that learns a NeRF
from the multi-view images in a progressive manner.

Our method is not without limitations. Since our 2D
views are synthesized by a diffusion model, we may share
the flickering problem with diffusion-based video editing
methods [26, 48, 68]. We leave this for future work, which
can potentially be addressed by robust video translation meth-
ods [73]. It is also of great interest to postulate a theoretical
foundation for pose-conditioned dataset update to better un-
derstand the convergence of NeRF training in scene editing.
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