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Abstract

Federated learning is a promising framework to train
neural networks with widely distributed data. However,
performance degrades heavily with heterogeneously dis-
tributed data. Recent work has shown this is due to the final
layer of the network being most prone to local bias, some
finding success freezing the final layer as an orthogonal
classifier. We investigate the training dynamics of the classi-
fier by applying SVD to the weights motivated by the obser-
vation that freezing weights results in constant singular val-
ues. We find that there are differences when training in IID
and non-IID settings. Based on this finding, we introduce
two regularization terms for local training to continuously
emulate IID settings: (1) variance in the dimension-wise
probability distribution of the classifier and (2) hyperspher-
ical uniformity of representations of the encoder. These reg-
ularizations promote local models to act as if it were in an
IID setting regardless of the local data distribution, thus off-
setting proneness to bias while being flexible to the data. On
extensive experiments in both label-shift and feature-shift
settings, we verify that our method achieves highest perfor-
mance by a large margin especially in highly non-IID cases
in addition to being scalable to larger models and datasets.

1. Introduction
Federated Learning (FL) [31] is a distributed learning
framework that allows the training of deep neural networks
with data in decentralized locations. FL is especially ap-
pealing because it achieves similar performance to central-
ized training in specific settings while also negating the cost
of collecting data into a centralized location and allowing
effective parallelization across devices [42]. However, be-
cause devices participating in FL use locally collected data
for training, it is realistic to expect that the collective data

across all devices are not independent and identically dis-
tributed (non-IID). This severely degrades overall perfor-
mance. Local devices optimize their copy of the model to-
wards local optima. In non-IID settings, however, it is likely
that local optima across devices are in disagreement with
the true optimum of the IID setting. Thus, the direction of
the gradient causes dissonance and degraded performance.
This phenomena is referred to as client drift in the FL liter-
ature.

To combat client drift, a number of methods [1, 19, 20]
introduced the idea of using the global model as a basis for
regularization. More recently, some work showed it may be
effective to focus on certain layers which are more prone to
bias. In particular, [29] found that the final layer, referred to
as the classifier, is the most biased in non-IID settings. They
introduce a method to calibrate the classifier to offset this
bias. Other work [32] used augmentation techniques [49] to
regularize the classifier, while another work [34] randomly
initialized and froze the weights of the classifier. Since ran-
dom vectors in high dimension space are likely to be or-
thogonal, the output of the penultimate layer, referred to as
the representations or activations of the encoder, are trained
to fit these orthogonal classifiers, thus offsetting bias.

However, we note previous work have approached the
non-IID problem by regularizing local models to be less bi-
ased, rather than directly regularizing local models to emu-
late the IID setting. In addition, many work have not been
tested in a feature-shift setting, often only using the Dirich-
let distribution to simulate a label-shift setting. Further-
more, while providing important insight for FL, these work
generally do not take into account efficiency and scalabil-
ity. State-of-the-art methods such as FedProx [20], SCAF-
FOLD [15], and FedDyn [1] require distances calculations
of weights between all layers of multiple models at every
batch. MOON [19] and FedAlign [32] require extra forward
passes at every batch. Computation and memory constraints
certainly become issues as the size of models and datasets
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Figure 1. Singular values of the weights of the classifier (final
layer) trained on CIFAR-100. Training setup is specified in Sec-
tion 4.1

grow.
Motivation. In most classification problems, it is stan-
dard to minimize a Cross-Entropy loss function [9] to fit
a neural network’s probability distribution to the sampled
probability distribution. When the sampled class distribu-
tion is imbalanced, such as in a non-IID environment, the
classifier becomes biased towards some subspace regard-
less of the features extracted by the encoder. Motivated by
the success of freezing the classifier as orthogonal vectors
[34], we use the singular value decomposition to gain in-
sight into the training dynamics of the classifier. We train
a Resnet-18 [10] on CIFAR-100 [16] and take the singular
value decomposition of the weight matrix (W = UΣV⊤,
Σ = diag(σ1, ..., σn)) as shown in Fig. 1. The singular val-
ues of the classifier decrease in a non-IID setting, showing
there is a difference in the training dynamic between IID
and non-IID settings.

In light of this, we propose an approach to the non-IID
problem in which we directly promote the emulation of an
IID setting. There is a nuanced difference from previous
work which regularize to decrease bias. Previous work
use the global model as a source of regularization under
the intuition that the global model is less biased than any
single local model. However, this may not be optimal in
every setting as the aggregate of biased local model may
still be biased. We instead focus on regularizing local mod-
els to emulate the IID setting without the use of the global
model. Namely, we present FedUV, a method that promotes
IID emulation by inducing representation hyperspherical
Uniformity and classifier Varaiance during local training.
FedUV penalizes classifier probability distributions that are
biased towards a subset of classes, thus promoting probabil-
ity distributions in non-IID settings to match IID settings.
This promotes local classifiers to be unbiased in their pre-
dictions rather than becoming biased towards local labels.
Furthermore, we penalize representations that are not thor-
oughly spread across the hypersphere. There are two rea-

sons for this. First, this encourages the encoder to not be-
come biased towards local features. Second, expanding the
feature space allows the classifier to expand its variance in
more directions. We show both regularizations are essential
for improved performance. FedUV achieves state-of-the-
art performance on various standard label-shift benchmark
in addition to various feature-shift benchmarks while being
extremely simple, efficient, and scalable.

Our contributions are summarized as follows. First, we
verify that singular values of the classifier decreases as a
consequence of non-IID environments in FL (Fig. 1). Sec-
ond, we present two regularization terms, representation
hyperspherical uniformity and classifier variance, to pre-
vent this degradation. These regularization terms are sim-
ple yet effective. Third, we show that FedUV achieves
state-of-the-art performance not only on label shift non-IID
settings but also on feature shift non-IID settings. Unlike
previous work, FedUV does not use the global model as a
source of regularization, which requires extra forward-pass,
requires extra memory, or requires matrix comparison be-
tween weights of each layer, thus being more efficient.

2. Related Work
2.1. Federated Learning (FL)

The basic FL algorithm is FedAvg [31]. This algorithm
progresses with the repetition of four steps. First, (step
1) a server broadcasts its global model. Second, (step 2)
clients receive and train the model using their own local
data. Third, (step 3) clients upload their trained local model.
Fourth, (step 4) the server aggregates local models to create
the next generational global model.

There are a wide range of recent work in the field of FL
such as client selection [33, 39], data sharing [50], privacy
[3, 14], communication efficiency [7, 46, 48], medical ap-
plications [47], and knowledge distillation [38, 52]. As we
cannot hope to cover all work on FL, we mainly focus on
work that address the performance degradation in non-IID
settings. Work in this domain can generally be divided into
two groups: 1) papers that focus on the aggregation pro-
cess (step 4), and 2) efforts that focus on the local training
process (step 2).

2.2. Aggregation Regularization

Work that focus on aggregation generally do not modify the
local training scheme of FedAvg. Clients train their local
model on local data using a SGD based optimizer. To ad-
dress the non-IID problem, they change how the weights
of the local model are aggregated. FedAvgM [11] ap-
plied a momentum term when aggregating and FedNova
[44] normalized local models before averaging. Other work
in Personalized FL [30, 37] used hypernetworks to gener-
ate the parameter of other client layers. PFNM [51] and
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FedMA [43] introduced a Bayesian method to align poten-
tially mixed neurons due to the permutation invariance of
neural networks. PAN [22] improved efficiency by encod-
ing position into neurons. FedDF [23] utilized generated
and unlabelled data. CCVR [29] noted the largest bias exists
in the classifier (the last layer) than any other layer. They
used a Gaussian mixture model to create artificial data and
calibrated the classifier.

2.3. Local Training Regularization

Work that focus on local training generally do not modify
the aggregation scheme of FedAvg. To address the non-
IID problem, they instead penalize local clients based on
different criteria. As our work also belongs to this group,
we discuss them in more detail.

FedProx [20] added a L2 regularizer between local
model weights and global model weights that prevent lo-
cal model weights from becoming dissimilar to the global
model. FedDyn [1] added an inner product regularization
term between the current round local model and previous
round local model noting that regularizing solely based on
the global model may cause convergence problems for local
models. MOON [19] added a contrastive loss regularization
term noting there should be a balance between the represen-
tational similarity between global model, the current round
local model, and previous round local model.

These methods use the global model as a source of reg-
ularization. The intuition is that the global model is less
biased than any single local model. However, there are
two large issues concerning this approach. First, the global
model can also be biased if local models are biased, since
it is an averaged model. This bias may slow convergence
and not improve performance. Second, efficiency and scal-
ability becomes an issue. FedProx and FedDyn require the
calculation of the L2 distance between global model and
local model, and MOON requires three forward passes at
every batch.

More recently, FedAlign [32] noted that it is possible to
use only the local model for effective regularization. Local
models employ GradAug [49] to regularize itself rather than
relying on the global model. However, FedAlign still suf-
fers in efficiency due to its reliance on an additional forward
pass and estimation of second order information. FedBABU
[34], on the other hand, randomly initializes and freezes the
classifier to prevent bias. While this work can be catego-
rized as Personalized Federated Learning, we include Fed-
BABU in our discussion due to its focus on the classifier.
We further explore these ideas in Section 4.2.

3. Proposed Method — FedUV
The motivation of FedUV comes from two main observa-
tions. First, the similarity between local models decreases
further in later layers of the model [29], with the classifier

(a) Cross-entropy loss aligns the representations

(b) Hyperspherical Uniformity regularizes the representations
(penultimate layer output)

(c) Variance regularizes the classifier (final layer output)

Figure 2. Uniformity regularization is applied to the penultimate
layer and variance regularization is applied to the output layer.

(the final layer) being most biased towards local data. Sec-
ond, as shown in Fig. 1, the singular values of the classifier
of the global model degenerate in non-IID settings. Our
goal then is to prevent this degeneration, promoting local
models to emulate the IID setting regardless of local data
distribution.

We achieve this by penalizing the classifier if it does not
act as it would in an IID setting. We use a hinge loss to reg-
ularize the classifier if the class-wise variance of the prob-
ability distribution does not exceed a constant threshold c,
which is set to be the class-wise variance of the ground truth
labels in a batch with balanced classes. However, since
the classifier acts as a linear hyperplane finding a separa-
tion of the representations in high dimensional space, in-
crease in classifier variance may be limited by the represen-
tational feature imbalance in feature-shift non-IID settings.
We introduce an additional regularization term to spread
the representations of the encoder throughout the hypersh-
pere. Fig. 2 is a visualization of the FedUV regularization
scheme in R2 (a PyTorch-like pseudocode is included in
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Appendix 1). We first promote hyperspherical uniformity
in the representations of the encoder (row vectors of the
penultimate layer output) then promote the class-wise vari-
ance of the probability distribution (column vectors of the
last layer output). We show that both regularization terms
are important to increasing the performance in label-shift
and feature-shift settings.

Our overall loss function is shown in Eq. 1. Each client
uses the cross-entropy loss as well as two regularization
terms. The µ and λ terms control the strength of each reg-
ularization (discussed in Section 4.1), and the ftheta and
gtheta are the final layer and penultimate layer, respectively.
We now discuss each regularization term in more detail.

L = LCE(fθ(X), Y )+µLU (gθ(X))+λLV (fθ(X)) (1)

3.1. Classifier Variance

Our goal is to encourage the classifier in any setting to em-
ulate a classifier in an IID setting. We specifically focus on
the classifier as it is the layer of the model most prone to bias
in non-IID settings. We do this by inducing the class-wise
variance of the classifier probability distribution to emulate
an IID scenario.

Given a mini-batch (X,Y ) and a model fθ that outputs a
prediction fθ(X) = Ŷ , we create a probability distribution
on our mini-batch P̂ := Softmax(Ŷ ). P̂ is the probability
distribution matrix of the entire mini-batch, where the row
vectors are probabilities of a single sample and the column
vectors are probabilities of a single class across the entire
mini-batch. We define the variance regularization term LV

as the hinge loss of the square root of the variance (stan-
dard deviation) along the column vectors of the probability
matrix as seen in Eq. 2.

LV (Ŷ ) =
1

D

D∑
j=1

max(0, c−
√
V ar(P̂j)) (2)

Here, D is the number of classes, c is a constant that rep-
resents the variance in an IID setting, and P̂j represents the
column vectors of the probability matrix. We set c to be
the average class-wise standard deviation of A as shown in
Eq. 3. Here, A is a DxD identity matrix (diag(11, ..., 1D))
where D is the number of classes. This represents the ideal
probability distribution of a balanced mini-batch where all
classes are included.

c :=
1

D

D∑
j

√
V ar(Aj) (3)

In essence, we ask that the predicted probability distribution
in any setting match the probability distribution of an ideal
IID setting where each mini-batch contains a balanced ratio

of the included classes. Furthermore, we purposefully use
a hinge loss to prevent the variance in a few classes from
overpowering the remaining classes.

3.2. Hyperspherical Uniformity

Promoting class-wise variance in the classifier may be diffi-
cult in scenarios where the representations are clustered in a
small area. For instance, in a feature-shift non-IID setting a
model may biased towards a subset of the global data man-
ifold. This may also occur in scenarios where a client holds
data from only two classes. There is no incentive for the
model to spread the representations to allow larger separa-
tion with a linear hyperplane. We thus induce hyperspher-
ical uniformity on the representations of the encoder (the
output of the penultimate layer). We use the RBF kernel for
its connection with the unit hypersphere [5], and its success
in various deep learning applications [6, 25]. Namely, we
calculate the average pairwise Gaussian energy between the
row vectors of the representations as seen in Eq. 4.

LU (gθ(X)) = E
x,y∈gθ(X)

[
exp (−∥x− y∥22

2σ
)

]
(4)

gθ(X) is the representation matrix of the encoder where x
and y represent the row vectors in the representations. σ is
a hyperparameter that controls the sensitivity to small dis-
tances. This is a hyperparameter that can be tuned to each
setting to improve performance. We set σ as the median
value of the squared pairwise distances to ensure hypersh-
perical uniformity is induced in any setting.

4. Experiments and Results
4.1. Experimental Setup

We compare FedUV with the state-of-the-art FL algorithms:
FedAvg [31], FedProx [20], and MOON [19]. We also in-
clude a method Freeze which freezes the final layer. This
is similar to FedBABU [34] without personalization. We
mainly focus on these methods as they are local learning
regularization. Additional baselines are presented in Ap-
pendix 5. We use the PyTorch [35] library and follow the
official implementations for all available work.
Label-shift Datasets. STL-10 [4] is a dataset with 10
classes with balanced 5,000 training and 8,000 validation
samples. CIFAR-100 [16] is a dataset with 100 classes with
60,000 training and 10,000 validation samples. Tiny Ima-
geNet [18] is a dataset downsampled from the ImageNet
[36] dataset with 200 classes with balanced 100,000 train-
ing and 10,000 validation samples. Basic data augmenta-
tion, random cropping and horizontal flipping, is used con-
sistently throughout all datasets and methods. As with many
previous work [19, 32, 34], we use the Dirichlet distribution
to simulate label-shift non-IID settings. The α term controls
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STL-10 CIFAR-100 Tiny ImageNet PACS HAM10000 Office-Home
Method α=0.01 α=1.0 α=0.01 α=1.0 α=0.01 α=1.0
FedAvg 27.6±1.6 68.5±0.7 51.6±1.7 58.3±1.2 37.5±0.9 40.2±1.2 61.9±0.6 73.7±0.3 42.2±1.1
FedProx 26.5±1.5 67.9±0.8 50.2±1.1 59.0±1.0 37.1±1.1 39.9±1.0 59.1±0.8 73.5±0.3 41.9±0.6
MOON 26.0±1.3 70.0±0.6 48.2±1.2 60.5±0.7 37.6±1.8 42.4±0.9 62.8±1.6 72.9±0.4 41.9±0.4
Freeze 23.7±1.5 72.1±0.6 51.1±1.5 59.3±1.8 38.9±1.9 42.6±1.6 61.6±0.5 73.2±0.3 41.3±1.8
FedUV 30.4±1.4 68.5±0.6 55.7±1.0 59.1±0.9 40.3±0.8 43.2±1.5 65.9±0.9 73.9±0.5 45.4±1.0

Table 1. Test accuracies with α ∈ {0.01, 1.0} on STL-10, CIFAR-100, and Tiny ImageNet and PACS, HAM10000, and Office-Home. We
bold the highest performing method and underline the second highest performing method.

the extent of non-IIDness with α = 0 being most non-IID
and α = ∞ being IID. We use α ∈ {0.01, 1.0}. We split
the training datasets into a 90-10 training-validation dataset
and use the original validation set as a test set.

Feature-shift Dataests. A more recent work [21] has
shown it is important also to focus specifically on feature-
shift environments. To simulate feature-shift, we use 3
datasets which includes data from various domains. PACS
[17] is a dataset with 7 classes in 9,991 images from four
domains: Photo (1,670 images), Art painting (2,048 im-
ages), Cartoon (2,344 images), and Sketch (3,929 images).
We randomly sampled an equal 280 images per domain (40
images per class in each domain) for our testing dataset
(1,120 images in total). HAM10000 [40] is a dataset with
7 classes in 10,015 images from four domains. The do-
mains are represented by different institutions which col-
lected dermoscopic (skin disease) images. Each domain has
3363, 2259, 439, 3954 images respectively. Due to the im-
balance in data, we took roughly 20% from each domain
for 1955 images for our testing set. Office-Home [41] is a
dataset with 65 classes in 15,588 images from 4 domains:
Art (2,427 images), Clipart (4,365 images), Product (4,439
images), and Photo (4,357 images). We randomly sampled
an equal 455 images per domain (7 images per class in each
domain) for our testing dataset (1,820 images in total). We
resize images from these datasets into 96x96x3 images and
apply basic data augmentation (random cropping and hori-
zontal flipping).

A detailed overview of the distributions of the datasets
are provided in Appendix 2.

Models. We use 3 different models across the different
datasets. Note that we also add a non-linear projector fol-
lowing [19] due to reduced performance without it. This
is simply two fully-connected layers followed by a batch
norm and ReLu activation. For STL-10 and PACS, we used
a small CNN model (Appendix 3) with a projector with 256
neurons. For CIFAR-100 and PACS, we used a ResNet-
18 [10] model, removing the initial max-pooling layer due
to the small image size and adding the projector with 512
neurons. For Tiny ImageNet and Office-Home, we used a
ResNet-50 model, removing the initial max-pooling layer
and adding the projector with 2048 neurons. On all datasets,
we report the results of a single aggregated global model.

Hyperparameters. Our default testing environment for
our ablation is done on STL-10 (α = 0.01) with a small
CNN (Appendix 3) and Office-Home with a ResNet-50, lo-
cal epoch E = 10, number of clients κ = 10 for STL-10
and κ = 4 for Office-Home (for each of the domains), par-
ticipation rate ρ = 1.0. The total aggregation rounds is cho-
sen based on performance of the training-validation split on
FedAvg. We set total aggregation rounds, R, as 100, 60,
40 for STL-10, CIFAR-100, Tiny ImageNet, and 60, 60,
40 for PACS, HAM10000, and Office-Home, respectively.
All reported accuracy are averaged over 3 runs. Changes
from these default settings are mentioned clearly. We use
the Cross-entropy loss and SGD with learning rate of 0.01,
momentum 0.9, and weight decay of 1e-5.

FedProx, MOON, and FedUV are all regularization
methods, thus adds an extra parameter to balance the cross-
entropy loss and the strength of regularization. We tune this
parameter on the CIFAR-10 [16] dataset, since tuning this
parameter in every setting of each dataset is not viable op-
tion for FL as resources are limited. For FedProx, we use
µ = 0.01, for MOON, µ = 1.0. For FedUV, we use fixed
hyperparameters λ = D

4 , where D is the number of classes,
and µ = 0.5 for all datasets. We report the hyperparam-
eter tuning results in the appendix (Appendix 4). All ex-
periments were conducted on a single RTX A5000 and one
AMD EPYC 7763 processor.

4.2. Results

Data Heterogeneity. We study how data heterogeneity
changes performance of the global model. We test the per-
formance for α ∈ {0.01, 1} for label-shift datasets, and use
the defined domains for feature-shift datasets. Results are
shown in Table 1.

Across most settings, FedUV outperforms other meth-
ods. Focusing first on the label-shift non-IID settings, we
see that in the extreme α = 0.01 setting, FedUV performs
best. FedProx and MOON peform worse than FedAvg as
they base their regularization on the global model which
may also be biased since it is averaging extremely biased
local models. Freeze also does not perform well, as the
frozen classifier causes the encoder to have difficulty learn-
ing in extreme settings. By emulating an IID setting, Fe-
dUV outperforms these methods.
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STL-10 (α = 0.01) Office-Home
Method p=0.1 p=0.5 p=1.0 p=0.25 p=0.5 p=1.0

FedAvg 17.4±3.4 21.5±1.8 27.6±1.6 39.1±2.5 41.9±1.4 42.2±1.1
FedProx 19.3±2.9 22.0±1.3 26.5±1.5 39.6±2.1 40.8±1.7 41.9±0.6
MOON 20.5±3.7 23.6±1.7 26.0±1.3 40.3±2.7 40.5±1.6 41.9±0.4
Freeze 21.5±3.6 23.7±1.6 23.7±1.5 37.6±3.9 39.5±1.1 41.3±1.8
FedUV 24.9±3.1 30.0±1.1 30.4±1.4 41.7±2.4 44.8±1.3 45.4±1.0

Table 2. Accuracy across client participation rate

In the less extreme setting of α = 1.0 other regulariza-
tion methods generally perform well. On STL-10, Freeze
performs best by a large margin. For less extreme label shift
and small number of classes, a frozen classifier is beneficial
as this prevents the classifier from being biased, which has
been established as a desirable property. MOON performs
best on CIFAR-100, and also improves performance com-
pared to FedAvg on the Tiny ImageNet dataset. However,
we find that Freeze and FedUV achieve the better perfor-
mance on Tiny ImageNet most likely because each client
holds more data as the dataset is much larger. When data is
plentiful, it is likely that focusing specifically on the classi-
fier is most beneficial.

In the feature-shift setting, we find that baseline reg-
ularization methods generally does not help performance.
This could be because these work have focused only on
label-shift settings. Freeze simply freezes the final layer,
while MOON and FedProx use the global model as a source
of regularization to mitigate the bias of individual clients.
However, because FedUV simulates an IID setting rather
than mitigating the effects of label-shift by relying on the
global model as a source of regularization, performance is
improved not only in label-shift settings but also feature-
shift settings. As will be shown in the ablation study, the
Uniformity regularizer is indeed an important factor to pre-
vent this performance degradation.
Client participation. In real-world FL applications, it is
realistic to expect that only a subset of all clients partici-
pate in an aggregation round. The server must triggers the
aggregation process even if some clients do not participate.
We study the effect of ratio of client participation, ρ, where
ρ = 0.1 means 10% of clients participate in the aggrega-
tion round. Across these settings, we use 100 aggregation
rounds for STL-10 and 60 for Office-Home. The results are
shown in Table 2.

The advantages of FedUV are clear even when the ratio
of participating clients is low. Indeed, when ρ = 0.1 for
STL-10, FedUV performs the best by a large margin. This
increase in performance occurs owing to the focus of Fe-
dUV to emulate the IID. The second best method is Freeze.
Intuitively, since the classifier is the layer that is most prone
to bias, this is magnified in scenarios where client participa-
tion is low, as bias of the averaged global model is further
increased. By fixing the classifier as in Freeze, we limit this
bias and increase performance. However, as seen with the

STL-10 (α = 0.01) Office-Home
Method E = 10 E = 20 E = 40 E = 10 E = 20 E = 40

FedAvg 27.6±1.6 29.8±1.1 29.1±0.3 42.2±1.1 43.5±1.0 35.1±0.7
FedProx 26.5±1.5 28.6±0.8 27.4±0.6 41.9±0.6 43.3±0.5 35.7±0.5
MOON 26.0±1.3 28.9±0.7 27.4±0.4 41.9±0.4 42.0±0.4 41.7±0.5
Freeze 23.7±1.5 29.9±0.9 27.2±0.7 41.3±1.8 41.3±0.8 35.4±0.9
FedUV 30.4±1.4 31.5±1.2 25.9±0.9 45.4±1.0 46.1±0.7 35.9±0.8

Table 3. Accuracy across different number of local epochs

STL CIFAR Tiny PACS HAM Office
Method

FedAvg 27.6±1.6 51.6±1.7 37.5±0.9 61.9±0.6 73.3±0.3 42.2±1.1
Freeze 23.7±1.5 54.1±1.5 38.9±1.9 61.6±0.5 73.2±0.3 41.3±1.8
Only LV 29.5±1.4 54.0±1.1 38.8±1.5 60.1±0.3 72.5±0.4 41.8±1.1
Only LU 24.1±1.3 52.8±1.2 37.9±1.7 63.7±0.3 73.4±0.2 43.5±1.3
FedUV 30.4±1.4 55.7±1.0 40.3±0.9 65.9±0.9 73.9±0.5 45.4±1.0

Table 4. FedUV ablation study

performance increase of FedUV, it is far more beneficial to
emulate an IID setting. It is also interesting to see that when
ρ = 0.25 for Office-Home (1 client participating), FedProx
and MOON improves performance. When the server aggre-
gates weights from only 1 domain, it may be beneficial to
use the global model as regularization. This improvement
does not continue for ρ = 0.5 (2 clients participating), sug-
gesting that the average of two domains is more beneficial
than the use of the global model for regularization.
Number of local epochs We study the effect of number of
local epochs, E, where E = 40 means each clients trains
for 40 epochs during a single aggregation round. Results
are shown in Table 3. It would be desirable to achieve high
performance with a low number of local epochs thereby re-
ducing the burden of less powerful edge devices. We find
that when E = 20 performance generally improves. How-
ever, when the number of local epochs increase to 40, the
accuracy of all methods decrease, suggesting overfitting oc-
curs with a high number of local epochs. The performance
of FedUV significantly degraded when local epoch is high.
This suggests high local epochs cause local models to con-
verge to local optima, harming performance. On the other
hand, MOON and FedProx did not show a large drop in per-
formance. This can be explained by the fact that these meth-
ods rely on the global model for regularization. Because of
this, local models are less likely to converge to local optima
as compared to FedUV.
Ablation Study. We study the effect of hyperspherical uni-
formity and classifier variance separately. We also compare
Freeze which creates an orthogonal classifier by randomly
initializing and freezing the weights. Results are shown in
Table 4. For the label-shift datasets (STL-10, CIFAR-100,
Tiny ImageNet), we find that hyperspherical uniformity reg-
ularization, Only LU , does not improve performance signif-
icantly, whereas classifier variance regularization, Only LV ,
performs much better than Freeze on the STL-10 dataset
while being competitive in other datasets. These results
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(a) STL-10 (b) CIFAR-100 (c) PACS (d) Office-Home

Figure 3. The training loss for FedAvg and FedUV across different settings

suggests that label-shift settings, focusing on the final layer
is more important than focusing on the feature representa-
tions of the encoder, and that emulating an IID label distri-
bution is more desirable than a fixed classifier.

Furthermore, for the feature-shift datasets (PACS,
HAM10000, Office-Home), we find that variance reg-
ularization does not improve performance significantly,
whereas uniformity regularization improves performance
compared to both Only LV and Freeze. This suggests that
in feature-shift settings, when clients have vastly differing
feature distributions, it is beneficial to encourage features
to be more spread. Intuitively, this prevents any local en-
coder from heavy bias towards a subspace, which is an as-
pect other regularization methods do not incorporate. The
performance of FedUV across different models is shown in
Appendix 5.

Overall, these results suggests that, in label-shift situa-
tions, focusing specifically on the classifier through vari-
ance regularization is more important, while in feature-shift
scenarios, focusing specifically on the feature space repre-
sentations of the encoder through hyperspherical uniformity
is more important. However, both regularization terms are
important to emulate the IID setting regardless of data dis-
tribution. The combined approach in FedUV shows further
improved performance across these various settings.
Convergence. We study the convergence of FedUV. Graphs
of the training loss are shown in Fig. 3. FedUV shows
quicker convergence when compared to FedAvg, often
reaching a lower loss at earlier training iterations. This is
intuitive considering the performance improvement FedUV
provides over FedAvg. We also find that in the extreme case
of STL-10 α = 0.01, the loss curve is much smoother for
FedUV when compared to FedAvg. This shows FedUV sta-
bilizes training.

5. Discussion
5.1. Preventing Classifier Bias

Our method of emulating the IID setting by encouraging
classifier variance is not the only method to prevent classi-
fier bias. When focusing on label-shift, many loss function
weighting and specialized sampling techniques have been
considered [13]. There have also been interesting applica-

tions in representation learning that use latent space repre-
sentations to sample training data such that the predicted
probability distribution is uniform [2]. These are interest-
ing directions to explore for addressing the non-IID prob-
lem. The biggest constraint using these approaches in FL
however, is privacy. The data and class distributions can-
not be known beforehand, thus cannot be set to match each
client. In addition, parameters that control sampling or loss
weighting may introduce security vulnerabilities.

Another straightforward method would be to randomly
initialize and freeze the classifier. Freezing the classifier
would also prevent biases forming in the probability dis-
tribution of the classifier. Indeed, this is the intuition be-
hind FedBABU [34] and the Freeze method we have used
as our baseline, which initializes and freezes the classifier
to orthogonal vectors. Freezing weights also prevents the
degeneration of singular values in non-IID settings, a phe-
nomenon shown in Fig. 1.

However, it may not be optimal to separate classes with
orthogonal vectors in every setting. A number of studies
[25, 28] have shown that when the number of neurons ex-
ceeds the dimensions of data manifold, promoting orthog-
onality is problematic. This problem arises when there is
a large number of classes with data that lives in a lower
subspace. Another alternative would be to regularize the
weights directly using the spectral norm or the Frobenius
norm. These methods differ from FedUV as we regularize
in the representation space rather than in the weight space.
The main reason is efficiency. We re-use the representations
obtained in the forward-pass of the model without directly
accessing the weight parameters.

5.2. Hyperspherical Uniformity

The goals of hypershperical uniformity in FedUV are to
mitigate representational bias and to create separation be-
tween representations such that the classifier has more di-
rections to increase its variance. Note that this regularizer
focuses on feature distributions, not class distributions. This
is shown in Figure 4. Features are aligned regardless of
class distribution. Empirically, we have shown that this reg-
ularization is beneficial in feature-shift settings. There are
alternatives to this, such as spreading representations along
a hypercube. However, hyperspherical uniformity is gain-
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Figure 4. t-SNE on the features (output of the penultimate layer) of STL-10 (Class #1). Experiment setup is equivalent to main text. Clients
and class were selected at random.

STL CIFAR Tiny PACS HAM Office
Method (10-Layer) (ResNet-18) (ResNet-50) (10-Layer) (ResNet-18) (ResNet-50)

FedAvg 26 57 728 47 131 359
FedProx 27 67 823 48 135 371
MOON 37 88 1186 70 145 493
Freeze 26 56 728 47 129 351
FedUV 27 58 755 48 132 362

Table 5. Average time (in seconds) per aggregation round.

ing popularity in the field of deep learning due to its desir-
able properties [6, 24–27]. While more traditional regular-
ization approaches such as the L2 regularization have seen
success in various applications in the wider field of machine
learning and statistics [8, 12], neural networks are special
due to their high over-parameterization. Using L2 regular-
ization focuses only on weights rather than the interactions
between over-parameterized neurons. Hyperspherical uni-
formity regularizes based on these interactions and also has
clear geometric properties [28]. We point readers to [28]
for a recent in-depth discussion on its development in deep
learning.

Furthermore, we choose the RBF kernel for its effi-
ciency. In particular, the kernel method allows us to first cal-
culate the the pairwise L2 norms of the row vectors before
using the kernel function. It also allows for easy differenti-
ation on automatic differentiation software, which facilitate
the training of neural networks.

5.3. Convergence of FedUV

We have shown in Fig. 3 that in our extensive testing en-
vironments, FedUV converges stably. In the general case,
we know that the Uniformity regularizer converges weakly
to the uniform distribution, since we are minimizing the av-
erage pairwise gaussian potential between sample points.
As the number of samples approaches infinity, the loss will
converge weakly to the uniform distribution according to
Wang and Isola [45]. For the Variance regularizer, however,
the hinge loss of the regularizer is not smooth. Because of
this, it is non-trivial to prove convergence. This may be-
come much simpler when replaced with a smooth surrogate
loss. We show in Appendix 5 the performance of settings in

which squared hinge and no hinge loss is used.

5.4. Efficiency and Scalability

One of the most important aspects in FL is efficiency. Edge
devices cannot be expected to have powerful hardware that
allows heavy computation in real-world scenarios. We un-
fortunately find that many regularization methods are not
very scalable. While this is not a problem for small datasets
and models, as dataset size and model size both increase
at a rapid rate, these models become more computationally
expensive.

We compare the wall-clock time of different methods as
shown in Table 5. Note that the time extended is per ag-
gregation round with 10 local epochs. FedProx requires L2

norm calculations between each layer of local model and
global model at each batch, while MOON requires 3 for-
ward passes at each batch as well as the storage of 3 full
models. Though this may not be a problem with small mod-
els, FedProx and MOON are not very scalable methods as
the size of models increases. FedUV is a simple yet efficient
regularization technique as it only requires few matrix op-
erations with no weight parameter access, extra memory, or
extra forward passes. The most expensive operation is the
pairwise distance calculation which is negligible even with
less powerful hardware.

6. Conclusion
In this work, we introduced a new approach to address the
non-IID problem in FL by encouraging local models to
emulate the IID setting. Rather than regularizing to reduce
bias, we emulate the IID setting by promoting variance in
the predicted dimension-wise probability distribution. We
also promote hyperspherical uniformity on the represen-
tations of the encoder to allow the classifier to increase
variance in more directions. Overall, our method improves
performance by a large margin throughout our extensive
experiments while being the most efficient and scalable
among regularization methods.
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