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(a) CLIP-Adapter [11] (b) TIP-Adapter(f) [42] (c) TaskRes [40] (d) CLAP (Ours)

Figure 1. Pitfalls of few-shot adapters due to the absence of a model selection strategy. The cross-shift model selection matri-
ces (i, j) depict the relative improvement w.r.t. a zero-shot initialized Linear Probing when using the optimal hyperparameters for the
dataset i (rows), for adapting in another task j (columns), for each SoTA method (first three plots) and our approach (last plot).

Abstract

Efficient transfer learning (ETL) is receiving increasing
attention to adapt large pre-trained language-vision mod-
els on downstream tasks with a few labeled samples. While
significant progress has been made, we reveal that state-
of-the-art ETL approaches exhibit strong performance only
in narrowly-defined experimental setups, and with a care-
ful adjustment of hyperparameters based on a large corpus
of labeled samples. In particular, we make two interest-
ing, and surprising empirical observations. First, to out-
perform a simple Linear Probing baseline, these methods
require to optimize their hyper-parameters on each target
task. And second, they typically underperform –sometimes
dramatically– standard zero-shot predictions in the pres-
ence of distributional drifts. Motivated by the unrealis-
tic assumptions made in the existing literature, i.e., ac-
cess to a large validation set and case-specific grid-search
for optimal hyperparameters, we propose a novel approach
that meets the requirements of real-world scenarios. More
concretely, we introduce a CLass-Adaptive linear Probe
(CLAP) objective, whose balancing term is optimized via an
adaptation of the general Augmented Lagrangian method
tailored to this context. We comprehensively evaluate CLAP
on a broad span of datasets and scenarios, demonstrating
that it consistently outperforms SoTA approaches, while yet
being a much more efficient alternative. Code available at

https://github.com/jusiro/CLAP .

1. Introduction
Large vision-language models (VLMs), such as CLIP [30],
are reshaping the research landscape with their unprece-
dented performance. These models undergo training on
an extensive dataset consisting of hundreds of millions of
image-text pairs, which are leveraged via contrastive learn-
ing [30]. Once trained, VLMs offer a remarkable zero-shot
performance on a wide span of visual recognition problems
thanks to the rich learned representations [27, 30]. Nev-
ertheless, the extensive hardware and data-driven resources
that such training demands [3] suggest that these models
can only be trained on singular occasions. Furthermore,
the large scale of these networks poses important challenges
when it comes to adjusting their parameters on small down-
stream tasks that involve only a few labeled samples, mak-
ing the full fine-tuning of the entire model impractical.

An emerging alternative to alleviate this issue consists
in fine-tuning VLMs by adding a small set of learnable
parameters, whose values are optimized during the adap-
tation step [11, 19, 42, 45, 46]. These tunable weights
can be introduced in the input space as visual [19] or text
prompts [45, 46], or added in the form of adapters across
the network [11, 40, 42]. While both families of approaches
fit within the Efficient Transfer Learning (ETL) literature,
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prompt learning still requires backpropagating the gradi-
ents through the entire network. Thus, besides introducing
a burden on resource reuse, these methods preclude black-
box adaptation, introducing a potential concern about leak-
ing the source data, which is paramount in privacy-oriented
applications. In contrast, strategies based on adapters only
need gradients on the extra set of parameters, typically in
the last layer, avoiding costly fine-tuning processes and data
leakage, yet yielding state-of-the-art performance [24, 40].

Despite the progress observed in adapter-based meth-
ods for fine-tuning VLMs under the few-shot learning
paradigm, improving the performance on the target task
while preserving their generalization capabilities remains
still a challenge [46]. We argue that this is likely due to
the severe overfitting to the support set samples employed
during few-shot adaptation, which significantly deviates the
updated class prototypes from the zero-shot prototypes ini-
tially provided by the pre-trained model. In fact, popular
adapter-based ETL strategies, such as CLIP-Adapter [11]
and TIP-Adapter [42], carefully adjust the model-specific
hyperparameters, in conjunction with other key hyperpa-
rameters related to the learning scheduler, to control the
trade-off between initial zero-shot inference and the integra-
tion of new information from the support set. Furthermore,
recent evidence [24] suggests that these works apparently
use the large-scale test set to adjust their hyperparameters.

A significant limitation becomes evident in that these hy-
perparameters, when optimized for one specific task, do not
exhibit strong generalizability to other tasks, as illustrated
in Fig. 1. Indeed, state-of-the-art (SoTA) methods struggle
to find a homogeneous configuration that outperforms
a simple well-initialized Linear Probing (LP) adapta-
tion. Notably, in a realistic adaptation scenario (Fig. 1),
we can observe dramatic performance degradations, up to
21%, compared to this simple baseline. These practices vir-
tually bias the model selection process, as assuming access
to a significantly larger set of labeled samples, and adjusting
the model hyperparameters in a case-specific manner, is not
only unrealistic but also impractical (grid-search must be
done for each case). Thus, we argue that if an ETL method’s
model selection strategy is not solely based on the support
samples, the method is incomplete, and impractical for real-
world few-shot adaptation problems.

In this work, we seek to redirect the efforts on few-shot
ETL to a more strict, but realistic scenario, in which only
the support samples are accessible during training. The ab-
sence of an evaluation subset urges novel adapters to in-
clude a model selection strategy, robust across a large spec-
trum of tasks. Interestingly, we empirically observed that a
carefully designed Linear Probing (ZS-LP), whose weights
are initialized with the zero-shot prototypes from CLIP, is a
strong baseline that outperforms more convoluted ETL so-
lutions. To further improve the baseline ZS-LP and opti-

mize the trade-off between initial zero-shot representations
and updated class prototypes on novel tasks, we propose
penalizing large deviations from the original zero-shot pro-
totypes during adaptation. The resulting learning objective,
however, presents two major issues. First, the penalty in-
cluded to control the deviation between original and up-
dated prototypes is a scalar value, uniform across all classes,
which can detrimentally affect the model’s performance in
the presence of harder-to-learn classes. Second, the penalty
balancing weight must be set using a validation set, which
juxtaposes with our validation-free scenario. To address
these limitations, we propose CLass-Adaptive linear Probe
(CLAP), which is based on an Augmented Lagrangian Mul-
tiplier approach. We can summarize our contributions as:
• We empirically observe that SoTA few-shot ETL adapters

require careful adjustment of a set of key hyperparame-
ters for each task, which is unrealistic and impractical in
real-world settings. Surprisingly, if a fixed configuration
is adopted across tasks, these methods are likely to sub-
stantially underperform a simple Linear Probing strategy
initialized with the zero-shot prototypes from CLIP.

• We propose a principled solution to tackle the trade-off
between original and updated class prototypes in Linear
Probing, which integrates a penalty term to penalize large
deviations from zero-shot prototypes. To address the un-
derlying challenges from the resulting constrained opti-
mization problem, we present a modified Augmented La-
grangian Multiplier (ALM) method. This alleviates the
need of having to fine-tune the penalty balancing weight,
which is learned in the outer iteration of the optimization
process. In order to adapt ALM to the presented scenario,
two critical choices were made: i) Leveraging class pro-
totypes, as well as data augmentation, motivate the use
of class-wise multipliers, instead of sample and class-
wise multipliers as in the original ALM; ii) In the pre-
sented scenario, there is no access to a validation set, and
the only feedback available is from the support samples.
Hence, we only perform one outer-step update, which can
avoid potential overfitting on the support set.

• We provide extensive experiments to assess the perfor-
mance of CLAP in the proposed scenario, including few-
shot adaptation on 11 popular classification benchmarks,
domain generalization, comparison to full fine-tuning
methods, and ablation studies to validate our choices.
As shown in Fig. 1 and in the experimental section,
CLAP delivers consistent performance across different
tasks with a homogeneous configuration, and largely out-
performs SoTA ETL approaches in all scenarios.

2. Related work
Vision-language pre-trained models. The field of ma-
chine learning is in the midst of a paradigm shift with the
emerging rise of vision-language models (VLMs). These
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networks have gained increasing popularity, especially fu-
eled by the significant improvements achieved in computer
vision and natural language processing tasks [5, 18, 30, 41].
The prevailing learning paradigm consists of a dual stream
of data, which separately encodes images and their text
counterparts, leveraging contrastive learning at a large scale
to bridge image and text representations in the latent space.
Particularly, models such as CLIP [30] and ALIGN [18]
have successfully mitigated the distribution discrepancy be-
tween text and images, and have shown tremendous zero-
shot capabilities on visual recognition tasks, primarily in
the context of classification.
Full fine-tuning. A body of work proposes fine-tuning
the entire VLMs to adapt to a specific task [12, 22, 36].
This strategy, however, presents several drawbacks. Con-
cretely, fine-tuning increases the complexity of the model
being optimized, makes the optimization process more
time-consuming compared to ETL methods, and requires
access to the backbone weights, which does not allow a
black-box adaptation. Furthermore, full fine-tuning meth-
ods typically tend to overfit when trained on small datasets,
requiring a large corpus of labeled data for the target task,
which may be impractical in many real-world scenarios.
Efficient transfer leaning attempts to address these is-
sues by updating a small set of learnable parameters and
leveraging a limited amount of annotated samples. Cur-
rent ETL literature can be categorized into Prompt Learn-
ing [20, 38, 39, 45–47] and Adapter-based [11, 40, 42] ap-
proaches. Prompt Learning represents a recent advance-
ment in the realm of natural language processing [23, 43],
which has been recently adopted with success in VLMs. In
these methods, only the text tokens provided to the model
are optimized. Nevertheless, these techniques require long
training steps due to backpropagating the gradient over the
entire network, which juxtaposes with the spirit of efficient
adaptation. Furthermore, black-box adaptation is also not
possible in prompt learning. Adapter-based methods, in
contrast, offer a much lighter alternative as only a small
subset of parameters, typically at the latest layers, are ad-
justed. For example, CLIP-Adapter [11] integrates a two-
layer MLP to modify the visual embedding generated by
CLIP. In TIP-Adapter [42], the visual prototypes obtained
from the few-shot support samples are leveraged to compute
the similarity with the visual embedding of the test image,
which is later used to modify the CLIP visual embedding.

3. Preliminaries

3.1. Contrastive vision-language pre-training

Large-scale VLMs, such as CLIP [30], are trained on large
heterogeneous datasets, encouraging image and text repre-
sentations to correlate in a joint embedding space. Formally,
CLIP comprises a vision encoder, fθ(·), and a text encoder,

fϕ(·), each aiming at learning a rich representation of their
data points. These points are projected in an ℓ2-normalized
shared embedding space, yielding the corresponding visual
v and text t embeddings. The whole network is optimized
to maximize the similarity between the projected embed-
dings of paired images and texts, using a contrastive loss.

3.2. Transferability

Zero-shot inference. For a particular downstream im-
age classification task, CLIP-based models are able to pro-
vide predictions based on the similarity between category
prompts, i.e., text descriptions of target classes, and testing
images. Given a set of C categories, and an ensemble of
N text prompts for each one, {{Tn,c}Nn=1}Cc=1, a common
practice is to obtain a zero-shot prototype for each target
category by computing the center of the ℓ2-normalized text
embeddings for each class, tc = 1

N

∑N
n=1 fϕ(Tn,c). Thus,

for a given query image x, the zero-shot prediction is ob-
tained from the softmax cosine similarity between the vi-
sion embedding v = fθ(x), and category prototypes tc:

ŷc =
exp(v · t⊤c /τ)∑C
i=1 exp(v · t⊤i /τ)

, (1)

where τ is a temperature parameter learned during the pre-
training stage, and v · t⊤ the dot product operator, which is
equivalent to cosine similarity, as vectors are ℓ2-normalized.

Few-shot learning. This scenario assumes access to lim-
ited supervisory information on the downstream tasks, in
the form of a few examples for each target category, so-
called shots. Formally, we denote a support set, S =
{(x(m),y(m))}M=K×C

m=1 , composed of K images for each
target category, such that K takes a small value, e.g., K ∈
{1, 2, 4, 8, 16}, and where y ∈ {0, 1}C is the correspond-
ing one-hot label for a given image x. The objective is to
adapt the pre-trained model using this limited support set.

3.3. Efficient transfer learning with adapters

In their general form, ETL methods based on adapters
learn a set of transformations over the pre-trained fea-
tures (v′, t′ = fψ(v, t)), parameterized by the so-called
adapter ψ, which produces softmax scores for the new
tasks following Eq. (1). The adapter ψ can be opti-
mized by minimizing the popular cross-entropy (CE) loss,
H(y, ŷ) = −

∑C
c=1 yc log ŷc, over the support set samples:

min
ψ

1

M

M∑
m=1

H(y(m), ŷ(m)). (2)

3.4. Pitfalls of existing few-shot ETL methods

Recent ETL methods tailored to VLMs focus on enhanc-
ing the supervision provided by the support samples with
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priors learned by the VLMs at the task at hand. The pre-
trained model gathers robust knowledge and is able to align
visual and textual concepts. Retaining this prior knowledge
can therefore produce more robust adapters, able to gener-
alize beyond the specific bias introduced in the few sup-
port samples, to more general concepts. In this context,
the zero-shot prototypes from CLIP act as a proxy to ini-
tialize the learning procedure into a reliable region. For
instance, CLIP-Adapter [11] maintains the zero-shot pro-
totypes based inference as in Eq. (1), but includes a residual
multi-layered perceptron to modify visual features, such as
v′ = v+αrfψ(v). TIP-Adapter [42] includes an additional
complexity layer, by combining the similarity of the zero-
shot prototypes with a weighted similarity to the support
samples, fψ(·, β), controlled by the hyperparameter β, such
that the predicted logits are lc = αtipAfψ(v, β)+v · t⊤c /τ .
Finally, TaskRes [40] learns a modification of the initial
zero-shot prototypes, wTR, using the support samples. The
divergence between the initial and final prototypes is con-
trolled by a residual ratio: t′ = t + αTRwTR. Neverthe-
less, these methods lack a model selection strategy to set
these hyperparameters (See Supp. Sec. A for details).

4. Proposed approach
4.1. Revisiting Linear Probing

The most straightforward approach used to adapt VLMs is
Linear Probing [30], which refers to fitting a multiclass lo-
gistic regression linear classifier on top of the pre-trained
features. Formally, the objective is to learn a set of class-
wise prototypes, wc, to provide softmax class scores for a
given visual embedding v:

ŷc =
exp(v ·w⊤

c /τ)∑C
i=1 exp(v ·w⊤

i /τ)
. (3)

The wc prototypes can be trained to minimize the cross-
entropy loss on the support samples, as in Eq. (2), us-
ing standard SGD. Besides, a common practice in ETL
is to regularize the trained weights [24, 30, 40] by mini-
mizing its ℓ2-norm with an additional term, weighted by
an empirically-optimized non-negative balancing term λwd.
Despite its limited performance shown for few-shot adap-
tation [11, 30], we believe that this requires further explo-
ration, as LP is a lightweight adaptation strategy, especially
convenient due to its convexity during optimization. In this
work, we present an updated view of Linear Probing. First,
the class weights are initialized using the CLIP zero-shot
prototypes, as SoTA ETL methods do [11, 40, 42]. Sec-
ond, we replace the weight decay in the loss function and
explicitly perform an ℓ2-normalization of the prototypes af-
ter each update, to exactly meet the pre-training scenario
during adaptation, inspired by [12]. Similarly, cosine sim-
ilarity is also scaled with CLIP’s pre-trained temperature

τ . Last, we incorporate data augmentation, usually not in-
cluded in LP. We refer to this updated Linear Probing ver-
sion for vision-language models as ZS-LP1. Interestingly,
ZS-LP serves as a strong baseline (see Tab. 1), which does
not require adjusting specific hyperparameters per task.

4.2. Constrained Linear Probing

Albeit a well-initialized Linear Probing offers a strong base-
line for efficient transfer learning, the updated prototypes
might deviate from the initial regions offering strong gener-
alization. This is especially the case in the few-shot setting,
where the few provided support samples might be under-
representative and contain specific biases that produce spu-
rious correlations, hence harming the generalization after
adaptation [34, 44]. Thus, to retain the strong basis pro-
vided by the VLM model, and avoid prototype degradation,
we resort to a constrained formulation of the loss in Eq. (2).

Retaining prior knowledge. A direct form to avoid pro-
totype degradation from zero-shot points is to constrain the
cross-entropy minimization to enforce the resulting proto-
types to remain close to the initial solution (i.e., initial set of
prototypes T = [t1, . . . , tc]). Specifically, this constrained
optimization problem can be defined as follows:

min
W

1

M

M∑
m=1

H(y(m), ŷ(m))

s.t. wc = tc ∀c ∈ {1, . . . , C},

(4)

with W = [w1, ...,wC ] the set of learnable class proto-
types. We can approximate the minimum of the constrained
problem in Eq. (4) by a penalty-based optimization ap-
proach, transforming the above formulation into an uncon-
strained problem, and using an ℓ2-penalty between the class
prototypes and the set of zero-shot anchors:

min
W

M∑
m=1

H(y(m), ŷ(m)) + λ

M∑
m=1

C∑
c=1

||tc −w(m)
c ||22,

(5)
where λ ∈ R+ is a scalar weight controlling the contribu-
tion of the corresponding penalty. Note that w(m)

c is the
optimal class prototype for the support sample m that mini-
mizes the left term. For clarity in the presentation, we have
omitted the normalization by the cardinality of each set.

Sample and class-specific constraints. The associated
constrained problem in Eq. (4) is approximated by an
unconstrained formulation, which uses a single uniform
penalty without considering individual data samples or

1Although the recent work in [24] explores some of these LP improve-
ments, they still resort to a weight-decay regularization of the LP parame-
ters, whose optimum relative weight is found in a few-shot validation set.
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classes. Certainly, all samples and categories within a given
dataset may indeed present different intrinsic learning chal-
lenges. Thus, the problem in Eq. (5) is not solved accu-
rately. A better alternative would consist in integrating mul-
tiple penalty weights λ, one for each sample and class, pro-
ducing a set of penalty weights Λ ∈ RM×C

+ . The resulting
optimization problem can then be defined as:

min
W

M∑
m=1

H(y(m), ŷ(m))+

M∑
m=1

C∑
c=1

Λmc ||tc−w(m)
c ||22.

(6)
Now, from an optimization standpoint, if we suppose that

there exists an optimal set of class-prototypes W∗ for the
problem presented in Eq. (4), there also exists Λ∗ ∈ RM×C

+

such that (W∗,Λ∗) represents a saddle point of the La-
grangian associated to Eq. (4). In this scenario, Λ∗ are the
Lagrange multipliers of the presented problem, and is intu-
itive to consider Λ = Λ∗ as the best choice to solve Eq. (6).

Nevertheless, using the Lagrange multipliers Λ∗ as the
weights for the penalties in Eq. (6) may not be feasible
in practice. In particular, a number of conventional strate-
gies employed to train deep neural networks hinder straight-
forward minimization. First, the use of mini-batch gradi-
ent descent averages the updated prototypes for every sin-
gle observation into a mean prototype per class, making a
sample-wise constraint hard to achieve. Furthermore, per-
forming data augmentation over the support samples may
yield distinct penalty weights for the augmented versions,
which could be harder or easier to classify than their origi-
nal counterparts.

To alleviate the aforementioned challenges, we propose
to relax the sample-wise penalties, which results in solving:

min
W

M∑
m=1

H(y(m), ŷ(m)) +

C∑
c=1

λc ||tc −wc||22, (7)

where λ ∈ RC+ is a set of C class-wise penalty weights.
While the problem complexity has been reduced by remov-
ing sample-wise penalty weights, we still need to choose
C weights for the class-wise penalties. This poses a chal-
lenge in the optimization, particularly for datasets that con-
tain a large number of categories, such as ImageNet [8]
(C = 1000), where properly selecting the penalty weights
λ ∈ RC+ can be a laborious process. Furthermore, choosing
these values “by hand” juxtaposes with our goal of provid-
ing a validation-free solution for ETL.

4.3. Class Adaptive Constraint for Linear Probing

General Augmented Lagrangian. Augmented Lagrangian
Multiplier (ALM) methods present an appealing alternative
for learning the penalty weights. These popular methods

in optimization, which solve a constrained problem by the
interplay of penalties and primal-dual steps, present well-
known advantages [1, 32]. Formally, we can define a gen-
eral constrained optimization problem as:

min
x

g(x) s.t. hi(x) ≤ 0, i = 1, . . . , n (8)

with g : Rd → R the objective function and hi : Rd →
R, i = 1, . . . , n the set of constraint functions. This prob-
lem is generally tackled by solving a succession of j ∈ N
unconstrained problems, each solved approximately w.r.t x:

min
x,λ

L(j)(x) = g(x) +

n∑
i=1

P (hi(x), ρ
(j)
i , λ

(j)
i ), (9)

with P : R×R++×R++ → R a penalty-Lagrangian func-
tion, whose derivative w.r.t. its first variable P ′(z, ρ, λ) ≡
∂
∂zP (z, ρ, λ) exists, is positive and continuous for all z ∈ R
and (ρ, λ) ∈ (R++)

2. The set of axioms that any penalty
function P must satisfy [2] are detailed in Supp. Sec. B.
Furthermore, ρ(j) = (ρ

(j)
i )1≤i≤n ∈ Rn++ and λ(j) =

(λ
(j)
i )1≤i≤n ∈ Rn++ denote the penalty parameters and

multipliers associated to the penalty P at the iteration j.
The ALM can be split into two iterations: outer itera-

tions (indexed by j), where the penalty multipliers λ and
the penalty parameters ρ are updated, and the inner itera-
tions, where L(j) (Eq. (9)) is minimized using the previous
solution as initialization. In particular, the penalty multi-
pliers λ(j) are updated to the derivative of P w.r.t. to the
solution obtained during the last inner step:

λ
(j+1)
i = P ′(hi(x), ρ

(j)
i , λ

(j)
i ). (10)

By doing this, the penalty multipliers increase when the
constraint is violated, and decrease otherwise. Thus, this
strategy enables an adaptive and learnable way for deter-
mining the penalty weights.
Our solution. We propose to use an ALM approach to solve
the problem in Eq. (7). In particular, we reformulate this
problem integrating a penalty function P parameterized by
(ρ,λ) ∈ RC++ × RC++, formally defined as:

min
W,λ

M∑
m=1

H(y(m), ŷ(m)) +

C∑
c=1

P (tc −wc, ρc, λc).

(11)
Following our realistic validation-free scenario, the only

data from which we can obtain feedback during adaptation
is the support set S. Thus, the penalty multiplier for class c
at epoch j + 1 can be defined as:

λ(j+1)
c =

1

|S|
∑

(x,y)∈S

P ′(tc −wc, ρ
(j)
c , λ(j)c ). (12)
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As suggested by prior work [2, 25], we employ the PHR
function as penalty P , defined as:

PHR(z, ρ, λ) =

{
λz + 1

2ρz
2 if λ+ ρz ≥ 0;

−λ2

2ρ otherwise.
(13)

Nevertheless, as we empirically found in our experi-
ments (Supp. Sec. C.3), estimating Lagrange multipliers
from the support samples might overfit the training data.
As we do not have access to additional data points, we fol-
low a simple strategy, consisting in performing only one
iteration of the λ update. For a given target task, we rely
on text embeddings as an anchor that offers a generalizable
representation of concrete concepts along different visual
domains. Thus, we consider the zero-shot prototypes tc as
the initial approximation of the problem in Eq. (12) (first
inner step). Instead of initializing λ randomly, which might
hamper the convergence, we compute the penalty weight for
a given class as the average of the zero-shot softmax scores
for all support samples belonging to that class, such that
λ⋆c = 1

|B+
c |

∑
i∈B+

c
ŷ
(i)
c , with B+

c = {i|i ∈ M,y
(i)
c = 1}.

Note that these values are obtained by replacing wc with
the solution found in the inner step (tc) in Eq. (3), which
indeed satisfies the constraint wc = tc, resulting in a zero
penalty. Taking now the derivative w.r.t. z of PHR, it is
straightforward to see that the learned value of λ after one
iteration is indeed λ⋆c .

5. Experiments
5.1. Setup

Datasets: Few-shot adaptation. We follow prior ETL lit-
erature [11, 40, 42] and benchmark all the methods on 11
datasets: Imagenet [8], Caltech101 [10], OxfordPets [29],
StanfordCars [21], Flowers102 [28], Food101 [4], FGV-
CAircraft [26], SUN397 [37], DTD [7], EuroSAT [15], and
UCF101 [33]. These cover a diverse set of computer vi-
sion classification tasks, from general objects to actions
or fine-grained categories in specialized applications. To
train the few-shot adapters, we randomly retrieve K shots
(K ∈ {1, 2, 4, 8, 16}) for each class. Last, for evaluation,
we used the test sets provided in each dataset, with the same
data splits as [40, 46]. Domain generalization capabili-
ties. We further assess the model’s robustness to domain
shifts by following existing ETL works. We used ImageNet
as a source domain for adaptation, and its variants as target
tasks, which include: ImageNetV2 [31], ImageNet-Sketch
[35], ImageNet-A [16], and ImageNet-R [17]. In this sce-
nario, the model only sees a few labeled samples from the
source domain, and target data are used exclusively for test-
ing. In addition, we also employ this setting to motivate
the use of efficient adapters vs fine-tuning the entire VLM
[12, 22, 40].

Implementation details. All experiments are based on
CLIP [30] pre-trained features, using different backbones:
ResNet-50 [14] and ViT-B/16 [9] (results for other back-
bones in Supp. Sec. C.2). We resort to ResNet-50 as back-
bone in the ablation studies. For each downstream task we
first extract all pre-trained features of the support shots and
then run adaptation experiments over those. Data augmen-
tation is applied during the feature extraction stage using
random zoom, crops, and flips, following [40, 45]. The
number of augmentations per support sample is set to 20.
We used the same text prompts per dataset as in [40, 46].
Following our claim that using a validation set on few-shot
adaptation is unrealistic, we trained ZS-LP and CLAP us-
ing the same configuration for all datasets, number of shots,
and visual backbones. Concretely, we optimize the adapter
for 300 epochs, using SGD optimizer with Momentum of
0.9. We use a relatively large initial learning rate of 0.1 to
avoid underfitting on the support set, whose value decreases
during training following a cosine decay scheduler. We ran
all experiments with three different random seeds, and the
results were averaged across runs.
Baselines and adaptation protocol. We selected adapter-
based methods as our main competitors based on the sim-
ilarity to our approach, including Clip-Adapter [11], TIP-
Adapter [42], TaskRes [40], and Cross-Modal [24]. It is
important to highlight that prior works [11, 40, 42] appar-
ently leverage either the extensive test set, or an indepen-
dent additional validation subset, to adjust important hy-
perparameters for few-shot adaptation, such as the learning
rate, training epochs, and particular parameters that control
each method [24]. Nevertheless, as we exposed in Fig. 1,
their performance dramatically decreases when the set of
hyperparameters is not adjusted for the testing scenario. To
adhere to real-world requirements, we define a strict few-
shot adaptation protocol, in which no validation or test sam-
ples are available to find the best case-specific configuration
for each method, and hyperparameters remain fixed across
tasks (details in Supp. Sec. A.4).

5.2. Results

Efficient transfer learning. We report in Tab. 1 the per-
formance of adapter-based approaches averaged across 11
datasets, in the more realistic and practical validation-free
experimental setting. Furthermore, for prompt-learning-
based approaches, we include the results reported in prior
literature, for a more comprehensive comparison. From
these values, we can make interesting observations. First, a
well-initialized Linear Probe, i.e., using the CLIP zero-shot
weights, does not show the performance degradation dis-
cussed in prior works, and it is indeed a competitive alter-
native to SoTA approaches. Second, and more surprisingly,
more complex approaches such as CLIP-Adapter, or TIP-
Adapter, show a significant decline in performance com-
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pared to their original results when no validation set is avail-
able for model selection. Interestingly, TaskRes(e), which is
some sort of two-stage zero-shot initialization Linear Prob-
ing with an updated text projection, also offers robust per-
formance. Nevertheless, the absence of a detailed explana-
tion of how the enhanced version is obtained in the orig-
inal work hampers fair comparisons. Third, constraining
the weights update to remain close to the zero-shot knowl-
edge (CLAP) shows consistent improvements across dif-
ferent shots, especially in the very low data regime. This
suggests that retaining the previous base knowledge from
VLMs is important to avoid diverging because of unrepre-
sentative shots during adaptation. Results per dataset are
detailed in Supp. Fig. 8 and Supp. Tab. 9.

Table 1. Comparison to state-of-the-art methods for few-shot
adaptation of CLIP-based models, using ResNet-50 backbone.
ETL methods are trained under the same protocol, i.e., absence of
a validation set and using a fixed configuration across datasets, and
results are averaged across 11 datasets. Prompt-learning methods
results are directly extracted from [6, 13]. Best results in bold.

Method K=1 K=2 K=4 K=8 K=16

Prompt-learning methods
CoOp IJCV’22[46] 59.56 61.78 66.47 69.85 73.33
ProGrad ICCV’23[13] 62.61 64.90 68.45 71.41 74.28
PLOT ICLR’23[6] 62.59 65.23 68.60 71.23 73.94

Efficient transfer learning - a.k.a Adapters
Zero-Shot ICML’21[30] 57.71 57.71 57.71 57.71 57.71
Rand. Init LP ICML’21[30] 30.42 41.86 51.69 60.84 67.54
CLIP-Adapter IJCV’23[11] 58.43 62.46 66.18 69.87 73.35
TIP-Adapter ECCV’22[42] 58.86 60.33 61.49 63.15 64.61
TIP-Adapter(f) ECCV’22[42] 60.29 62.26 65.32 68.35 71.40
CrossModal-LP CVPR’23[24] 62.24 64.48 66.67 70.36 73.65
TaskRes(e) CVPR’23[40] 61.44 65.26 68.35 71.66 74.42
ZS-LP 61.28 64.88 67.98 71.43 74.37
CLAP 62.79 66.07 69.13 72.08 74.57

Domain generalization. If adaptation is not carefully
conducted, the resulting model might distort the pre-trained
knowledge and underperform when new data with domain
drifts is involved [22], even below the zero-shot (no adap-
tation) performance. Thus, evaluating the robustness of
novel adapters under this scenario of domain generaliza-
tion is of special interest. To do so, adapters are opti-
mized on ImageNet using 16 shots per class, and directly
evaluated on ImageNet variants. In this setting, we also
assume the absence of a validation dataset, and hence all
adapters are trained until convergence, using the same con-
figuration across backbones. A summary of the results is
reported in Tab. 2, while specific numbers across datasets
and additional backbones are included in Supp. Tab. 10.
From these experiments, we make two striking observa-
tions. First, ZS-LP is a strong baseline compared to other
more complex adapters on the source domain. Even more
remarkably, prior SoTA adapters, such as CLIP-Adapter
or TIP-Adapter, fail to generalize to unseen domains. In-

deed, when using recent vision transformers, which are
overtaking convolutional neural networks, none of existing
adapters-based approaches outperform standard zero-
shot prediction in the presence of distributional drifts.
In contrast, CLAP yields the best in-distribution perfor-
mance and also shows consistent improvements under do-
main shifts across all backbones.

Table 2. Robustness to domain shifts. Adapters are adjusted on
ImageNet and evaluated at out-of-distribution generalization on 4
ImageNet shifts. Bold indicates best performance. Differences
with respect to no adaptation (a.k.a zero-shot) are highlighted.

Method Source (Imagenet) Target (Average)

R
es

N
et

-5
0

Zero-Shot ICML’21[30] 60.35 40.61
Rand. Init LP ICML’21[30] 52.24(−8.11)↓ 24.61(−16.00)↓
CLIP-Adapter IJCV’23[11] 59.02(−1.33)↓ 31.21(−9.40)↓
TIP-Adapter ECCV’22[42] 57.81(−2.54)↓ 40.69(+0.08)↑
TIP-Adapter(f) ECCV’22[42] 62.27(+1.92)↑ 41.36(+0.75)↑
TaskRes(e) CVPR’23[40] 60.85(+0.50)↑ 41.28(+0.67)↑
ZS-LP 61.00(+0.65)↑ 36.58(−4.03)↓
CLAP 65.02(+4.67)↑ 42.91(+2.30)↑

V
iT

-B
/1

6

Zero-Shot ICML’21[30] 68.71 57.17
Rand. Init LP ICML’21[30] 62.95(−5.76)↓ 40.41(−16.76)↓
CLIP-Adapter IJCV’23[11] 68.46(−0.25)↓ 50.72(−6.45)↓
TIP-Adapter ECCV’22[42] 53.81(−14.90)↓ 41.55(−15.62)↓
TIP-Adapter(f) ECCV’22[42] 51.71(−17.00)↓ 35.58(−21.6)↓
TaskRes(e) CVPR’23[40] 70.84(+2.13)↑ 55.35(−1.82)↓
ZS-LP 69.73(+1.02)↑ 53.65(−3.52)↓
CLAP 73.38(+4.67)↑ 60.04(+2.87)↑

Table 3. Fine-tuning (FT) vs. efficient transfer learning (ETL).
A benchmark for the low data regime, i.e., 8 shots for each class.
For the sake of fairness, FT methods (above the dashed line) are
trained with 4 shots and early-stopped using a validation set con-
taining 4 shots. On the other hand, ETL methods (below the
dashed line) are trained using 8 shots and rely solely on the support
set. All methods use ViT-B/16 as CLIP backbone.

Method Source Target
Imagenet -V2 -Sketch -A -R Avg.

Fine-tuning (FT) 69.88 62.44 47.07 47.52 76.08 58.28
LP-FT ICLR’23 [22] 71.29 64.04 48.50 49.49 77.63 59.92
WiSE CVPR’22 [36] 71.17 63.81 49.38 50.59 78.56 60.59
FLYP CVPR’23 [12] 71.51 64.59 49.50 51.32 78.52 60.98
Zero-Shot 68.71 60.76 46.18 47.76 73.98 57.17
Rand. Init LP 56.58 47.17 25.82 27.03 47.05 36.77
ZS-LP 68.49 60.07 42.77 42.39 71.73 54.24
CLAP 71.75 64.06 47.66 48.40 76.70 59.21
*Specific numbers for FT, LP-FT, WiSE-FT, and FLYP are retrieved from [12].

Is it worth optimizing the entire model? We now com-
pare CLAP to end-to-end full fine-tuning (FT) approaches:
LP-FT [22], WiSE-FT [36], and FLYP [12]. The former two
methods require a validation set for early stopping, and the
latter two use it for both early stopping and tuning the mix-
ing coefficient hyperparameter α. Therefore, for a K-shot
problem, these methods actually require 2K shots for each
class,K for training, andK for validation. As the balancing
penalty term in CLAP is optimized with the support set, and
does not require a validation set, a fair comparison would
be to evaluate the K-shot performance of fine-tuning meth-
ods against our method’s 2K-shot results. Thus, Tab. 3 in-
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cludes the performance of all the models when 8 labeled im-
ages are available for each class overall. Analyzing the re-
sults, we can conclude that in the low data regime, full fine-
tuning is not necessarily superior to ETL when compared
properly. More specifically, our approach outperforms fine-
tuning methods in in-distribution performance and performs
reasonably well on OOD datasets, while having a fraction
of the optimizable parameters of fine-tuning methods.

5.3. Ablation experiments

On the need for model selection strategies. Relevant
methods (e.g., CLIP-Adapter [11], TIP-Adapter [42], or
TaskRes [40]) include different hyperparameters that di-
rectly control their performance. Nevertheless, these meth-
ods are incomplete, since they do not include any strat-
egy for adjusting these parameters, typically referred to as
model selection. In contrast, and as previously stressed,
there is evidence that these works use a large evaluation
subset to adapt their settings to each scenario [24]. To inves-
tigate this observation, we evaluate these methods in cross-
dataset model selection experiments. The best hyperparam-
eters values for a task (i.e., dataset), which are found in an
Oracle scenario using the entire test subset, are used dur-
ing adaptation to another dataset. The matrices showing
the relative improvements over a zero-shot initialized Lin-
ear Probing (ZS-LP) are depicted in Fig. 1. These results
show empirically that the hyperparameters values are highly
task-dependent, and that SoTA methods must adjust their
hyperparameters on the target task to outperform this
simple baseline, which is unrealistic in practice. In con-
trast, the proposed CLAP is more robust, showing consis-
tent results across all datasets, even in the worst degradation
case, as it does not require particular modifications per task.

Table 4. Improving Linear Probing. Using as baseline the pro-
posed ZS-LP configuration detailed in Sec. 4.1, we isolate the ef-
fect of removing different parts of the model, while keeping the
rest static. Results are averaged across 11 datasets.

Method K=1 K=2 K=4

ZS-LP 61.28 64.88 67.98
w/o DA 57.72(−3.5)↓ 61.94(−2.9)↓ 65.41(−2.5)↓
w/o Temp. Scaling (τ ) 58.33(−2.9)↓ 59.85(−5.0)↓ 59.91(−8.0)↓
w/o L2-norm 48.67(−12.6)↓ 55.29(−9.6)↓ 61.16(−6.8)↓
Rand. Init. 30.42(−30.8)↓ 41.86(−23.0)↓ 51.69(−16.2)↓

Details in Linear Probing matter. As described earlier
in Sec. 4.1, LP has been discouraged in the prior litera-
ture due to its limited performance in few-shot adaptation
[11, 30]. Nevertheless, we argue that this behavior stems
from the original way in which LP was introduced in [30],
inspired by prior self-supervised learning methods. Indeed,
a strategy tailored to contrastive VLMs alleviates the perfor-
mance drop of LP observed in prior works. In particular, us-
ing zero-shot initialization, the same temperature scaling as

pre-training, and explicit ℓ2-normalization of the class pro-
totypes, considerably improves the generalization of few-
shot adaptation (Tab. 4). This aligns with relevant literature
on other topics such as FT [12], which suggests that the
adaptation conditions should match the pre-training setting.
Also, including other heuristics such as data augmentation
(DA), usually omitted in LP [40, 42], is of special relevance.

Using a few-shot validation set. Cross-Modal adapter
[24] uses a validation set composed of (min(K, 4)) samples
to adjust the experimental setting and early stopping. Even
though this setting is more appropriate, it still requires an
additional number of shots for model selection. Neverthe-
less, for the sake of fairness, the performance comparison to
methods that do not require a validation set should be car-
ried out by training the latter methods usingK+min(K, 4)
shots. When this fair benchmark is established (see Tab. 5),
simple ZS-LP excels again as a strong baseline, outperform-
ing more complex methods on the low-shot regime. Only
when using a large number of shots (K > 8) partial fine-
tuning and ETL methods marginally benefit from validation
samples. However, model selection using a validation set
increases the computational workload and processing times
during adaptation due to its grid search nature.

Table 5. Using a few-shot validation set. Results for priors works
on this setting are obtained from [24]. Average across 11 datasets.

Method K=1 K=2 K=4 K=8 K=16

Protocol in [24]: K-shots for train +min(K, 4) for validation

TIP-Adapter [42] 63.3 65.9 69.0 72.2 75.1
CrossModal LP [24] 64.1 67.0 70.3 73.0 76.0
CrossModal Adapter [24] 64.4 67.6 70.8 73.4 75.9
CrossModal PartialFT [24] 64.7 67.2 70.5 73.6 77.1

Ours: usingK +min(K, 4) shots for training

ZS-LP 64.9 68.0 71.4 73.1 75.0
CLAP 66.1 69.1 72.1 73.5 75.1

6. Limitations

In this work, we have introduced a CLass-Adaptive linear
Probe (CLAP) objective, based on an adaptation of the gen-
eral Augmented Lagrangian method, for efficient adaptation
of large vision-language models in realistic scenarios. De-
spite its superiority, our empirical validation suggests that
the benefits of our approach diminish as the number of shots
increases, indicating that other strategies might be privi-
leged if the number of adaptation samples is large.
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