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Abstract

Conventional image sensors digitize high-resolution im-
ages at fast frame rates, producing a large amount of
data that needs to be transmitted off the sensor for fur-
ther processing. This is challenging for perception sys-
tems operating on edge devices, because communication is
power inefficient and induces latency. Fueled by innova-
tions in stacked image sensor fabrication, emerging sensor–
processors offer programmability and processing capabili-
ties directly on the sensor. We exploit these capabilities by
developing an efficient recurrent neural network architec-
ture, PixelRNN, that encodes spatio-temporal features on
the sensor using purely binary operations. PixelRNN re-
duces the amount of data to be transmitted off the sensor
by factors up to 256 compared to the raw sensor data while
offering competitive accuracy for hand gesture recognition
and lip reading tasks. We experimentally validate PixelRNN
using a prototype implementation on the SCAMP-5 sensor–
processor platform.

1. Introduction

Increasingly, cameras on edge devices are being used for
enabling computer vision perception tasks rather than for
capturing images that will be looked at by humans. Appli-
cations include various tasks in virtual and augmented real-
ity headsets, wearable computing systems, drones, robotics,
and the internet of things, among many others. For such
edge devices, low-power operation is crucial, making it
challenging to deploy large neural network architectures
which traditionally leverage modern graphics processing
units for inference.

A plethora of approaches have been developed in the
“TinyML” community to address these challenges. Broadly
speaking, these efforts focus on developing smaller [34] or
more efficient network architectures, often by pruning or
quantizing larger models [19]. Platforms like TensorFlow
Lite Micro [23] enable application developers to deploy

their models directly to power-efficient microcontrollers
which process data closer to the sensor. Specialized arti-
ficial intelligence (AI) accelerators [1–3] further reduce the
power consumption. While these approaches can optimize
the processing component of a perception system, they do
not reduce the large amount of digitized sensor data that
needs to be transmitted to the processor in the first place,
via power-hungry interfaces like standard MIPI (Mobile
Industry Processor Interface), and stored in the memory.
This is highly significant as data transmission and mem-
ory access are among the biggest power sinks in these sys-
tems [31]. Power-constrained systems, like mixed reality
headsets, which require numerous sensors for perception
tasks make it even more vital to minimize the communi-
cation overhead.

Recent advancements in 3D wafer stacking and high-
density interconnects between these wafers create the op-
portunity for designing more efficient sensing and percep-
tion systems. Stacked CMOS image sensors contain lay-
ers with light-sensitive photodiodes as well as transistor cir-
cuitry that can turn a sensor into a parallel processor [28].
Data movement on these sensor–processors uses signifi-
cantly less energy, and offers several orders of magnitude
more bandwidth than conventional off-sensor communica-
tion protocols like MIPI [31, 70, 72]. This raises the ques-
tion of how to design perception systems where sensing,
data communication, and processing components are opti-
mized end to end.

Efficient perception systems could be designed such that
important task-specific image and video features are en-
coded directly on the imaging sensor using in-pixel pro-
cessing, resulting in the sensor’s output being significantly
reduced to only these sparse features. This form of in-
pixel feature encoding mechanism could significantly re-
duce the required bandwidth, thus reducing power con-
sumption of data communication, memory management,
and downstream processing. Event sensors [30] and emerg-
ing sensor–processors [76] are promising hardware plat-
forms for such perception systems because they can directly
extract either temporal information or spatial features, re-
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spectively, on the sensor. These features can be transmitted
off the sensor using low-power communication interfaces
supporting low bandwidths.

Our work is motivated by the limitations of existing
feature extraction methods demonstrated on these emerg-
ing sensor platforms. Rather than extracting simple tem-
poral gradients [30] or spatial-only features via convolu-
tional neural networks (CNNs) [12, 13], we propose in-
pixel recurrent neural networks (RNNs) that efficiently
extract spatio-temporal features on sensor–processors for
bandwidth-efficient perception systems. RNNs are state-
of-the-art network architectures for processing sequences,
such as video in computer vision tasks [42]. Inspired
by the emerging paradigm of neural sensors [51], our in-
pixel RNN framework, dubbed PixelRNN, comprises a
light-weight in-pixel spatio-temporal feature encoder. This
in-pixel network is jointly optimized with a task-specific
downstream network. We demonstrate that our architec-
ture outperforms event sensors and CNN-based sensor–
processors on perception tasks, including hand gesture
recognition and lip reading, while drastically reducing the
required bandwidth compared to any traditional sensor
based approach. Moreover, we demonstrate that PixelRNN
offers better performance and lower memory requirements
than larger RNN architectures in the low-precision settings
of in-pixel processing.

Our work’s contributions include
1. the design and implementation of in-pixel recurrent neu-

ral networks for sensor–processors, enabling bandwidth-
efficient perception on edge devices;

2. the demonstration that our on-sensor spatio-temporal
feature encoding maintains high performance while sig-
nificantly reducing sensor-to-processor communication
bandwidth with several tasks, including hand gesture
recognition and lip reading;

3. the experimental demonstration of the benefits of in-
pixel RNNs using a prototype implementation on the
SCAMP-5 sensor–processor.

2. Related Work
Machine Learning on the Edge. Edge computing de-
vices are often subject to severe power and memory con-
straints, leading to various avenues of research and develop-
ment. On the hardware side, approaches include in-memory
compute [62], custom application-specific integrated cir-
cuits (ASICs), field-programmable gate arrays (FPGAs), or
other energy efficient AI accelerators. However, this does
not address the issue of data transmission from imaging
sensors, which is one of the main sources of power con-
sumption [31]. To circumvent the memory constraints, net-
work compression techniques are introduced. They fall
into roughly five categories [19]: 1. parameter reduction
by pruning redundancy [9, 35, 66, 81]; 2. low-rank pa-

rameter factorization [25, 37, 69]; 3. carefully design-
ing structured convolutional filters [26, 68, 74]; 4. creat-
ing smaller models [4, 15, 33]; 5. parameter quantization
[22, 36, 41, 47, 58, 71, 82]. In video perception tasks, trans-
formers are popular. However, even the smallest transform-
ers, such as Lite Transformers (∼92MB) [75], exceed what
is currently available on sensor–processors (∼0.5MB). In-
stead of pushing all the compute onto the sensor plane, we
utilize just a small amount of compute for a large decrease
of bandwidth. In this work, we also apply ideas and tech-
niques mentioned in this section.

Beyond Frame-based Sensing. Event-based cameras have
been gaining popularity [30] as the readout is asynchronous
and often sparse, triggered by pixel value changes above
a certain threshold. However, these sensors are not pro-
grammable and do data compression with a simple fixed
function. Another emerging class of sensors, focal plane
sensor–processors, also known as pixel processor arrays
support traditional sensing capabilities but also have a pro-
cessing element embedded into each pixel. While conven-
tional vision systems have separate hardware for sensing
and computing, sensor–processors perform both tasks “in
pixel,” enabling efficient, low-latency and low-power com-
putation [17, 29, 49, 54, 60, 78]. Further advances in 3D
fabrication techniques, including wafer-level hybrid bond-
ing and stacked CMOS image sensors, set the stage for
rapid development of increasingly more capable sensor–
processors.

In-pixel Perception. In the past few years, there has been a
surge of advances in neural networks for vision tasks as well
as an increasing desire to perform tasks on constrained mo-
bile and wearable computing systems. Sensor–processors
are a natural fit for such systems as they can perform sophis-
ticated visual computational tasks at a significantly lower
power than traditional hardware. Some early chips [48, 59]
were based on implementing convolution kernels in a recur-
rent dynamical “Cellular Neural Network” model [21, 61].
In 2019, Bose et al. created “A Camera that CNNs” –
one of the first works to implement a deep convolutional
neural network on the sensor [12]. Since then, there have
been a number of other works in CNNs on programmable
sensors [13, 24, 32, 43–46, 67, 73]. These works extract
features in the spatial domain, but miss a huge opportu-
nity since they do not exploit temporal information. Purely
2D CNN-based approaches do not utilize or capitalize on
the temporal redundancy or information of the sequence of
frames. On the other hand, computational imaging works
such as [51, 56, 57] utilize spatially varying pixel exposures
that inherently encode information across the temporal di-
mension for high-dynamic-range imaging, video compres-
sive sensing, and image deblurring. However, these works
encode solely in the temporal domain. It’s worth noting that
classical video compression like MPEG [64] are proficient
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at reconstruction, but they are not well-suited for in-pixel
compute nor optimized for machine perception. Our work
introduces light-weight extraction of spatio-temporal fea-
tures, better utilizing the structure of the visual data while
maintaining low bandwidth and high accuracy for machine
perception tasks.

3. In-Pixel Recurrent Neural Networks
Emerging sensor–processors with in-pixel processing en-
able the development of end-to-end-optimized in-pixel and
downstream networks off-sensor. In this section, we de-
scribe a new in-pixel recurrent spatio-temporal feature en-
coder that significantly improves upon existing temporal-
or spatial-only feature encoders for video processing. The
proposed pipeline is illustrated in Figure 1.

3.1. In-Pixel CNN-based Feature Encoder

Convolutional neural networks are among the most com-
mon network architectures in computer vision. They are
written as

CNN (x) = (ϕn−1 ◦ ϕn−2 ◦ . . . ◦ ϕ0) (x) ,
ϕi = xi 7→ ψ (wi ∗ xi + bi) , (1)

where wi ∗ xi : NNi×Mi×Ci 7→ NNi+1×Mi+1×Ci+1 de-
scribes the multi-channel convolution of CNN layer i and
bi is a vector containing bias values. Here, the input image
xi has Ci channels and a resolution of Ni ×Mi pixel and
the output of layer i is further processed by the nonlinear
activation function ψ.

Many edge devices, such as the SCAMP-5 system used
in this work, lack native multiplication operations at the
pixel level. For this reason, works storing network weights
wi in pixel typically restrict themselves to using binary,
{−1, 1}, or ternary {−1, 0, 1} values. This reduces all mul-
tiplications to sums or differences, which are highly effi-
cient native operations.

3.2. In-pixel Spatio-temporal Feature Encoding

Recurrent neural networks (RNNs) are state-of-the-art net-
work architectures for video processing and are more com-
pact than using transformers or temporal convolutions [5].
Whereas a 2D CNN only considers each image in isola-
tion, an RNN extracts spatio-temporal features to process
video sequences more effectively. Network architectures
for sensor–processors must satisfy two key criteria. First,
they should be small and use low-precision weights. Sec-
ond, they should comprise largely of local operations as the
processors embedded within each pixel can only communi-
cate with their direct neighbors (e.g., [17]).

To satisfy these unique constraints, we devise an RNN
architecture that combines ideas from convolutional, gated
recurrent units (GRUs) [6] and minimal gated units [80].

The resulting simple, yet effective PixelRNN architecture,
is written as

ft = ψf (wf ∗ CNN (xt) + uf ∗ ht−1) , (2)
ht = ft ⊙ ht−1, (3)
ot = ψo (wo ∗ CNN (xt) + uo ∗ ht−1) , (4)

where wf , uf , wo, uo are small convolution kernels and
ψf is either the sign (when working with binary constraints)
or the sigmoid function (when working with full precision).
We include an optional nonlinear activation function ψo and
an output layer ot representing the values that are actually
transmitted off sensor to the downstream network running
on a separate processor. For low-bandwidth operation, the
output layer ot is only computed, and values transmitted off
the sensor, everyK frames. The output layer can optionally
be omitted, in which case the hidden state ht is streamed
off the sensor every K frames.

PixelRNN uses what is commonly known as a “forget
gate”, ft, and a hidden state ht, which are updated at each
time step t from the input xt. RNNs use forget gates to
implement a “memory” mechanism that discards redundant
spatial features over time. PixelRNN’s forget gate is also
motivated by this intuition, but our update mechanism in
Eq. 3 is tailored to work with binary constraints using values
{−1, 1}. In this case, Eq. 3 flips the sign of ft in an element-
wise manner rather than decaying over time. This mecha-
nism works very well in practice when ht is re-initialized to
all ones every K time steps.

PixelRNN’s architecture includes alternative spatial- or
temporal-only feature extractors as special cases. For exam-
ple, it is easy to see that it models a conventional CNN by
omitting the recurrent units. We specifically write out the
output gate in our definition to make it intuitive how Pix-
elRNN also approximates a difference camera as a special
case, which effectively implement a temporal-only feature
encoder. In this case, ht = xt,wo = 1, uo = −1 and

ψo (x) =

{
−1 for x < −δ
0 for − δ ≤ x ≤ δ
1 for δ < x

, for some threshold δ.

Difference cameras are used as an example of temporal-
only encoders that closely approximate event cameras [30],
with the exception of their asynchronous readout.

3.3. Learning Quantized In-pixel Parameters

PixelRNN uses binary weights to reduce all multiplications
to sums. To learn these parameters efficiently, we param-
eterize each of these values w using a continuous value w̃
and a quantization function q such that

w = q (w̃) , q : R → Q. (5)

Here, q maps a continuous value to the closest discrete value
in the feasible set Q, i.e., {−1, 1}. For the binary weights
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Figure 1. The perception pipeline of PixelRNN can be broken down into an in-pixel encoder and a task-specific decoder. On the left is the
camera equipped with a sensor–processor, which offers processing and memory at the pixel level. The captured light is directly processed
by a CNN that extracts spatial features, which are further processed by a convolutional recurrent neural network with built-in memory
and temporal feature extraction. Here we show our PixelRNN variant on the right, ⋆ being the convolution operator, ⊙ element-wise
multiplication, and ψ a nonlinear function. Instead of sending out full 256 × 256 values at every time step, our encoder outputs 64 × 64
once every 16 time steps. While we show this pipeline for hand gesture recognition, the decoder can be designed for any perception task.

we use, w = q(w̃) = sign(w̃− ζ) with a learned zero-point
offset ζ.

One can employ surrogate gradient methods [7, 77], con-
tinuous relaxation of categorical variables using Gumbel-
Softmax [38, 50], or other approaches to approximately dif-
ferentiate through q. We found approximating the gradient
of the sign function with the derivative of tanh(mx) pro-
duced very good results:

∂q

∂w̃
≈ m · (1− tanh2(mw̃)) (6)

where m > 0 controls the steepness of the tanh function,
which is used as a differentiable proxy for q ≈ tanh(mw̃)
in the backward pass. The larger m is, the more it resem-
bles the sign function and the more the gradient resembles
the delta function. Among different quantization schemes
including the straight-through estimator (STE) [8], stochas-
tic binarization [22], and binarizing to the {0, 1} regime, we
found that binarizing to the {−1, 1} regime and utilizing the
tanh gradient produced the best results in our application.

3.4. Implementation Details

We implement our per-frame CNN feature encoder, test-
ing both 1 or 2 layers and process images at a resolution
of 64 × 64 pixels by downsampling the raw sensor images
from 256 × 256 before feeding them into the CNN. In all
experiments, we set K = 16, so our PixelRNN transmits
data off the sensor once every 16 frames. Thus, we achieve
a reduction in bandwidth by a factor of 256× compared to
the raw sensor data. In all of our experiments, we set the
function ψo to the identity function. Additional implemen-
tation details are found in the supplement, and source code
will be available on the project website.

4. Experiments
4.1. Evaluating Feature Encoders

As discussed in the previous section, RNNs require a CNN-
based feature encoder as part of their architecture. In-pixel
CNNs have been described in prior work [13, 43, 44], al-
beit not in the context of video processing with RNNs.
Table 1 summarizes the simulation performance of re-
implementations of various in-pixel CNN architectures for
image classification using the MNIST, CIFAR-10 dataset,
and hand gesture recognition from individual images. Bose
et al. [12, 13] describe a 2-layer CNN with 4×4 kernels with
ternary weights. The two works have the same architecture
but differ drastically in the sensor–processor implementa-
tion. Bose uses a stochastic approach for quantization. Liu
et al. [43, 44] describe 1- and 3-layer CNNs with strided
convolutions with binary weights, group convolutions, and
batch norm using similar sensor–processor implementations
concepts from Bose. Liu uses the STE training technique.
Our feature encoder is a binary 2-layer variant of Bose et
al.’s CNN using 5× 5 kernels. Each layer has 16 kernels of
size 5 × 5 and are followed with a non-linearity and max-
pooling of 4 × 4. The 16 16 × 16 channels are then con-
catenated into a single 64 × 64 image size to serve as the
input to the next convolutional layer or to the PixelRNN.
All of these CNNs are roughly on-par with some perform-
ing better at some tasks than others. Ours strikes a good
balance between accuracy and model size. We do not claim
this CNN to be a contribution of our work, but include this
brief comparison for completeness.

4.2. Baseline Architectures

We use several baselines for our analysis. The RAW
camera mode simply outputs the full-resolution 256 × 256
pixel input frame at every time step and represents the
naive imaging approach. The simulated difference camera
represents a simple temporal-only feature encoder. We also
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Figure 2. Network architecture comparison. We compare baselines, including a RAW and difference camera (DIFF) as well as several
RNN architectures, each with 1- and 2-layer CNN encoders and binary or full 32-bit floating-point precision. PixelRNN offers the best
performance for the lowest memory footprint, especially when used with binary weights. The dashed vertical line indicates the available
memory on our hardware platform, SCAMP-5, showing that low-precision network architectures are the only feasible option in practice.

Model Name Accuracy Model Size
MNIST CIFAR-10 Hand Gest. Params (MB)

Bose [12, 13] 95.0% 39.8% 43.4% 257 0.05
Liu 2020 [44] 80.0% 32.5% 57.4% 258 0.03
Liu 2022 [43] 95.1% 32.6% 60.2% 2, 374 0.30

Our CNN 90.9% 43.1% 68.1% 802 0.10

Table 1. Comparing CNN Feature Encoders. We simulated
different in-pixel CNNs using image classification on MNIST,
CIFAR-10, and the Cambridge hand gesture recognition based
on different implementations. All CNN architectures perform
roughly on par with our binary 2-layer CNN encoder striking a
good balance between accuracy and model size. The model size is
computed by multiplying the number of model parameters by the
quantization of the values.

include several RNN architectures, including convolutional
long short-term memory (LSTM) [63], gated recurrent unit
(GRU) [6], minimal gated unit (MGU) [80], a simple RNN
(SRNN), and our PixelRNN. Moreover, we evaluated each
of the RNN architectures using 1-layer and 2-layer CNN
feature encoders. The output of all RNNs is read off the
sensor only once every 16 time steps. All baselines rep-
resent options for in-pixel processing and their respective
output is streamed off the sensor. In all cases, a single
fully-connected network layer processes this output on a
downstream processor to compute the final classification
scores. This fully-connected layer is trained end to end
for each of the baselines. While this fully-connected layer
is simple, it is effective and could be customized for a
specific task. Note that a larger decoder could be used,
but that does not accomplish the goal of decreasing the
bandwidth readout to the processor. Additional details on
these baselines, including formulas and training details, are
listed in the supplement. Table 2 shows an overview of
the number of model parameters and the readout bandwidth.

Datasets. For the hand gesture recognition task, we use the
Cambridge Hand Gesture Recognition dataset [39]. This
dataset consists of 900 video clips of 9 gesture classes; each

Model Name # Model Parameters with
1 layer / 2 layer CNN

# Values Read Out
(per 16 time steps)

RAW 0 / 0 256 2 · 16 = 1,048,576
Difference Camera 0 / 0 64 2 · 16 = 65,536

SRNN 451 / 852 64 2 · 1 = 4,096
LSTM 601 / 1,002 4,096
GRU 551 / 952 4,096
MGU 501 / 902 4,096

PixelRNN 501 / 902 4,096

Table 2. Overview of Baselines. We list the number of model
parameters and the number of values read out per 16 time steps for
each baseline. The RAW and difference camera stream data off the
sensor at every frame. All RNNs only stream data off the sensor
once every 16 frames, providing the benefit of decreased readout.

class contains 100 videos. For the lip reading task, we use
the Tulips1 dataset [55]. It is a small Audiovisual database
of 12 subjects saying the first 4 digits in English.

4.3. Accuracy vs. Memory

In Figure 2, we evaluate the accuracy of several baseline
architectures on two tasks: hand gesture recognition (left)
and lip reading (right). The term ‘memory,’ depicted along
the x-axis, represents all intermediate features, per pixel,
that need to be stored during a single forward pass through
the encoder. We do not count the network parameters
in this plot, because they do not dominate the memory
requirements and can be shared among the pixels. In this
study, we compare the baselines described above, each
with 1- and 2-layer CNN encoders and binary or full 32-bit
floating point precision. For the full-precision networks,
all RNN variants perform well. PixelRNN achieves an
accuracy comparable to the best models, but it provides
one of the lowest memory footprints. Comparing the
networks with binary weights, PixelRNN also offers the
best accuracy with a memory footprint comparable to the
next best method. Surprisingly, larger architectures, such
as LSTMs, do not perform well when used with binary
weights. This can be explained by the increasing difficulty
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of reliably training increasingly large networks with binary
parameter constraints. With more gates, more information
can be lost through the binarization. Leaner networks, such
as SRNN and PixelRNN, can be trained more robustly and
reliably in these settings. In either the full-precision or
quantized setting, we are able to achieve good accuracy
while significantly reducing the readout bandwidth. We
include additional modes of compression in the supplement.

Constraints of the Experimental Platform. Our hardware
platform, SCAMP-5, provides an equivalent of 8 bytes of
memory per pixel, resulting in 32 bytes available to store
intermediate features in a 4 × 4 macropixel. This limit is
illustrated as dashed vertical lines in Figure 2, indicating
that only low-precision RNN networks are feasible on this
platform. The available memory is computed as follows.
SCAMP-5 has 6 analog registers per pixel, each we assume
is equivalent to 1 byte: 2 registers store the model weights,
2 are reserved for computation, leaving 2 bytes per pixel for
the intermediate features. SCAMP-5 consists of an array of
256× 256 pixel processors, however our approach operates
on a smaller effective image size of 64 × 64. This allows
us to consider a single ”macropixel” to comprise a block of
4× 4 pixels, increasing the effective storage for immediate
features to 32 bytes per macropixel.

4.4. Accuracy vs. Bandwidth

We select a readout bandwidth of 4,096 values (every 16
frames) based on the available bandwidth of our hardware
platform, the SCAMP-5 sensor. In Figure 3 we evaluate the
effect of further reducing this bandwidth on the accuracy for
the PixelRNN architecture. Bandwidth is controlled using
a max-pooling layer operating at differing sizes from 1× 1
through 8×8 and then at multiples of 8 up to 64×64 before
inputting the intensity images to PixelRNN. The resulting
output bandwidths range between 1 to 4,096. We ran each
experiment ten times and plot the mean and standard devi-
ations for hand gesture recognition and lip reading. We ob-
serve that the bandwidth could be further reduced to about
1,000 values every 16 frames without significantly degrad-
ing the accuracy on these datasets. However, decreasing the
bandwidth beyond this also reduces the accuracy.

5. Experimental Prototype
5.1. Pixel-Level Programmable Sensors

SCAMP-5 [17] is one of the emerging programmable
sensors representative of the class of focal-plane sensor–
processors (FPSP) and has been used to prototype for a va-
riety of tasks [11, 14, 18, 52, 53, 65]. Unlike conventional
image sensors, each of the 256×256 pixels is equipped with
an arithmetic logic unit, 6 local analog registers, (named A,
B, C, D, E, F), 13 digital bit registers, control and I/O cir-
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Figure 3. Bandwidth Analysis. We can control the bandwidth
of data read off the sensor using increasingly larger max-pooling
layers at the cost of decreased accuracy.

cuitry, and access to certain registers of the four neighboring
pixels. For clarity, while SCAMP-5 is fabricated with pla-
nar technology, we refer to register “plane” A as the aggre-
gation of all corresponding registers A across the entire im-
age sensor, and similarly for planes B through F. SCAMP-5
operates in single-instruction multiple-data (SIMD) mode
with capabilities to address individual pixels, patterns of
pixels, or the whole array. It features mixed-mode operation
execution that allows for low-power compute prior to A/D
conversion. Most importantly, SCAMP-5 is programmable.

5.2. Implementation of PixelRNN on SCAMP-5.

We implement the binary 1-layer CNN + PixelRNN encoder
on sensor as we find that encoder to have low complexity
and high performance. The pipeline for our prototype fea-
ture extractor is shown in Figure 4. To efficiently calculate
the CNN and PixelRNN on SCAMP-5, we break the sensor
up into 16 parallel processor elements (PE) of size 64× 64.
This allows us to calculate 16 depth-wise convolutions [20]
with 5 × 5 kernels in parallel. The features undergo a
ReLU activation, maxpooling and binarization to 16 16×16
and then are concatenated to create a single 64 × 64 input
to the RNN. We utilize image transformation methods for
SCAMP-5 introduced by [10]. Our RNN uses the output
of the CNN and the current hidden state to update the new
hidden state every time step and to compute an output every
16 time steps. The RNN gates are calculated via convolu-
tion and element-wise multiplication. To suit the SCAMP-5
architecture, we limited operations to addition, XOR, and
negation, and trained a binary version of PixelRNN, bina-
rizing weights and features to -1 and 1.

Convolution Operation. A single pixel cannot hold all of
the weights of a single kernel, so the weights are spread
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Figure 5. To implement PixelRNN on SCAMP-5, the image plane is split into a 4 × 4 grid of processor elements shown above. Two
analog register planes are used, Register planes A and B. Above, we show the sequence of operations from left to right. The input from the
CNN and the previous hidden state are duplicated in A. These 4 PEs are convolved ∗ with the corresponding gate weights stored in plane
B. The resulting convolutions in the second column are then added to compute the output ot and the forget gate ft. Note that an in-place
binarization is applied to ft. The hidden state ht is updated via an element-wise multiplication ⊙ of ht−1 and ft.

across an analog register plane. as shown in Figure 4. To
perform a convolution, SCAMP-5 iterates through all 25
weights in the 5 × 5 kernel, each time multiplying it with
the whole image and adding to a running sum. The image is
then shifted, the next weight fills the register plane, and the
process continues until the feature is computed. This pro-
cess builds on [13]. We include a detailed diagram in the
supplement.

RNN Operation. Figure 5 shows the layout of the sequence
of operations in the RNN. In Figure 5, the 256 × 256 pix-
els are split into the 16 larger parallel processor elements
(PE) of size 64× 64. In register plane A, we take the output
from the CNN and the previous hidden state and duplicate
it to two other PEs in plane A. Register plane B holds the
corresponding weights wf , uf , wo, uo for the convolution
operators needed. 4 convolutions are simultaneously run on

one register plane. The outputs in plane B are shifted and
added. A binarization is applied to get ft. This then updates
the hidden state via element-wise multiplication every time
step. Every 16 time steps, SCAMP-5 outputs the 64 × 64
image corresponding to the output gate ot. Our encoder dis-
tills the salient information while greatly reducing readout.

Accounting for Analog Uncertainty. As with all analog
compute, a certain amount of noise is to be expected. There
is uncertainty in the precision and uniformity of the values,
and analog registers decay over time. The decay is exacer-
bated if one moves information from pixel to pixel such as
in shifting an image. In the RNN, these effects can accumu-
late for 16 frames, leading to a significant amount of noise.
To account for these effects, we trained binary models in
simulation with varying amounts of added Gaussian noise
in the CNN and RNN prior to quantization of the features.
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Test Accuracy

Hand Gesture Recognition
Accuracy in Simulation 85.6%
SCAMP-5 Accuracy with model trained without noise 68.9%
SCAMP-5 Accuracy with noise-trained model 84.4%

Lip Reading
Accuracy in Simulation 80.0%
SCAMP-5 Accuracy with model trained without noise 60.0%
SCAMP-5 Accuracy with noise-trained model 80.0%

Table 3. Experimental Results. We implemented two models
on SCAMP-5 for each task, one trained with noise to account for
analog noise, and one trained without. The test set performance
significantly improved with noise added during training.

5.3. Assessment

To test our prototype, we processed all video datasets on
SCAMP-5 (see supplement for additional details). With our
current implementation, it takes roughly 3.5 ms to run a sin-
gle frame through the on-sensor encoder. The 64×64 output
region then goes through the off-sensor linear layer decoder.
We evaluate the performance using models trained with and
without noise against the performance of the binary 1-layer
CNN + PixelRNN in simulation. The results shown in Ta-
ble 3 highlight the benefits of training with noise. Without
the noise-trained model, we reached 68.9% on the hand ges-
ture recognition test set. Performance improved to 84.4%
when we used the weights from training with noise. Sim-
ilarly, the test performance on lip reading was boosted to
80.0% when using a model trained on noise, reaching the
same performance as in simulation. Adding noise during
training helps mitigate analog noise effects of SCAMP-5
and create robust models.

6. Discussion
In the traditional computer vision pipeline, RAW images
are sent from camera to processors for different perception
tasks. While completely viable in systems not limited by
compute, memory, or power, many edge devices do not have
this luxury. For AR/VR devices, robotics, and wearables,
low-power operation is crucial, and even more so if the sys-
tem requires multiple cameras. The community has worked
on creating more efficient models and specialized accelera-
tors. Existing work, however, overlooks the communication
bandwidth between camera and processor, which consumes
a significant portion of the power budget. In this work, we
demonstrate how running a simple in-pixel spatio-temporal
feature extractor can decrease the bandwidth, and hence
power associated with readout. Even with highly quan-
tized encoders and a very simple decoder, we still maintain
good performance on hand gesture recognition and lip read-
ing. We studied different RNN architectures and presented
PixelRNN that performs well in highly quantized settings,
studied just how small we could make the bandwidth before
affecting performance, and implemented a physical proto-

type with one of the emerging sensors, SCAMP-5, that is
paving the way for future sensors. PixelRNN is potentially
valuable for other tasks that exhibit spatio-temporal redun-
dancy as well, such as action recognition, event classifica-
tion, anomaly detection, and environment monitoring.

Limitations and Generalizability. One of the biggest chal-
lenges of working with SCAMP-5 is the limited amount
of in-pixel digital memory. Because SCAMP-5 is not a
stacked CMOS image sensor, the sensor suffers from a di-
rect tradeoff between pixel fill factor / image quality and
amount of memory. Future sensor–processors built on
stacked wafer technology do not suffer from this tradeoff
and offer a significantly increased amount of memory. This
advantage can increase the precision of numbers on the sen-
sor from binary to 8 or more bits; increase the encoder size
to unlock more expressive network architectures; and in-
crease the number of intermediate features within the in-
pixel encoder. Having more compute will also allow us to
apply tools like architecture search to optimize where com-
pute happens in a system [27].

To validate that PixelRNN generalizes to future sensor–
processors, other decoder architectures, and datasets be-
yond those previously shown, we perform additional bench-
marks on a challenging dynamic hand gesture recognition
dataset, EgoGesture, that contains 83 classes [16, 79]. For
this purpose, we implement the PixelRNN encoder with
floating point precision and add it as a data-compressing
pre-processor to a state-of-the-art decoder network [40] for
EgoGesture. Accuracy for various compression ratios are
reported in our supplement. With a readout bandwidth com-
pression of 8× compared to the RAW mode, for example,
our approach maintains 88.9% accuracy while naive tempo-
ral downsampling to the same bandwidth resulted in 74.5%.
In addition, as PixelRNN is size agnostic, it will naturally
scale to upcoming higher resolution sensors.

7. Conclusion
Motivated by the potential of in-pixel computing, we
designed the first lightweight in-pixel RNN-based spatio-
temporal encoder to significantly decrease readout
bandwidth. In our work, we demonstrated bandwidth re-
duction by factors of 256× and above compared to the raw
sensor data. We also showed the efficacy in real hardware.
The in-pixel module is a versatile solution applicable across
various video perception tasks and can complement other
advances in power reduction for edge devices. We believe
our work paves the way for other inference tasks of future
artificial intelligence–driven sensor–processors.
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