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Abstract

Recent dataset deduplication techniques have demon-
strated that content-aware dataset pruning can dramat-
ically reduce the cost of training Vision-Language Pre-
trained (VLP) models without significant performance
losses compared to training on the original dataset. These
results have been based on pruning commonly used image-
caption datasets collected from the web – datasets that
are known to harbor harmful social biases that may then
be codified in trained models. In this work, we evaluate
how deduplication affects the prevalence of these biases
in the resulting trained models and introduce an easy-to-
implement modification to the recent SemDeDup algorithm
that can reduce the negative effects that we observe. When
examining CLIP-style models trained on deduplicated vari-
ants of LAION-400M, we find our proposed FairDeDup
algorithm consistently leads to improved fairness metrics
over SemDeDup on the FairFace and FACET datasets while
maintaining zero-shot performance on CLIP benchmarks.

1. Introduction
Recent Vision-Language Pretrained (VLP) models [55] that
learn to align image and language encodings have demon-
strated strong zero-shot performance on many standard per-
ception tasks [12, 16, 71, 73]. Beyond these, VLP mod-
els have enabled complex downstream applications ranging
from visually-aware chatbots [42, 44] and language-based
image segmentation [37, 79] to instruction-guided robotics
[62, 69] and semantic mapping of 3D scenes [35, 61].
The rapid adoption and widespread impact of these mod-
els is due in part to the incredibly broad range of content
they can represent effectively – a scope far exceeding prior
models trained on manually-curated, closed-world datasets
[16, 43]. To acquire this capability, VLP models are trained
on massive open-world datasets of image-caption pairs col-
lected from the internet [58]. VLP models improve reliably
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Figure 1. Training models on deduplicated data can yield simi-
lar results to the full-data setting on standard tasks like zero-shot
ImageNet [16] classification (left, higher is better ↑). However,
impacts on subgroup performance have not been studied. We dis-
cover cases such as gender disparity (right, lower is better ↓)
where deduplication reinforces existing biases on FACET [26].
FairDeDup preserves performance while reducing bias from dedu-
plication and, in some cases, w.r.t. the full-data setting.

with additional training data [13], driving the number of ex-
amples in these datasets into the billions [59]. This scale
of uncurated data introduces at least two challenges – 1)
training can be extremely costly, and 2) manual data cu-
ration to reduce undesirable social biases is economically
prohibitive. In this work, we explore how dataset dedupli-
cation techniques developed to reduce training costs may
exacerbate or ameliorate these biases in trained models.

While larger pretraining datasets generally yield bet-
ter model performance [13], the massive web-scraped
datasets commonly used for training VLP models contain
many identical samples (duplicates) or samples that capture
nearly the same content under similar imaging conditions
(semantic duplicates [1]). Several recently developed tech-
niques for data pruning/deduplication have demonstrated
that aggressive removal of these duplicates has limited im-
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pact on the task performance of trained models [1, 48, 63].
For example, Abbas et al. [1] found that pruning LAION-
400M [58] by 50% resulted in trained models that achieved
average performance within 0.5% of their full-data analogs
across a range of common benchmark tasks – effectively
cutting training time in half.

However, these web-scale datasets contain a plethora of
problematic social biases and harmful stereotypes [5, 6, 23].
These biases can often then be reflected in the behavior
of models trained on these datasets [2, 27, 28, 68]. To
better understand and reduce these potential harms, there
is increased interest in analyzing the composition of these
datasets and their downstream effects on trained models
[5, 23, 77]. Deduplication techniques introduce another al-
gorithmic step between dataset and model training that may
systematically alter the data distribution – potentially ampli-
fying, maintaining, or reducing the effect of dataset biases.
Given that deduplication techniques will likely be widely
deployed as cost-saving measures, understanding how their
design affects the behavior of downstream models in terms
of bias and fairness is a timely but unexamined question.

To study this question, we investigate the fairness out-
comes of CLIP-style [55] VLP models trained on the
LAION-400M dataset [58] pruned with SemDeDup [1].
Replicating the results of Abbas et al. [1], we find task
performance on CLIP Benchmark [12] is only marginally
affected; however, evaluation on the fairness-focused Fair-
Face [34] and FACET [26] datasets suggest deduplication
results in mixed effects compared to the full-data setting.
We observe increased disparities across gender, but both
positive and negative changes for disparities across skin
tone and age. Based on these findings, we propose FairD-
eDup – a fairness-aware data pruning algorithm that makes
pruning decisions to improve representation of specified
sensitive concepts (e.g., gender, shown in Fig. 1). The
implementation of FairDeDup is a simple modification to
SemDeDup and specifying concepts can be done in natu-
ral language. Our large-scale experiments show that FairD-
eDup leads to improved fairness outcomes comapred to
SemDeDup while maintaining comparable performance on
standard zero-shot and retrieval-based performance bench-
marks. To better understand the deduplication process,
we run a smaller scale study deduplicating demographic-
labeled data – finding that FairDeDup consistently retains
more images depicting minority classes than SemDeDup.

Contributions. We summarize our contributions below:
• We conduct, to our knowledge, the first large-scale exper-

iment evaluating the fairness outcomes of training large-
scale vision language models on pruned data – training
CLIP-style models on full and deduplicated versions of
the popular LAION-400M dataset then evaluating on stan-
dard fairness benchmarks for VLP models.

• We find that models trained on SemDeDup [1] pruned data

have varied effects on fairness outcomes from the full-data
model; reinforcing some biases and mitigating others.

• We introduce FairDeDup, a simple and efficient modifica-
tion to SemDeDup that improves fairness outcomes while
retaining task performance – improving fairness outcomes
over SemDeDup in nearly all cases studied.

2. Related Work

Vision-Language Fairness. Vision and language models
have been shown to learn, reflect, and amplify problematic
social biases. For example, vision systems have been shown
to dehumanize minority groups by identifying them as an-
imals [19] and degrade in task performance on intersec-
tional combinations of gender and skin tone [9]. Likewise,
language models are known to learn gendered associations
of professions [8], increase sentiment-intensity along racial
lines [38], and a myriad of other problems documented in
[7, 65]. Vision-language models are not exempt from these
problems [27, 47, 52] and can even reinforce them [64, 77].

Contemporary Vision-Language Pretrained models are
frequently pretrained on massive but uncurated data scraped
from the internet [11, 32, 40, 55]. While web-scale data
is shown to improve performance, it also teaches mod-
els “misogyny, pornography, and malignant stereotypes”
[5]. VLP models demonstrate dehumanizing behavior with
respect to racial subgroups in zero-shot text-image re-
trieval [2, 3], show bias related to gender [23, 27, 28, 68],
age [23] and skin tone [23, 28, 68, 76] in image captioning,
and also demonstrate biases relating to age, gender, skin
tone, and ethnicity in text-image retrieval [23, 78]. These
behaviors are attributed to the use of uncurated web-scale
datasets in pretraining VLP models [5, 6, 23].

Mitigations for bias in VLP models typically include
fairness-aware training [75] or post-hoc methods to disen-
tangle useful concepts from sensitive attributes [3, 14, 60].
Unlike these methods, we seek to prevent bias from being
reinforced in the dataset, rather than removing bias from the
model itself. Though early vision-language fairness litera-
ture frequently calculates WEAT [10] and SEAT [49] em-
bedding association measures extended for the multimodal
setting [31, 57], these measures have been shown to be
overly sensitive to small changes in model architecture and
outputs [3]. As such, VLP model fairness is primarily eval-
uated on CelebA [45] and FairFace [34]. Recent datasets
such as PHASE [23] and FACET [26] allow for the study of
bias on “in the wild” data across diverse subgroups.

Dataset Pruning. Several techniques exist for reducing the
size of a dataset while preserving, or even improving, per-
formance. We consider all techniques under this umbrella
as dataset pruning algorithms. Coreset selection chooses
a weighted subset of training samples which closely esti-
mate the full dataset’s gradient [25, 50] to perform data-
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efficient training with little loss in performance. However,
these methods do not scale well with dataset size and fre-
quently require class labels [63]. The most similar work
to ours among coreset selection algorithms is the recent D2
Pruning [48]. D2 Pruning utilizes graph based methods to
select samples that are both hard and diverse across a data
distribution. While promising, D2 Pruning does not evalu-
ate any fairness outcomes and is only demonstrated to scale
to DataComp Small (12.8M) [22], a low accuracy setting
for VLP models peaking around 5% top-1 zero-shot Ima-
geNet [16] accuracy. In comparison, base-sized CLIP-style
models can range from 67-74% accuracy with web-scale
data on the same task. We refer readers to [54] for a more
thorough review of coreset selection algorithms.

Large-scale deduplication typically attempts to find ex-
act perceptual duplicates using techniques like perceptual
hashing [20] or filtering [22] on image-text CLIP scores and
target classes (e.g., filtering to images close to ImageNet
classes). Abbas et al. [1] introduces the concept of semantic
duplicates, images with similar semantic meaning that are
not perceptually the same image, alongside SemDeDup, a
formalized version of the unsupervised deduplication algo-
rithm from [63]. SemDeDup has been shown to be capable
of significantly reducing dataset size with only marginal im-
pact on performance. We choose to study SemDeDup due
to the ubiquity of its underlying selection method among
contemporary deduplication algorithms - cosine similarity
between samples - and scalable nature. To our knowledge,
we are the first to study the effect of data pruning on the
fairness outcomes of VLP models and study the effects of
fairness-aware pruning on their behavior.

3. FairDeDup: Fair Semantic Deduplication
There frequently exists sensitive attributes in data for which
it is desirable to obtain some notation of fairness [21]. For
example, we may seek demographic parity for gender so
that individuals do not receive differing treatment based on
their gender identity. Such outcomes are usually based on
social norms, organizational ethics, or even codified into
discrimination law [4, 15, 29, 53]. Our goal is to improve
post-deduplication fairness outcomes concerning these sen-
sitive groups. To achieve this, we propose boosting the rep-
resentation of underrepresented sensitive subgroups on the
internet (e.g., women of color) in the post-pruning dataset
distribution. We allow for user-defined natural language
sensitive concepts, which captures these subgroups for con-
sideration in the deduplication process, and leverage them
to bias the selection of preserved samples towards those
concepts which are currently underrepresented.

3.1. Preliminaries: SemDeDup

We implement FairDeDup as a lightweight modification to
the SemDeDup algorithm, which we describe here for com-

1 Embed & Cluster Dataset

SemDeDup FairDeDup (ours)

K-Means
Clustering

Feature
Extraction

Web-Scale
Data

2 Prune Semantic Duplicates Within Clusters

Maximize distance to
cluster centroids

Maximize similarity to
underrepresented concepts

CLIP

Figure 2. The semantic deduplication pipeline following three
clusters (8,8,8) with two subgroups (g,a). Connected shapes are
duplicates. We (1) embed all images from the dataset with a
pretrained model then partition with k-means to enable efficient
search during (2) deduplication. We make a simple modification
to the maximum distance selection heuristic used by Abbas et al.
[1] (left) to improve subgroup diversity by preserving samples
which maximize similarity to poorly represented sensitive con-
cepts according to user-specified concept prototypes (right).

pleteness. Abbas et al. [1] identify that pruning both ex-
act perceptual duplicates (e.g., copies of the same image)
and those that carry redundant semantic information (e.g.,
many photos of the same object from differing angles), de-
noted semantic duplicates, is helpful for improving the data
efficiency of training large models. To achieve this, they
propose SemDeDup [1], an extension of the unsupervised
pruning metric from Sorscher et al. [63] to web-scale data.

To identify duplicates, SemDeDup first leverages pre-
trained foundation models (e.g. CLIP [55]) to embed all
images in the dataset into a semantically meaningful fea-
ture space. Naı̈vely thresholding embedding similarity be-
tween all points to detect duplicates requires O(n2) pair-
wise comparisons and is intractable for web-scale data like
LAION-400M, which requires computing ≈1.5×1017 co-
sine similarities. To mitigate this, the dataset is partitioned
using an efficient K-means algorithm under the assumption
that pairwise similarity need only be calculated for approx-
imately similar samples. SemDeDup then considers the re-
sulting O(n2/k) pairwise similarities on an independent per
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cluster basis. Within each cluster, they determine sets of
samples within a 1−ϵ similarity threshold as duplicates and
keep only the sample most distant from the cluster centroid.
While this selection heuristic is motivated by the hardness
hypothesis of Sorscher et al. [63], ablations show that the
algorithm is robust to choosing even a random sample.

3.2. FairDeDup

Due to the robustness of SemDeDup to the choice of selec-
tion heuristic on performance, we seek instead to replace
the heuristic with one that can support our fairness motiva-
tion. We provide an overview following shared and unique
steps of SemDeDup and FairDeDup in Fig. 2.

Sensitive Concept Prototypes. Given a list of user-defined
sensitive concepts C that are desired to be represented in
the pruned dataset, we denote the concept prototype Pi for
a sensitive concept Ci∈C as the average text embedding of
the set of captions generated from template strings (e.g., “A
photo of a {Ci}”) capturing that concept. As is common
for VLP models, we assume the embedding model support-
ing image clustering can also produce image-text alignment
scores [32, 41, 55, 72, 74] and consider the case where
alignment is determined as the cosine similarity between
the representations produced by a vision ΦI : I → Rd and
text ΦT : T → Rd encoder:

sim(I, T ) = ΦI(I)
TΦT (T ) / ∥ΦI(I)∥∥ΦT (T )∥. (1)

We measure how well an image aligns with a sensitive con-
cept by measuring the image-text similarity between that
image and the concept prototype sim(I, Pi). We choose
concepts that both relate to commonly protected demo-
graphic subgroups of people and are annotated in common
fairness datasets, such as ones based in race and gender.
Additional details on the selection of sensitive concepts and
a list of all concepts used are given in the appendix. While
this work focuses on text-based prototypes, we note that our
methodology trivially extends to image-based ones and be-
yond, as described in Sec. 6.

Sample Preservation Heuristic. To determine which sam-
ples to prune, we consider duplicate neighborhoods: the set
of images within 1−ϵ similarity of a given point, and pre-
serve only one sample from each neighborhood. For each
cluster produced by k-means, we track the running average
similarity between preserved samples in that cluster and the
sensitive concept prototypes. Until all samples are visited,
we randomly select an unvisited sample, calculate the simi-
larity between all samples in its neighborhood and the pro-
totypes, and keep only the sample that maximizes similar-
ity to the least similar running average prototype, marking
all points in the neighborhood as visited. We preserve the
sample with the highest average similarity across concept
prototypes for the first neighborhood visited in a cluster.

1 # Input: prototypes, embeddings, eps
2 # Get similarity with concept prototypes
3 proto = embeddings @ prototypes.T
4

5 balance = AverageMeter(prototype.shape[0])
6 tovisit = torch.ones(embeddings.shape[0])
7 while tovist.any():
8 # Find an unvisited neighborhood
9 node = torch.where(tovisit)[0][0]

10 sims = embeddings[node] @ embeddings.T
11 neighbors = torch.where(sims > 1 - eps)[0]
12

13 # Maximize least represented concept
14 c = balance.get_min_concept()
15 point = proto[neigbors][:, c].argmax()
16 balance.update(point)
17

18 log_and_keep(point)
19 tovisit[neighbors] = 0

Figure 3. PyTorch-style pseudo-code for FairDeDup selection
given concept prototypes, within cluster embeddings, and
an eps similarity threshold for determining neighborhoods. We
omit the base case where the first sample selected within a cluster
is the one with the highest average concept prototype similarity.

We track running average similarity on a per cluster ba-
sis for two reasons: 1) to avoid a synchronous update step
between workers processing clusters in parallel and 2) to
prevent algorithmic “gaming” of the selection criteria by
balancing concept representation on clusters which highly
represent a concept due to some stereotyped notion. Given
two clusters primarily composed of doctors and nurses, for
example, per cluster processing prevents balancing under-
selection of feminine presenting doctors by overselecting
feminine presenting nurses. We provide pseudo-code for
the FairDeDup selection heuristic in Fig. 3. We visualize
random samples after pruning a cluster manually identified
to be primarily composed of people with FairDeDup and the
SemDeDup maximum distance selection heuristic in Fig. 4,
and show additional examples in the appendix.

4. Experiments
To assess the effect of deduplication on learned VLP mod-
els, we train CLIP-style models on variants of LAION-
400M [58] and evaluate their performance on both standard
and fairness-oriented benchmarks for zero-shot classifica-
tion and text-image retrieval.

4.1. Models and Training

We train all models on LAION-400M [58] as a web-scale
dataset representative of those typically used for large-
scale vision-language pretraining. LAION-400M contains
image-text pairs extracted from Common Crawl1 filtered to

1https://commoncrawl.org/
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(a) Maximum Distance Selection

(b) FairDeDup Selection

Figure 4. A random sampling of preserved samples from a cluster
primarily composed of medical professionals after deduplication.
FairDeDup improves selection diversity featuring increased vari-
ability in age, skin tone, and gender presentation.

have image-text CLIP similarity ≥0.3 without significant
further curating. This makes LAION-400M an ideal test
case for our setting as it is sufficiently large to train VLP
models, captures bias from the internet, and is expected to
contain semantically redundant samples. At the time of our
data collection, only 375M image-text pairs from LAION-
400M were still available for download.

We train CLIP-ViT-Base/16 [55] models from the Open-
Clip [30] implementation with vision transformer [18] base
(ViT-B-16) as the image encoder and text transformer [67]
as the text encoder. We perform distributed training over
80-120 A100 GPUs depending on the model with a global
batch size of 33,820 image-caption pairs for 16 epochs re-
gardless of dataset size. We use the AdamW [46] opti-
mizer with linear warm up and cosine annealed learning rate

schedule peaking at 5×10−4. Additional hyperparameter
details are provided in the appendix.

We evaluate CLIP training on three LAION-400M data
settings for performance and fairness:

Baseline: LAION-400M. We train a CLIP model on the
full LAION-400M dataset for a total of 183k steps as a con-
trol by which to evaluate baseline performance and fairness.
A good model in the deduplicated setting should perform
similarly to this model on common benchmarks without
negatively impacting subgroup disparity and skew.

SemDeDup LAION-400M. For SemDeDup, we use a
CLIP-ViT-Base/16 trained on WebImageText (WIT) [55]
to produce image embedding which are partitioned into
50, 000 clusters using the FAISS [33] implementation of
k-means and set the ϵ threshold for identifying duplicates
within each cluster such that 50% of samples are pruned.

FairDeDup LAION-400M. We leverage the same WIT
trained CLIP model for FairDeDup as SemDeDup. We con-
sider 110 sensitive concepts capturing intersectional combi-
nations of age, gender, skin tone, race and ethnicity and rep-
resent them using embeddings of 330 corresponding cap-
tions (three each with minor syntactic variation). We use
the average across captions of the same concept as our pro-
totypes. We enumerate all sensitive concepts and templates
used to generate the text prototypes in the appendix. The se-
lection step can be parallelized across CPUs up to the num-
ber of clusters produced by k-means. We find that selection
in this setting on a 32 CPU machine takes one hour on av-
erage and that the overall time is dominated by the shared
GPU parallelizable embedding and clustering steps.

4.2. Datasets and Metrics

We evaluate across three benchmarks to validate if models
trained on deduplicated data are both performant and fair.

Zero-Shot Classification and Retrieval. We evaluate
the performance of each model across 41 common zero-
shot classification and retrieval datasets from Clip Bench-
mark [12] such as ImageNet [16], Flickr30k [71], and
VTAB [73]. A model trained on deduplicated data should
perform at least as well as a model trained in the full-data
setting on these benchmarks.

Fair Zero-Shot Classification. The FACET [26] dataset
contains expert reviewer annotations for 52 person related
classes, gender presentation, skin tone, age, and other at-
tributes, on a 32k image subset of Segement Anything 1 Bil-
lion (SA-1B) [36]. We perform zero-shot classification over
the 52 person-classes by constructing a text prompt (e.g., “A
photo of a {class}”) for each class and predicting the class
used to construct the prompt with highest similarity to the
image. Given a model f , sensitive attribute label l, person-
class C, and set of of images IC

l which captures class C
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featuring a person with label l, we measure the average and
worst-class disparity in recall between subgroups of sensi-
tive attributes where disparity is defined as:

disparity = recall(f(l1, IC
l1 , C))

− recall(f(l2, IC
l2 , C)).

(2)

Conceptually, a large magnitude disparity indicates that a
model better predicts positive instances of person-class C
for one of the two subgroups, while a disparity of zero indi-
cates equality of opportunity between subgroups.

We evaluate subgroup disparity for average perceived
gender expression by masculine vs. feminine presentation,
lighter (1-4MST2) vs. darker (6-10MST) skin tone, and
middle vs. younger and middle vs. older age for all person-
classes which have at least 25 samples in both subgroups.
Gustafson et al. [26] consider only the 21k images captur-
ing a single person in their disparity analysis for simplicity
and alignment between tasks (e.g., classification and visual
grounding). To increase the sample size of our analysis, we
consider each person in the dataset as a unique sample. We
expand the bounding box for each person by 20% to cap-
ture context before extracting a square-padded image crop
centered on the box, yielding 49,551 images.

Fair Image Retrieval. FairFace [34] annotates a balanced
dataset of 108k cropped faces from YFCC-100M [66] by
seven racial groups with additional annotations for per-
ceived gender and age. Similar to [3, 14, 60], we measure
the degree to which the top-k results of an image-text query
differ over values of sensitive attributes in the 11k image
validation set with respect to the desired proportion of those
values with MaxSkew@1000 [24]. Given the top-k images
τkr returned by image-text query r, let the actual proportion
of images returned by the query for a particular value ai∈A
of sensitive attribute A be Pτk

r ,r,ai
∈[0, 1] and the desired

proportion be Pq,r,ai
∈[0, 1], then the skew of value ai is:

Skewai
@k(τr) = ln

(
Pτk

r ,r,ai

Pq,r,ai

)
(3)

One limitation of Skew@k is that it is defined only for a
single value of a sensitive attribute. To give a more holistic
view across all values that a sensitive attribute may take on,
we report the most skewed ai with MaxSkew@k:

MaxSkew@k(τr) = max
ai∈A

Skewai
@k(τr) (4)

Conceptually, MaxSkew indicates the “largest unfair ad-
vantage” [24] provided to images with a particular value
of the sensitive attribute for appearing in the the top-k re-
sults of the query. We choose the desired proportion of im-
ages to be the same as the true distribution of those images

2Monk Skin Tone scale [51]

Full Data
(100%)

SemDeDup
(50%)

FairDeDup
(50%)

IN1Kacc@5 .899 .897 (–.002) .897 (–.002)
INV2acc@5 .845 .841 (–.004) .837 (–.008)

C10acc@5 .999 .998 (–.001) .999 (–.000)
C100acc@5 .934 .934 (–.000) .939 (+.005)
FlickrR@5 .873 .874 (+.001) .871 (–.002)

COCOR@5 .633 .632 (–.001) .626 (–.007)

Table 1. Common zero-shot and text-image retrieval benchmarks
for CLIP models on ImageNet1K [16], ImageNetV2 [56], CI-
FAR [39] (C10/C100), Flicker30k [71], and COCO Captions [43].
Higher (↑) is better in all cases. The difference in performance
from the full-data setting is shown in green (red) when improved
(reduced). Both deduplication strategies yield models that pre-
serve the performance of models trained on the full data.

in the dataset. Under this condition, if the proportion of
of ai in the top-k results is the same as its distribution in
the dataset, MaxSkew obtains an optimal result of 0 and
achieves demographic parity. Following [3], we report av-
erage MaxSkew@1000 across 240 (un)favorable captions
orthogonal to images in the dataset (e.g., “A photo of a
{smart} person”), matching test attributes and prompts for
race (|A|=7), gender (|A|=2), and age (|A|=3). Similar
to Seth et al. [60], we bin age into larger groups: younger
(0-19), middle (20-49), and older (50-70+) to reduce noise.

We additionally report MinSkew@k, which captures the
“worst disadvantage in representation” for a subgroup,
and the normalized discounted cumulative KL-divergence
(NDKL), which captures the weighted average of Skew@k
over all attribute values at varying settings of k. Intuitively,
MinSkew captures the severity of the most negatively bi-
ased subgroup juxtaposed against the most positively biased
captured by MaxSkew, and NDKL is a summary statistic
over configurations of Skew@k. We refer readers to Geyik
et al. [24] for the formulation of MinSkew and NDKL.

5. Results

Deduplication Preserves Aggregate Performance. In
Tab. 1, we report Accuracy@5 for four common zero-
shot image classification datasets: ImageNet1K [16], Im-
ageNetV2 [56], CIFAR-10 and CIFAR-100 [39], and Re-
call@5 for two common image-text retrieval datasets:
Flicker30k [71] and COCO Captions [43]. As expected,
the performance drop from the full-data setting to dedu-
plicated is marginal (≤0.8%), indicating that performance
is preserved after pruning 50% of the training data. The
performance gap between the two deduplicated-data mod-
els is even smaller (≤0.6%), and neither consistently per-
forms more favorably across tasks. We refer readers to the
appendix for results on additional datasets and metrics.
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Full
(100%)

SemDeDup
(50%)

FairDeDup
(50%)

Diff.
(FDD-SDD)

G
en

de
r

M
as

c
/F

em
m Mean .104 .113 (+ 9%) .109 (+ 5%) –.004

Max .303 .346 (+14%) .298 (– 2%) –.048
Gap .199 .233 (+17%) .189 (– 5%) –.053

Sk
in

To
ne

L
ig

ht
/D

ar
k Mean .100 .112 (+12%) .105 (+ 5%) –.007

Max .354 .342 (– 3%) .320 (–10%) –.022
Gap .254 .230 (– 9%) .215 (–15%) –.015

A
ge

M
id

/Y
ng

Mean .063 .059 (– 6%) .075 (+19%) +.016
Max .268 .230 (–14%) .225 (–16%) –.005
Gap .205 .171 (–17%) .150 (–27%) –.022

A
ge

M
id

/O
ld

Mean .098 .096 (– 2%) .087 (–11%) –.009
Max .252 .248 (– 2%) .153 (–39%) –.095
Gap .154 .152 (– 1%) .066 (–57%) –.008

Table 2. Absolute disparity (Eq. 2) in zero-shot classification
performance on FACET [26] averaged across 52 person classes.
Larger values indicate a greater performance gap between sub-
groups when predicting true positive samples of the same occupa-
tion. Lower (↓) is better for all metrics. Best deduplicated model
in bold. The percent change in fairness outcomes from the full-
data setting is shown in green (red) when improved (reduced).

SemDeDup Has Mixed Effects on Fairness. We show the
result of our zero-shot image classification evaluation on
FACET [26] in Tab. 2, studying subgroups across gender,
skin tone, and age-based sensitive attributes. We find that
SemDeDup yields mixed impacts. SemDeDup reinforces
average and worst-class disparity across gender subgroups,
exacerbates average disparity in skin tone while mitigating
the worst-class, and surprisingly aids in reducing average
and worst-class disparity across age groups.

In Tab. 3, we present the results of our text-image re-
trieval evaluation on FairFace [34], focusing on subgroups
related to gender, race, and age. We again find that SemD-
eDup demonstrates mixed effects. SemDeDup reinforces
gender skew across all metrics but mitigates skew towards
the largest unfairly advantaged group (MaxSkew) while
magnifying skew away from the worst disadvantaged group.

FairDeDup Improves Fairness Over SemDeDup. FairD-
eDup improves fairness outcomes over SemDeDup on
FACET by mitigating, rather than exasperating, worst-class
gender disparity while improving disparity outcomes in all
cases except for age between middle-aged and young sub-
groups. With respect to SemDeDup, FairDeDup reduces
the average over groups for mean disparity by .0001 (.0067
excluding Age Mid/Yng), worst-class by .0425 and gap
by .0245. This result demonstrates that FairDeDup more
closely achieves equality of opportunity than SemDeDup.

FairFace also shows evidence that FairDeDup improves
fairness outcomes. While both methods increase gender

Full
(100%)

SemDeDup
(50%)

FairDeDup
(50%)

Diff.
(FDD-SDD)

G
en

de
r MinSkew .159 .223 (+40%) .182 (+14%) –.041

MaxSkew .123 .153 (+24%) .125 (+ 2%) –.028
NDKL .010 .015 (+50%) .012 (+20%) –.003

R
ac

e MinSkew .545 .583 (+ 7%) .513 (– 6%) –.070
MaxSkew .432 .401 (– 7%) .372 (–14%) –.029

NDKL .035 .034 (– 3%) .030 (–14%) –.004

A
ge

MinSkew .618 .702 (+14%) .647 (+ 5%) –.055
MaxSkew .241 .224 (– 7%) .296 (+23%) +.072

NDKL .023 .022 (– 4%) .028 (+22%) +.006

Table 3. Skew evaluation on FairFace [34] averaged over 240 text-
image query templates. As MinSkew is a negative metric optimal
at its upper bound of zero, we report its absolute value for read-
ability so that lower (↓) is better for all metrics. Best deduplicated
model in bold. The percent change in fairness outcomes from the
full-data setting is shown in green (red) when improved (reduced).

skew, FairDeDup exhibits a milder skew across all summary
metrics. For race, both methods mitigate the effects of the
largest unfairly advantaged group (MaxSkew) compared to
the baseline, while FairDeDup mitigates the magnitude of
MaxSkew and reduces the skew against the worst disadvan-
taged class (MinSkew) compared to the baseline. Determin-
ing the best-performing method for age-based subgroups is
inconclusive. Across gender and race groups, FairDeDup
reduces MinSkew by .0555, MaxSkew by .0285 and NDKL
by .0035. This results demonstrates that FairDeDup better
achieves demographic parity than SemDeDup w.r.t. gender
and race, even outperforming the full-data setting on race.

6. Discussion
Below we discuss observations when pruning smaller-scale
annotated data, potential FairDeDup variants for varied con-
cept prototypes, and limitations of our approach.

Evaluation on Demographically Annotated Data. In this
paper, we have shown on large-scale real model training
that FairDeDup achieves results on-par with SemDeDup on
standard benchmarks, while demonstrating improved fair-
ness outcomes. We believe that is the clearest signal about
the applicability of FairDeDup in real-world usage. How-
ever, we would also like to directly demonstrate that FairD-
eDup does indeed select more diverse data representations
compared to SemDeDup. To do so, we consider dedupli-
cating the FACET [26] images described in Sec. 4. We
perform k-means clustering (k=50) on the images with ten
different random seeds and apply both deduplication meth-
ods to each. In Tab. 4, we report the percent of the post-
pruning dataset labeled as non-majority classes for gender
(feminine, non-binary, other), skin tone (MST>4, other),
and age (younger, older, other), averaged across the ten
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Full Data
(100%)

SemDeDup
(50%)

FairDeDup
(50%)

Gender 32.92% 31.91% 32.29%
Skin Tone 51.28% 50.46% 51.06%
Age 44.74% 43.62% 44.06%

Table 4. Data mass allocated to minority classes in FACET [26]
after deduplication averaged over ten random seeds. We consider
minority classes by gender, skin tone, and age. The difference
between means of SemDeDup and FairDeDup across trials is sig-
nificant at >99.9% confidence (n=10) for all groups according
to a paired t-test. In all cases, we observe that FairDeDup helps
recover mass reallocated to the majority class by SemDeDup.

trials. This analysis indicates that 1) SemDeDup does in-
deed reduce the frequency of the least well represented sub-
groups and 2) that FairDeDup mitigates this effect. The
difference between means across trials of SemDeDup and
FairDeDup is statistically significant at ≥99.9% confidence
(n=10) across all groups according to a paired t-test.

Variants and Applications of the FairDedup Algorithm.
In our experiments, we use text-based prototypes to guide
FairDeDup towards balancing representation of sensitive
concepts. However, the exact specification of these pro-
totypes is flexible to other subjects (e.g., non-person re-
lated) and modalities (e.g., image-based concepts). FairD-
eDup can be trivially modified to consider any prototype
for which the embedding model can output similarity to in-
dividual images, such as sets of semantically aligned im-
ages (e.g., based on image type, photographs, illustrations,
infographics, etc), or a combination of image and text pro-
totypes. Similarly, FairDedup can be used to boost under-
represented samples from arbitrary sets such as object enti-
ties [70], or other forms of semantic organization.

6.1. Limitations

Clustering Restrictions on Selection. While clustering al-
lows deduplication algorithms to scale to hundreds of mil-
lions of samples, it also limits the availability of lower-
represented samples for balancing sensitive concept repre-
sentation. Take, for example, a data subset capturing photos
of dancers. If the clustering algorithm creates two “dancer”
clusters, bifurcating across binary gender presentation, then
FairDeDup will be unable to perform significant gender bal-
ancing due to the independent processing of each cluster.
We note that the resulting balance will be based on a com-
bination of the underlying number of “dancer” photos in
the dataset and the rate of duplication within both groups.
If the two clusters are approximately equal sized with equal
frequency of semantic duplicates, the independent dedupli-
cation of both clusters is equivalent in representation to a
joint deduplication with respect to the bifurcated attribute.

We display demonstrative clusters in the appendix.

Bias Transfer From the Embedding Model. By dedupli-
cating based on model embeddings, we subject the selection
of samples to the biases of the embedding model. The ma-
jority of sensitive concepts we select are social constructs
based in gender and race, and are not identifiable by anyone
other than the photographed individual. We therefore ex-
pect sensitive concept representation to be based upon the
predominate social norms they capture, rather than neces-
sarily true identities of individuals. Nonetheless, we assert
that a deduplication method which maintains the bias of the
full-data setting is a favorable start to one that magnifies it.

Demographic Representation in Fairness Datasets. Most
contemporary fairness datasets lack annotations from the
individuals they represent. Consequently, for nonstation-
ary socially constructed attributes such as gender, race, and
perceived young/oldness, the captured data relies solely on
annotators’ subjective understanding. Additionally, these
datasets often limit gender representation to a binary per-
spective (occasionally including a small “other” category)
[17], a necessary operationalization for scale that is not in-
clusive of bias characterization for diverse gender identities.
We also note that fairness datasets cover a limited number of
directions under which a model may express bias, exclud-
ing disability, national origin, and other sensitive attributes.
Our analysis, therefore, only examines fairness outcomes
with respect to contemporary and subjective evaluation of
these limited available demographic attributes.

7. Conclusion

In this paper, we study the fairness outcomes resulting from
training large-scale vision-language models on semanti-
cally deduplicated web-scale data, using LAION-400M and
SemDeDup as a representative dataset and deduplication al-
gorithm pairing. We find that deduplication has consistently
harmful effects on gender-based bias and mixed effects on
skin tone/race- and age-based biases across zero-shot classi-
fication and text-image retrieval tasks. To improve fairness
outcomes, we propose FairDeDup, a simple and efficient
fairness-aware modification of the sample selection heuris-
tic in SemDeDup which boosts the representation of user-
defined sensitive concepts in the post-deduplication data
distribution. Our experiments show that FairDeDup pre-
serves the performance of the full-data setting on standard
metrics for common image-text datasets, has more favor-
able fairness outcomes than SemDeDup across all cases for
gender- and skin tone/race-based biases, and outperforms
the baseline full-data setting in several instances. We hope
for FairDeDup to provide a simple and tractable baseline
for future work in fairness-aware deduplication.
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