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- That's Jack Bauer!
- [Jack] Get up or I will kill you right here.

- Who is it you're looking for?
- I need you to break the story...

- Novakovich was just murdered.
- ... Bauer has no idea...Novakovich
was operating under my orders?

- It's about the people...murdered
your father.
- ... working under Russian agents.

- Bauer contacted Meredith Reed.
- You're suggesting muzzling the
press?

   - ... Meredith Reed. Call her publisher and demand not to run the story.
   - ... muzzling press. The freedom of press is constitutionally protected?
   - You are the President. Tell them this story will create a war.
   - ... I don't need to tell what damage your criminal prosecution will do.
   - You're poison. ... never should have let you do this. 

        - Where's Novakovich? What did he say to Bauer?
        - Nothing ... was bleeding ... wounded by one of the guards.
        - ... murdered. Bauer learned that Novakovich killed Omar and Renee.
        - Lunatic was gonna kill me, Yuri. Think of it as sacri�cing a rook for a king.
        - ... orders? There's nothing more dangerous than a wounded animal.

Figure 1. We illustrate how TV show recaps can be used to generate labels for multimodal story summarization. The top half features
the recap shown at the beginning of the episode S08E23 based on key moments (shots and dialogs) from S08E22 of the TV series 24. As
recaps help viewers recall essential story events, we extend these aligned segments to create summarization labels (visualized in the bottom
half where the actual shots and dialogs inherited from recap are marked in deep red). For example, in the sub-story (left), the recap hints
at Jack Bauer relaying classified information to the press, while the summary presents the complete sub-story, including Logan informing
President Taylor about their failure to catch Jack and their disagreement over muzzling the press.

Abstract
We introduce multimodal story summarization by lever-

aging TV episode recaps – short video sequences interweav-
ing key story moments from previous episodes to bring view-
ers up to speed. We propose PlotSnap, a dataset featur-
ing two crime thriller TV shows with rich recaps and long
episodes of 40 minutes. Story summarization labels are
unlocked by matching recap shots to corresponding sub-
stories in the episode. We propose a hierarchical model
TaleSumm that processes entire episodes by creating com-
pact shot and dialog representations, and predicts impor-
tance scores for each video shot and dialog utterance by en-
abling interactions between local story groups. Unlike tra-
ditional summarization, our method extracts multiple plot
points from long videos. We present a thorough evaluation
on story summarization, including promising cross-series
generalization. TaleSumm also shows good results on clas-
sic video summarization benchmarks.

1. Introduction
Imagine settling in to catch the latest episode of our favorite
TV series. We hit play and the familiar “Previously on ...”,

the recap, a smartly edited segment swiftly brings us up to
speed, reminding us of key moments from past episodes.

A TV show recap is a concise, under-two-minute se-
quence of crucial plot points from previous episodes. To
satisfy the time constraint, the recap is constructed by edit-
ing shots from previous episode with sharp and rapid cuts
and selecting/modifying dialog utterances to ensure rele-
vance to the sub-story. A good recap sets the stage for the
main part of the episode by weaving visual and dialog cues
to spark the viewers’ memory. Thus, a recap is a great way
to identify sub-stories important to the overall story arc.

We use recaps to create story summaries by identifying
and expanding the sub-stories from the episode (Fig. 1). We
introduce an innovative shot-matching algorithm (Sec. 3)
that associates shots from the recap to their corresponding
shots in the episode. Different from a recap, a story sum-
mary consists of entire scenes or sub-stories that are essen-
tial to the narrative. Thus, a first-time viewer may watch
story summaries of each episode serially and understand the
main narrative, while watching recaps serially does not help
as they are only meant as memory triggers and assume that
the viewer has seen the episode before.

We propose a novel task of creating multimodal story
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Dataset Modalities # Length Content Summary Annotations

SumMe [21] V2V 25 1-6 min Holidays, events, sports Multiple set of key fragments
TVSum [75] V2V 50 1-11 min News, how-to, user-generated, documentary Multiple fragment-level scores
OVP [11] V2V 50 1-4 min Documentary, educational, historical, lecture Multiple set of key-frames

CNN-DailyMail [51] T2T 311672 766 words News articles and highlight stories Human-generated internet summaries
XSum [53] T2T 226711 431 words BBC News articles Single-sentence summary by author
TRIPOD [56] T2T 99 22072 words Movies (action, romance, comedy, drama) Synopses level annotations
SummScreen [8] T2T 26851 7013 words TV screenplays (wide scope, 21 genres) Human-written internet summaries

How2 [72] VT2T 79114 2-3 min Instructional videos Youtube descriptions (and translations)
SummScreen3D [55] VT2T 4575 5721 words TV Shows (soap operas) Human written internet summaries
BLiSS [25] VT2VT 13303 10.1 min/49 words Livestream Videos Human text-summaries; Thumbnail animation
PlotSnap (Ours) VT2VT 215 40-45 min TV Shows (crime thriller) Matching recap shots followed by smoothing

Table 1. Overview of video/text/multimodal summarization datasets. # indicates the size of the dataset (no. of instances). The modalities
column includes: V2V: Video-to-video, T2T: Text-to-text, VT2T: Video-text to text, and VT2VT: Video-text to video-text summarization.
Closest to our domain of story summarization are SummScreen and SummScreen3D, however, they produce text summaries.

summaries for TV episodes. We introduce PlotSnap, a new
dataset for story summarization consisting of two popular
crime thrillers: (i) 24 [1] features Jack Bauer, an agent at
the counter-terrorism unit who relentlessly tackles seem-
ingly impossible missions; and (ii) Prison Break [2] fea-
tures Michael Scofield who plans and executes daring es-
capes from prisons. We choose action thrillers as they are
often more challenging than romantic and situational come-
dies with multiple suspenseful story-lines, rapid action se-
quences, and complex visual scenes. With excellent recaps
in both shows, we can extract important narrative subplots
from the recap to create story summaries (see Sec. 3).

Our task of story summarization is an instance of mul-
timodal long-video understanding where an entire episode
(typically 40 minutes) needs to be processed. We formulate
story summarization as an extractive multimodal summa-
rization task with multimodal outputs (video-text to video-
text, VT2VT). Specifically, we build models that predict the
importance of each video shot and dialog utterance (story
elements) in an episode. Selecting multiple major and con-
nected sub-stories is different and challenging from most
summarization works that promote visual diversity [39].

We also propose a new hierarchical Transformer model,
TaleSumm, to perform story summarization. Different from
typical summarization approaches [16, 55, 95] that use mul-
timodal inputs to either generate a video (select frames) or
a text summary, our model predicts scores for both modal-
ities. Recent multimodal approaches, A2Summ [25] and
VideoXum [44], also generates both outputs; but we differ
significantly in video type (stories vs. creative videos), the
duration of the input video, and the model architecture. The
first level of our model encodes shot and utterance represen-
tations. At the second level, we foster interaction between
shots and utterances within local story groups based on a
temporal neighborhood, reducing the impact of distant and
potentially noisy elements. A dedicated group token en-
ables message-passing across story groups.

In summary, our contributions are: (i) We propose story

summarization that requires identifying and extracting mul-
tiple plot points from narrative content. This is a challeng-
ing multimodal long-video understanding task. (ii) We pi-
oneer the use of TV show recaps for video understanding
and show their application in story summarization. We in-
troduce PlotSnap, a new dataset featuring 2 crime thriller
TV series with rich recaps. (iii) We propose a novel hier-
archical model that features shot and dialog level encoders
that feed into an episode-level Transformer. The model op-
erates on the full episode while being lightweight enough to
train on consumer GPUs. (iv) We present an extensive eval-
uation: ablation studies validate our design choices, Tale-
Summ obtains SoTA on PlotSnap and performs well on
video summarization benchmarks. We show generalization
across seasons and even across TV shows, and evaluate con-
sistency of labels obtained from multiple diverse sources.

2. Related Work

Video summarization predates Deep Learning (DL). Past
methods focused on generating keyframes [36, 37, 40, 86],
skims [20, 46], video storyboards [19], time-lapses [38],
montages [77], or video synopses [63]. However, given the
effectiveness of DL methods (e.g. [22, 34, 47, 90]) over tra-
ditional optimization-based approaches, we will primarily
discuss learning-based approaches in the following.

Summarization modalities. We classify approaches based
on input and output modalities. (i) Video to frames/video
(V2V) approaches model temporal relations [92, 96, 97],
preserve diversity [39, 91], or generate images/videos [4,
15, 67, 93]. On the other, (ii) text to text (T2T) methods are
either extractive [33, 45, 94] picking important sentences
from a document, or abstractive [43, 66, 89] summarizing
the overall meaning by generating new text [50]. Relevant
to our work, story screenplay summaries [8, 57] or turning
point identification [56] can be seen as T2T summarization.

Multimodal approaches typically benefit from additional
modalities to enhance model performance. (iii) Video-text

13636



to text (VT2T) is popular for screenplays [55, 59], particu-
larly in generating video captions [4, 68, 72]. (iv) Video-
text to video (VT2V) covers the field of query-guided
summarization [30, 52, 74]. Finally, the last option is
(v) video-text to video-text (VT2VT) summarization. Our
work lies here and is different from A2Summ [25] and
VideoXum [44], as we operate on long videos edited to con-
vey complex stories. Different from trailer generation [58]
that avoids spoilers, we wish to identify all key story events.

Summarization datasets. We compare popular summa-
rization datasets based on above modalities in Table 1.
Video-only datasets, TVSum [75] and SumME [21], consist
of short duration videos unlike ours. Other video datasets
work with first-person videos [26], are used for title genera-
tion [88], and even feature e-sports audience reactions [14].
For a nice overview of text-only (T2T) and text-primary
(VT2T) datasets, we refer the reader to [55]. Briefly,
text datasets include news articles (CNN-DailyMail [51],
XSum [53]), human dialog (Samsum [18]), and TV/movie
screenplays (SummScreen [8]). While similar in spirit to
screenplays used for storytelling, PlotSnap is different as it
features TV episodes with long videos and dialogs (without
speaker labels or scene descriptions), a significant challenge
in long-form video understanding.

Story summarization retrieves multiple sub-stories con-
tained within the story-arc of an episode. To our best
knowledge, we are unaware of works on video-text story-
summary generation. There are attempts to understand sto-
ries in movies/TV shows through various dimensions: per-
son identification [24, 48, 49, 83], question-answering [41,
42, 82], captioning [60, 62, 69, 70], situation understand-
ing [35, 71, 85, 87], text alignment [73, 79, 81, 98], or scene
detection [9, 23, 31, 32]. Recently, SummScreen3D [55]
extends SummScreen [8] with visual inputs, but the out-
put summary is still textual. On the other hand, our goal is
multimodal story-summary generation by predicting both -
important video shots and dialogs.

3. PlotSnap Dataset

We introduce the PlotSnap dataset consisting of long-form
multimodal TV episodes with a well-structured underlying
plot spanning multiple seasons and episodes. We consider
two American crime thriller TV shows with rich storylines:
24 [1] and Prison Break (PB) [2]. Unlike sitcoms, crime
thrillers are recognized for their methodically crafted capti-
vating plot lines. Notably, both 24 and Prison Break have
good recaps, and are famous for using the catchphrase “Pre-
viously on ...” at the start of the recap.

We present some statistics of PlotSnap in Table 2. With
a total of 205 episodes, the large number of shots and di-
alogs present in each episode pose interesting challenges
for summarization. The first section of the table presents

TV Series 24 Prison Break

# of Seasons 8 2
# of Episodes 172 33
Dataset duration (hours) 125.9 24.0
Avg episode duration (s) 2635 ± 72 2615 ± 39

Avg # of shots per episode 825 ± 101 999 ± 117
Avg duration of shots (s) 3.2 ± 2.5 2.6 ± 2.3
Avg # of utterances per episode 564 ± 54 529 ± 59
Avg # of words/tokens in utterance 7.9 ± 5.4 7.4 ± 5.8

Avg recap duration (s) 104 ± 28 62 ± 20
Avg # of shots in recap 55 ± 12 43 ± 9
Avg # of utterances in recap 33 ± 6 22 ± 5

Table 2. Mean (± stddev) featuring properties of video shots, dia-
log utterances, and the recap in our dataset PlotSnap.

overall size and duration, second shows statistics for shots
and dialog utterances, and the third for recaps. We note that
recap shots are much shorter (1.9s vs. 3.2s for 24) allowing
the editors to pack more story content in the same duration.

Our key idea is to use professionally edited recaps, shown
at the beginning of a new episode, as labels for story sum-
marization. Let En be the nth episode in a TV series. Rn+1

is the recap shown just before the episode En+1 begins and
may contain content from all past episodes {En, . . . , E1}.
Thus, we classify the visual content appearing in the recap
into three sources along with their average proportions (for
24): (i) shots that are picked (and usually trimmed) from
En (88%), (ii) shots that are picked from En−1 or earlier
(5%), and (iii) new shots that did not appear in any previous
episode (7%). As most shots (88%) of a recap are from the
preceding episode, recaps serve as good summary labels.
The remaining 12% recap content (from earlier episodes or
unseen shots) is ignored. We also remove the last episode
of each season due to the absence of a recap.

Recap inspired labels. We present how recap shots and di-
alogs can be used to create labels for story summarization.
First, we manually extract the recap (Rn+1) from En+1

instead of employing automatic detection methods [23] to
avoid introducing additional label noise. Second, to local-
ize trimmed recap shots in past episodes (E1, . . . , En), we
propose a shot-matching algorithm that conducts pairwise
comparisons of frame-level embeddings, making selections
based on a threshold determined by similarity score and fre-
quency. Due to shot thread patterns [80], one recap shot
may match multiple shots in the episode. This is desirable
as we want to highlight larger sub-stories as part of the sum-
mary. In fact, selecting only one shot in a thread adversely
affects the model due to conflicting signals as shots with
very similar appearance are assigned opposite labels.

We think of recap matched shots as temporal point an-
notations [10]. We identify the set of matching shots in the
episode, create a binary label vector, and smooth this vec-
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tor using a triangular filter. We will refer to these smoothed
labels as ground-truth (GT) for story summarization. Ex-
tending the supervision helps the model identify meaning-
ful, contiguous sub-stories rather than focusing solely on
specific shots highlighted in the recap. For example, it is un-
likely that shot si is important to the story while si±1 is en-
tirely irrelevant (except at scene boundaries). Thus, smooth-
ing is essential to clarify the distinction between positive
(essential) and negative (unimportant) shots. Please refer to
the supplement for details on the label creation process.

A similar approach can be adopted for dialog utterances.
We are able to match 88% of recap utterances to dialog
within the smoothed video labels. The rest do not appear
in episode En or are picked from extra recorded footage.
For simplicity, we inherit labels for the dialogs based on the
smoothed label for the temporally co-occurring shot.

4. Method: TaleSumm

We introduce TaleSumm, a two-level hierarchical model
that identifies important sub-stories in a TV episode’s nar-
rative (illustrated in Fig. 2). At the first level, our approach
exploits frame-level (word-level) interactions to extract shot
(dialog) representations (Sec. 4.2, Fig. 2(B, C)). At the sec-
ond level, we capture cross-modal interactions across the
entire episode through a Transformer encoder (Sec. 4.3,
Fig. 2(A, D)). Before diving into the architecture, we for-
malize story summarization and introduce notation.

4.1. Problem Statement

Our aim is to extract a multimodal story summary (video
and text) from a given episode, typically lasting around 40
minutes, and encompassing multiple key events.

Notation. An episode E = (S,U) consists of a set of N
video shots S = {si}Ni=1 and a set of dialog utterances
U = {ul}Ml=1. A shot serves as a basic unit of video pro-
cessing and comprises temporally contiguous frames taken
from the same camera, while a dialog utterance typically
refers to a sentence uttered by an individual as part of a
larger conversation. We denote each shot as si = {fij}Ti

j=1,
where fij are sub-sampled frames, and each utterance as
ul = {wlp}Tl

p=1 with multiple word tokens wlp.

Summarization as importance scoring. While humans
may naturally select start and end temporal boundaries to
indicate important sub-stories, for ease of computation, we
discretize time and associate an importance score with each
video shot or dialog utterance. Thus, given an episode
E = (S,U), we formulate story summarization as a binary
classification task applied to each element (shot or dialog).
The ground-truth labels can be denoted as yS = {ySi }Ni=1

and yU = {yUl }Ml=1, where each ySi , y
U
l ∈ [0, 1], signaling

their importance to the story summary.

4.2. Level 1: Shot and Dialog Representations

In narrative video production, shots play an important role
in advancing the storyline and contextualizing neighboring
content. We obtain shot-level representations from granu-
lar frame-level features to determine how well the shot can
contribute to understanding the storyline.
Feature extraction. To capture various aspects of the shot,
we use three pretrained backbones that capture visual di-
versity through people, their actions, objects, places, and
scenes: ϕk

S(·), k = {1, 2, 3}. We extract relevant visual in-
formation from frame(s) of a given shot, si as follows:

fkij = ϕk
S ({fij}) , fkij ∈ RDk

S . (1)

Note that the backbone may encode a single frame fij or a
short sequence around fij .

For dialog utterances, we adopt a fine-tuned language
model ϕFT

U , to compute contextual word-level features:

wlp = ϕFT
U ({wlp}) , wlp ∈ RDU . (2)

Shot CLS pooling. To compute an aggregated shot rep-
resentation, we combine frame-level signals into a com-
pact representation. An attention-based aggregation (⊞)
(inspired by [27]), effectively weighs the most pertinent in-
formation (e.g. action in a motion-heavy shot or scenery
in an establishing shot). First, the frame features from
different backbones are projected to the same space (us-
ing Wk

S∈ RD×Dk
S ) and then concatenated to form f̂1:3ij ∈

R3D (Eq. 3). A linear layer WP ∈ R3×3D followed by
tanh and softmax computes scalar importance scores that
are used for weighted fusion:

f̂1:3ij = [W 1
Sf

1
ij ,W

2
Sf

2
ij ,W

3
Sf

3
ij ] , (3)

α1:3
ij = softmax(tanh(WP f̂

1:3
ij )) , (4)

Fij = α1
ij f̂

1
ij + α2

ij f̂
2
ij + α3

ij f̂
3
ij . (5)

We omit bias for brevity. We add relative frame position
to Fij through a time-embedding vector, ES

j , similar to
Fourier position encoding [84].

A shot transformer [84] ST is used to encode the frame-
level feature sequence {Fij}Ti

j=1. We tap the output from
the CLS token appended at the beginning of the sequence
(e.g. similar to BERT [12]) as the final shot representation:

si = ST({Fij +ES
j }

Ti
j=1) , si ∈ RD . (6)

Dialog utterance representation. First, we project the to-
kens wlp to RD using a linear layer WU ∈ RD×DU . As the
tokens are already contextualized by ϕFT

U , a simple mean-
pool across the p tokens is found to work well:

ul = meanp({WUwlp}Tl
p=1) , ul ∈ RD . (7)
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Sorry for
your loss...

I'll not
sign the
treaty.

Episode level Transformer (ET) (x6)

Linear Classi�er

Video Shot Encoder

You're a
dead man.

A Utterance Encoder Utterance Encoder Utterance EncoderVideo Shot Encoder Video Shot Encoder Video Shot Encoder

Local Story Group Local Story Group Local Story GroupLocal Story Group
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Attn Mask

D
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Shot Embedding
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Video Shot Encoder

B

= # vid tokens in a Group
= # dia tokens in a Group

Video Shot

Utt Emb

Group Emb

Vid Pred

Video Type

Utt Type

Group Index

Dia Pred

Time Emb Frozen Net

C

Utterance Encoder

Utterance embedding

<S> Good afternoon ... press <E>

Fine-tuned RoBERTa-large

Pooling

Figure 2. (A) TaleSumm ingests all video shots and dialogs of the episode and encodes them using (B) and (C). Based on temporal order,
we combine tokens into local story groups (illustration shows small groups of 2 shots and 0-2 utterances). To each group, we append a
group token and add multiple embeddings, before feeding them to the the episode-level Transformer (ET). For each shot or dialog token, a
linear classifier predicts its importance. (B) Video shot encoder. For each frame, representations from multiple backbones are fused using
attention (�). We feed these to a shot Transformer encoder ST, and tap a shot-level representation from the CLS token. (C) Utterance
encoder uses a fine-tuned language model and avg-pooling across all words of the utterance. (D) Self-attention mask illustrates the
block-diagonal self-attention structure across the episode. Group tokens across the episode (purple squares) communicate with each other.
(E) Multiple embeddings are added to the tokens to capture modality type, time, and membership to a local story group.

4.3. Level 2: Episode-level Interactions

We propose an episode-level Transformer encoder, ET, that
models interactions across shots and dialog of the entire
episode. Predicting the importance of an element (shot or
dialog) requires context in a neighborhood; e.g. shot in a
scene, dialog utterance in a conversation.
Additional embeddings. We arrange shot and dialog to-
kens based on their order in the episode (see Fig. 2(A)).
Learnable type embeddings help the model distinguish be-
tween shot and dialog modalities (EM ∈ R2×D). We en-
code the real time (in seconds) of appearance of each el-
ement (shot or dialog) using a binning strategy. Given an
episode of T seconds, we initialize Fourier position encod-
ings ET ∈ R�T/τ�×D where τ is the bin-size. Based on the
mid-timestamp of each element t, we add ET

t to the repre-
sentation, the �t/τ�th row in the position encoding matrix.
Such time embeddings allow our model to: (i) implicitly en-
code shot duration; and (ii) relate co-occurring dialogs with
video shots without the need for complex attention maps.
Local story groups. The total number of video shots
and dialog that make up the sequence length for ET is
S=N+M (∼1500). Self-attention over so many tokens is
not only computationally demanding, but also difficult to
train due to unrelated temporally distant tokens that happen
to look similar. We adopt a block-diagonal attention mask
to constrain the tokens to attend to local story regions:

AS×S = diag( n1×n1
, . . . , ng×ng

, . . . , nG×nG
) , (8)

where ng×ng
denotes an all one matrix, ng is the # of to-

kens in the gth local block,
∑G

g=1 ng = S, and diag(. . .)
constructs a block diagonal matrix. We add new learnable
group index embeddings EG ∈ RG×D to our tokens to in-
form our model about their group membership.

Group tokens. While capturing interactions across all
tokens may lead to poor performance, self-attention only
within the local story groups prohibits the model from
capturing long-range story dependencies. To enable story
group interactions, we propose to add a set of group tokens
to the input, extending the sequence length to Ŝ=S+G. The
group tokens qg represent an additional layer of hierarchy
within the episode model as they summarize the story con-
tent inside a group and also communicate across groups,
providing a way to understand the continuity of the story.
Fig. 2(E) shows how group tokens are inserted at the end of
each local story group’s shot and dialog tokens.

To facilitate cross-group communication, we make two
modifications to the self-attention mask: (i) The size of each
local group ng is extended by 1 to incorporate the group
token qg within the block matrix. We also update A to
reflect this and is of size Ŝ × Ŝ. (ii) We compute a bi-
nary index o ∈ {0, 1}Ŝ to represent the locations at which a
group token appears in the sequence. The new self-attention
mask Â = A+ ooT allows group-tokens to communicate.
Fig. 2(D) illustrates the attention mask; light blue squares
correspond to attention within a group, and sparse purple
squares visualize attention across the group tokens.

13639



Importance prediction. We present how shot or dialog
scores can be estimated. First, the input tokens to ET are:

ŝi = si +EM
0 +ET

ti +EG
gi , (9)

ûl = ul +EM
1 +ET

tl
+EG

gl
, (10)

qg = q+EG
g . (11)

where ti, tl and gi, gl correspond to the mid-timestamp and
group membership of shot si and dialog ul respectively. q
denotes the learnable shared group type embedding.

We feed the updated shot, dialog, and group token rep-
resentations to ET post LayerNorm [5], a HE layer Trans-
former encoder with a curated self-attention mask Â:

[. . . , s̃i, ũl, q̃g, . . .] = ET([. . . , ŝi, ûl,qg, . . .]; Â) , (12)

with all tokens, i.e. {i}N1 , {l}M1 , and {g}G1 .
After ET, we compute shot and dialog importance scores

using a shared linear classifier WC ∈ R1×D followed by
sigmoid function σ(·):

ŷSi = σ(WC s̃i) and ŷUl = σ(WC ũl)∀i, l . (13)

4.4. Training and Inference

Training. TaleSumm is trained in an end-to-end fashion
with BinaryCrossEntropy (BCE) loss. We provide positive
weights, w (ratio of negatives to positives) to account for
class imbalance. Modality specific losses are added:

L = BCE
(
ŷS ,yS ;wS)+ BCE

(
ŷU ,yU ;wU) . (14)

Inference. At test time, we follow the procedure outlined
in Sec. 4.3 and generate importance scores for each video
shot and dialog utterance (Eq. 13).
Model ablations. As we will see empirically, our model is
versatile and well-suited for adding/removing modalities or
additional representations by adjusting the sequence length
of the Transformer (number of tokens). It can also be mod-
ified to act as an unimodal model that applies only to video
or dialog utterances by disregarding other modalities.

5. Experiments and Analysis
We first discuss the experimental setup.
Data splits. We adopt 3 settings. (i) IntraCVT: On 24,
most experiments (Tabs. 3 to 5) follow an intra-season 5-
fold cross-validation-test strategy. (ii) X-Season: On 24,
we assess cross-season generalization using a 7-fold cross-
validation-test (Tab. 7). (iii) X-Series: shows transfer re-
sults from 24 to PB (Tab. 7). Details in the supplement.
Evaluation metric. We adopt Average Precision (AP, area
under PR curve) as the metric to compare predicted impor-
tance scores of shots or dialogs against ground-truth.

Video-only Dialog-only

Avg Max Cat Tok ⊞ Max Avg wCLS

MLP 42.3 42.3 42.3 42.4 42.5 35.7 35.7 35.8
woG + FA 51.8 51.9 51.1 51.6 52.0 44.5 44.5 44.6
wG + SA 52.4 52.5 53.3 53.3 53.4 46.5 46.5 47.2

Table 3. Rows demonstrate methods for capturing episode-level
interactions. In an MLP, tokens are independent. woG+FA is a
Transformer encoder that captures full-attention over the entire
episode without grouping; and wG+SA uses the proposed archi-
tecture with local story groups and sparse-attention. Columns de-
scribe the aggregation method used to combine frame (or token)
level features into shot (or utterance) representation. C1 and C7
use average pooling. C2 and C6 use max pooling. C3-C5 are vari-
ants of ST: C3 concatenates backbone features of each frame, C4
uses backbone features as separate tokens, and C5 uses proposed
⊞ attention fusion. C8 uses the CLS token for dialog. Chosen: ⊞
for shot, and average pooling for utterance representation.

5.1. Implementation details

We present some high-level details here.

Feature backbones. We adopt three visual backbones:
DenseNet169 [29] for object understanding; MViT [13] for
action information; and OpenAI CLIP [65] for semantics.

To encode dialog, we adapt RoBERTa-large [99] for
extractive summarization using parameter-efficient fine-
tuning [28, 55] on the text from our dataset. The backbone
is frozen when training TaleSumm for story summarization.

Additional backbone details are in the supplement.

Architecture. We find HS=1, HE=6, and ng=20 to work
best. Both ST and ET have the same configuration: 8 atten-
tion heads and D=128. We tried several architecture con-
figurations, details are in the supplement.

Training details. We randomly sample up to 25 frames
per shot during training as a form of data augmentation and
use uniform sampling during inference. Our model is im-
plemented in PyTorch [61], has 1.94 M parameters, and is
trained on 4 RTX-2080 Ti GPUs for a batch size of 4 (i.e. 4
entire episodes). The optimizer, learning rate, dropout, and
other hyperparameters are tuned for best performance on
the validation set and indicated in the supplement.

5.2. Experiments on 24

Architecture ablations. Results in Tab. 3 are across two di-
mensions: (i) columns span the shot or utterance level and
(ii) rows span the episode level. All model variants outper-
form a baseline that predicts a random score between [0, 1]:
AP 34.2 (video) and 30.4 (dialog), over 1000 trials.

Across rows, we observe that the MLP performs worse
than the other two variants by almost 10% AP score be-
cause assuming independence between story elements is
bad. Our proposed approach with local story groups and
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Model AttnMask GToken Video AP Dialog AP

1 Video-only SA ✓ 53.4 ± 3.9 -
2 Dialog-only SA ✓ - 47.2 ± 3.9

3

TaleSumm

FA - 51.8 ± 3.6 43.8 ± 4.7

4 FA ✓ 51.9 ± 3.7 44.0 ± 4.6

5 SA - 53.9 ± 3.4 48.8 ± 4.6

6 SA ✓ 54.2 ± 3.3 49.0 ± 4.9

Table 4. TaleSumm ablations. The AttnMask column indicates if
the self-attention mask is applied over the full episode (FA) or uses
sparse block diagonal structure of story groups (SA). The GToken
indicates whether the group token is absent (-) or present (✓). R6
is our final chosen model for subsequent experiments.

Model
Val Test

Video AP Dialog AP Video AP Dialog AP

PGLSUM [3] 48.8 ± 3.3 - 47.1 ± 2.4 -
MSVA [17] 47.3 ± 3.8 - 45.5 ± 1.2 -
Video-Only 53.4 ± 3.9 - 50.6 ± 3.6 -

PreSumm [45] - 43.1 ± 3.3 - 41.6 ± 2.0

Dialog-Only - 47.2 ± 3.9 - 43.4 ± 2.8

A2Summ [25] 35.1 ± 1.8 33.2 ± 2.8 33.8 ± 1.7 31.6 ± 2.2

TaleSumm (Ours) 54.2 ± 3.3 49.0 ± 4.9 50.1 ± 2.8 46.0 ± 2.1

Table 5. Comparison against SoTA video-only, text-only, and mul-
timodal summarization models. Our approach outperforms previ-
ous work by a significant margin.

sparse-attention (wG+SA) outperforms a vanilla encoder
without groups and full-attention (woG+FA) by 1-2% on
the video model and 2-3% for the dialog model.

Across columns, performance changes are minor. How-
ever, when using wG+SA at the episode-level, gated atten-
tion fusion with a shot transformer (⊞) improves results
over Avg and Max pooling by 1%. For dialog-only, though
wCLS outperforms Avg and Max by 0.7%, we adopt Avg
pooling for its effective performance in a multimodal setup.

TaleSumm ablations are presented in Tab. 4. Rows 1 and 2
highlight the best video-only and dialog-only models (from
Tab. 3). We report mean ± std dev on the val set. Std dev
is found to be high due to variation across multiple folds;
but low across random seeds. Results for joint prediction
of video shot and utterance importance are shown in rows
3-6. Our proposed approach in row 6 performs best for both
modalities, outperforming rows 3-5.

SoTA comparison. We compare against SoTA methods:
(i) video-only (PGLSUM [3], MSVA [17]), (ii) dialog-only
(PreSumm [45]), and (iii) multimodal (A2Summ [25]) in
Tab. 5. While none of the above methods are built for pro-
cessing 40 minutes of video, we make modifications to them
to make them comparable to our work (details in the supple-
ment). On both the validation and the test set, TaleSumm
outperforms all other baselines in both modalities.

Model
SumMe TVSum

F1 SP KT F1 SP KT

MSVA [17] 52.4 12.3 9.2 63.9 32.1 22.0
PGLSUM [3] 56.2 17.3 12.7 63.9 40.5 28.2
A2Summ [25] 54.0 3.5 2.8 62.9 25.2 17.1

TaleSumm (Ours) 57.5 23.8 17.6 64.0 26.7 18.2

Table 6. Comparison with SoTA methods on the SumMe [21]
and TVSum [75] benchmark datasets. Metrics are suggested by
Otani et al. [54]: F1, Kendall’s τ (KT), and Spearman’s ρ (SP).

X-Season (24) X-Series (PB)
Model

Video Dialog Video Dialog

1 MSVA [17] 46.7 ± 2.7 - 32.7 -
2 PGLSUM [3] 47.1 ± 2.4 - 34.5 -
3 PreSumm [45] - 41.3 ± 3.2 - 38.3
4 A2Summ [25] 33.5 ± 3.2 31.7 ± 2.9 20.2 19.0

5 TaleSumm (Ours) 51.0 ± 4.6 46.0 ± 5.5 36.7 35.7

Table 7. We evaluate our model’s generalization across seasons
within 24 and across TV shows (24 → Prison Break). R5 show-
cases superiority of our methods compared to SoTA. In X-Series,
the random baseline achieves 21.3 and 19.1 for video and dialog.

5.3. Analysis and Discussion

Video summarization benchmarks. We evaluate Tale-
Summ on SumMe [21] and TVSum [75]. However, both
datasets are small (25 and 50 videos) and have short du-
ration videos (few minutes). As splits and metrics are not
comparable across previous works, we re-ran the baselines.

While MSVA uses three feature sets: i3d-rgb, i3d-
flow [7] and GoogleNet [78] with intermediate fusion,
PGLSUM uses GoogleNet and captures local and global
features. In contrast, A2Summ [25] aligns cross-modal
information using dual-contrastive loss between video
(GoogleNet features) and text (captions generated using
GPT-2 [64], embedded by RoBERTa [99] at frame level).

Similar to MSVA, we fuse all 3 features. Even though
TaleSumm is built for long videos (group blocks, sparse at-
tention), Tab. 6 shows that we achieve SoTA on SumMe.
The drop in performance on TVSum may be due to video
diversity (documentaries, how-to videos, etc.).
Generalization to a new season/TV series. Tab. 7 shows
results in two different setups. In X-Season, we see the
impact of evaluating on unseen seasons (in a 7-fold cross-
val-test). While TaleSumm outperforms baselines, it is in-
teresting that most methods show comparable performance
across IntraCVT and X-Season setups (see Tabs. 5 and 7).

In the X-Series setting, we train our model on 24 and
evaluate on Prison Break. Although both series are crime
thrillers, there are significant visual and editing differences
between the two shows. Our approach obtains good scores
on video summarization, and is a close second on dialog.

13641



Get on your feet. You're lying...Cheng
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Cover me now. Milo was a
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Figure 3. TaleSumm predictions on S06E22 of 24 (test set). “Ours” filled-plot illustrates the importance score profile over time, where
orange patches indicate story segments selected for summarization. Annotations are shown below: ground-truth (GT), fandom (F), and
human annotated (H). The story: Amid the high-stakes sequence depicted in the selected groups 1-3, Zhou Yong’s team captures Josh
Bauer, leading to a firefight with Jack Bauer, who seeks Josh’s location. Negotiations with Phillip Bauer over Josh’s return for a vital
circuit board escalate global tensions between Russia and the USA. Simultaneously, Mike Doyle defies Jack’s wishes and departs with Josh
by helicopter (segment 7). Parallely, Lisa, backed by Tom Lennox, confronts a Russian agent, leading to her injury (4, 6). Morris attempts
to console Nadia for Milo’s loss at CTU in 5. Escalating global tensions and the imminent showdown mark the episode.

Dataset
Cronbach α Pairwise F1 Fleiss’ κ

Video Dialog Video Dialog Video Dialog

SumMe 0.88 - 0.31 - 0.21 -
TVSum 0.98 - 0.36 - 0.15 -
PlotSnap (Ours) 0.91 0.93 0.59 0.60 0.38 0.39

Table 8. Label consistency across datasets.

Methods
Fandom (F) Human (H)

Video AP Dialog AP Video AP Dialog AP

GT 64.1 63.8 44.8 42.2

PGLSUM 43.0 - 47.6 -
MSVA 34.3 - 42.2 -
PreSumm - 43.6 - 46.7
A2Summ 28.7 29.7 41.0 41.1

TaleSumm 44.5 45.5 48.7 50.9

Table 9. Results on labels from 24 fan site (F) and human-
annotated story summaries (H) averaged over 17 episodes of 24.

Label consistency. As suggested by [21, 75], label con-
sistency is crucial to evaluate summarization methods. We
assess PlotSnap using Cronbach’s α, pairwise F1-measure,
and another agreement score: Fleiss’ κ.

We obtain three sets of labels for 17 episodes of 24 (de-
tails in supplement). (i) GT: obtained from matching recaps;
(ii) F: maps plot events from a 24 fan site1 to videos; (iii) H:
human response for a summary. Our labels have superior
consistency compared to SumMe [21] and TVSum [75] (see
Tab. 8), indicating that identifying key story events in a
TV episode is less subjective than scoring importance for
generic Youtube videos. Tab. 9 shows the results for the
baselines and TaleSumm on the two other labels F and H.

1https://24.fandom.com/wiki/Day 6: 4:00am-5:00am talks about
the key story events in S06E22 in a Previously on 24 section (see Fig. 3).

Our model predictions are better aligned with both labels.
Qualitative analysis. We show the model’s predictions and
compare against all three labels (GT, F, and H) for one
episode in Fig. 3. Our model identifies many important
story segments that are also part of the annotations.

6. Conclusion
Our work pioneered the use of TV episode recaps for story
understanding. We proposed PlotSnap, a dataset of two
TV shows with high-quality recaps, leveraging them for
story summarization labels, while showing high consistency
across labeling approaches. We introduced TaleSumm, a hi-
erarchical summarization approach that captures and com-
presses shots and dialog, and enables cross-modal interac-
tions across the entire episode, trainable on a single GPU
of 12GB. We performed thorough ablations, established
SoTA performance, and demonstrated transfer across sea-
sons, other series, and even movie genres. For reproducibil-
ity and encouraging future work, we will release the code
and share the dataset, as keyframes, features, and labels.
Limitations and future work. While our current work fo-
cuses on recaps obtained from a limited genre and two TV
series, we believe the approach should be scalable to addi-
tional genres and datasets. Early experiments in evaluating
our model on condensed movies (CMD) [6] show limited
improvements. Our approach to story summarization does
not explicitly model the presence of characters (e.g. via per-
son and face tracks and their emotions [76]) which are cen-
tral to any story and this can be an important direction for
future work. Additional discussions are provided in the sup-
plementary material.
Acknowledgments. We thank the Bank of Baroda for partial
travel support, and IIIT-H’s faculty seed grant and Adobe Research
India for funding. Special thanks to Varun Gupta for assisting with
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