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Figure 1. Arbitrary motion style transfer with our MCM-LDM. The black arrows point to the highlighted style features. These results
illustrate our method’s capability to maintain the essence of original content while seamlessly infusing it with new stylistic characteristics
and trajectory considerations.

Abstract
Computer animation’s quest to bridge content and style

has historically been a challenging venture, with previous
efforts often leaning toward one at the expense of the other.
This paper tackles the inherent challenge of content-style
duality, ensuring a harmonious fusion where the core nar-
rative of the content is both preserved and elevated through
stylistic enhancements. We propose a novel Multi-condition
Motion Latent Diffusion Model (MCM-LDM) for Arbitrary
Motion Style Transfer (AMST). Our MCM-LDM signifi-
cantly emphasizes preserving trajectories, recognizing their
fundamental role in defining the essence and fluidity of mo-
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tion content. Our MCM-LDM’s cornerstone lies in its abil-
ity first to disentangle and then intricately weave together
motion’s tripartite components: motion trajectory, motion
content, and motion style. The critical insight of MCM-
LDM is to embed multiple conditions with distinct priori-
ties. The content channel serves as the primary flow, guid-
ing the overall structure and movement, while the trajec-
tory and style channels act as auxiliary components and
synchronize with the primary one dynamically. This mech-
anism ensures that multi-conditions can seamlessly inte-
grate into the main flow, enhancing the overall animation
without overshadowing the core content. Empirical evalu-
ations underscore the model’s proficiency in achieving fluid
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and authentic motion style transfers, setting a new bench-
mark in the realm of computer animation. The source code
and model are available at https://github.com/
XingliangJin/MCM-LDM.git.

1. Introduction and Motivation
Computer animation, an intricate melding of computational
prowess and artistic flair, has continually pushed the bound-
aries of what is conceivable in digital realms. Among its
myriad ventures, Arbitrary Motion Style Transfer (AMST)
stands out as an area of heightened intrigue and profound
challenge. The vision it encapsulates is tantalizing: melding
distinct motion styles onto varied content, much like casting
the intense fervor of martial arts onto the delicate pirouettes
of a ballet dancer or infusing the serenity of a meandering
stream with the tumultuous dynamism of a waterfall. How-
ever, the road to actualizing this vision is fraught with com-
plexities that have stymied even advanced methodologies.

Previous methods in motion style transfer, including Mo-
tion Puzzle [26] and others [1, 21, 22, 36, 42, 43], have
made significant strides in AMST. However, two main chal-
lenge still exists. Content-Style Duality: The critical chal-
lenge in AMST is the dual imperative of maintaining con-
tent integrity while seamlessly integrating a distinct, of-
ten contrasting, style. This intricate process involves not
just superimposing stylistic elements but intricately weav-
ing them into the fabric of the original content. As ex-
emplified in Fig. 1-C, the goal is to capture the essence
of the style from style motions (Fig. 1-A) while preserv-
ing the core attributes and dynamics of the content motion
(Fig. 1-B). Achieving this preservation is difficult due to the
complexities of disentangling the intertwined latent spaces
representing content and style.

Granularity of Details: Beyond the broader motion pat-
terns, the devil lies in the details. The style patterns mostly
ignore a critical factor: trajectory. A significant challenge
arises due to the inherent discrepancies between the tra-
jectories characteristic of the original content and the de-
sired style. As illustrated in Fig. 2-A, conventional meth-
ods [1, 26, 36, 42] often directly transpose the content mo-
tion’s trajectory onto the stylized motion. The copy-based
methods, while straightforward, frequently result in unnat-
ural artifacts, such as the common issue of ‘foot sliding’.

In addressing the content-style duality, we introduce the
Multi-condition Motion Latent Diffusion Model (MCM-
LDM), benefiting from the generative capabilities of dif-
fusion models, known for their effectiveness in captur-
ing complex data distributions. MCM-LDM systemati-
cally segments motion into tripartite components — con-
tent, style, and trajectory — and employs a multi-condition
guidance mechanism in the denoising process. This allows
the model to generate new styles that are coherent and seam-
lessly integrated with the content, overcoming the common
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Figure 2. Comparisons of trajectory. Our method (B) learns to
preserve motion trajectory during style transfer, while other meth-
ods [1, 26, 36] (A) copy content trajectory directly onto stylized
motions, resulting in foot sliding issue.

pitfall of disjointed or unnatural style transfers.
To tackle the challenge of Granularity of Details, we pro-

pose a custom-designed Multi-condition Denoiser, to skill-
fully balance these conditions, ensuring the natural dynam-
ics of the original motion are preserved while integrating
new stylistic elements. Unlike previous works, we aim for
the learning-based manner as shown in Fig. 2-B. The de-
noiser embeds multiple conditions with distinct priorities
to preserve primary content while dynamically integrating
style and trajectory as secondary conditions, enabling a so-
phisticated balance in guiding the diffusion process. This
mechanism leads to more authentic and cohesive AMST
outcomes (as despite in Fig. 1-C), setting a new standard
in the realm of computer animation.

To summarize, our contributions are listed as follows.
• We present the first diffusion-based approach in AMST

that integrates trajectory awareness, providing a nuanced
solution that addresses previously unexplored aspects of
motion style transfer.

• Our innovative MCM-LDM systematically extracts and
guides motion through content, style, and trajectory con-
ditions during the diffusion process, effectively address-
ing the complex challenges of content-style duality and
the granularity of motion details.

• We propose a novel Multi-condition Denoiser, which pri-
marily serves the content while adapting style and tra-
jectory as secondary conditions, enabling a sophisticated
balance in guiding the diffusion process. This mechanism
leads to authentic and cohesive AMST outcomes, setting
a new standard in the realm of computer animation.

2. Related Work
2.1. Motion Style Transfer

Initial approaches [3, 5, 7, 23, 25, 31, 33, 46, 48, 51] to mo-
tion style transfer predominantly utilized machine learning
techniques. However, these methods often result in subop-
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timal performance and limited transfer scope. Recent deep
learning-based methods [1, 9, 13, 21, 22, 26, 29, 35, 36,
43, 47] have significantly enhanced the quality and scope
of motion style transfer. For instance, Aberman et al. [1]
introduced a 1D temporal convolution-based network with
AdaIN for motion style control in the latent space. Park et
al. [36] expanded this to spatio-temporal graph convolution
(STGCN) for effective motion content preservation. These
methods, however, are constrained by the need for anno-
tated style data and specific styles. Addressing this, Jang et
al. [26] introduced AMST for individual body parts using
STGCN and a novel body-part style fusion network. Our
approach similarly tackles AMST with our MCM-LDM.
We aim to extend the network to learn to preserve the con-
tent motion trajectory without artifacts.

2.2. Motion Generation via Diffusion Model

Diffusion model has rapidly evolved in the field of motion
generation [8, 12, 14, 30, 39]. Initially, methods [2, 27,
38, 40, 45, 52–54] focused on generating motions with dif-
fusion model in the original motion space. For instance,
Zhang et al. [52] was the first to use the diffusion model
for generating motions from text. Later, Tevet et al. [45]
utilized the transformer network structure for the diffusion
model to learn condition-guided motion generation. How-
ever, applying the diffusion model directly to the original
motion space incurs high computational costs and slow in-
ference times. More recent approaches [4, 6, 11, 28, 32, 50]
have shifted towards applying diffusion models in the mo-
tion latent space. MLD [11] first introduced the use of
diffusion models in the continuous latent space of a mo-
tion Variational AutoEncoder (VAE). Kong et al. [28] pro-
posed a discrete diffusion model in the Vector Quantised-
Variational AutoEncoder (VQ-VAE) latent space for text-
to-motion generation. Inspired by these methods, We
present a multi-condition motion latent diffusion model, de-
signed for AMST with enhanced efficiency and versatility.

3. New Method
3.1. Method Overview

Our approach achieves AMST by utilizing motion content,
style, and trajectory as guiding conditions in the denoising
process of our MCM-LDM. As illustrated in Fig. 3, our
method begins with extraction and encoding these condi-
tions using our Multi-condition Extraction module, as de-
tailed in Sec. 3.2. To generate stylized motion guided by
content, trajectory, and style conditions, we introduce our
MCM-LDM, a motion latent diffusion model optimized
for multi-condition guidance, described in Sec. 3.3. In
Sec. 3.4, we provide a detailed description of our Multi-
condition Denoiser (Fig. 4), designed specifically for the
multi-condition guided denoising process.

3.2. Multi-condition Extraction

In contrast to conventional motion style transfer meth-
ods [1, 26, 36] that use separate inputs for content and style
during the training stage, our approach takes the same mo-
tion as both the style and content input. Thus, our training
task shifts motion style transfer to self-reconstruction. To
effectively disentangle and encode condition features from
a single motion (x1:L, where L is the motion length), we
have designed the Multi-condition Extraction module.

In particular, for the trajectory condition, we employ a
transformer-based Trajectory Encoder Etra to extract and
encode the trajectory t1:L of x1:L, resulting in trajectory
features ft. However, separating content and style poses
a unique challenge due to their inherent overlap within a
single motion sequence. We introduce Style Extractor Esty
and Content Encoder Econ specifically designed to isolate
the style and content conditions.

For Esty , inspired by image style transfer methods [10,
15, 24] using pre-trained VGG [41] to extract style fea-
tures, we utilize a pre-trained MotionCLIP [44] as our mo-
tion Style Extractor to extract the style features of motion.
After training MotionCLIP with our specific data format,
the style features fs are derived from the output of Motion-
CLIP’s encoder. Due to the alignment between the latent
space of MotionCLIP and text/image, our Esty can better
capture the style features of the motion.

For Econ, we initially feed x1:L through the motion en-
coder E of a pre-trained motion VAE, yielding the raw con-
tent features zc in the latent space. Drawing inspiration
from ArtFusion[10], our aim is to prevent the model from
overly relying on the content information. To achieve this
goal, we employ a StyleRemover, which eliminates the style
from the content. Specifically, we apply the Instance Nor-
malization layer to zc before subjecting it to transformer
encoding. Finally, we employ linear dimensionality reduc-
tion to obtain the final content feature fc. Given that Esty
extracts the style features, our StyleRemover can naturally
learn how to remove the style from the content. Conse-
quently, the resulting content features effectively preserve
the content information while eliminating the style. The
above extraction of condition features can be expressed as:

ft = Etra(t1:L),
fs = Esty(x1:L),

fc = StyleRemover(E(x1:L)).

(1)

By encoding each condition separately, we obtain con-
dition features (fc, ft, fs), ensuring that they remain unaf-
fected by other conditions. These independent conditions
(fc, ft, fs) facilitate individual guidance for the denoising
process in subsequent steps of our MCM-LDM.
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Figure 3. Method overview. We have two components: (1) The Multi-condition Extraction obtains content features fc and trajectory
features ft from the content motion, while the style features fs are obtained from the style motion. (2) MCM-LDM contains forward
process and denosing process. The condition features guide the denoising process through Multi-condition Denoiser.

3.3. MCM-LDM

As demonstrated in Fig. 3-B, extended from the motion la-
tent diffusion model [11], we employ MCM-LDM for mo-
tion style transfer. Our MCM-LDM leverages both for-
ward and reverse diffusion processes within a motion la-
tent space, which is defined by the same pre-trained motion
VAE used in Econ, under the guidance of multiple condi-
tions: content fc, trajectory ft, and style fs. By encoding
the original motion x1:L using the VAE encoder E , we ob-
tain the motion latent feature z0 = E(x1:L).

The overall diffusion process is modeled as a Markov
noising process. Starting from a latent motion feature z0,
the forward process progressively adds Gaussian noise to
z0 until its distribution approximates a Gaussian distribu-
tion N (0, I) with a mean of 0 and a covariance matrix of
the identity matrix I, indicating uncorrelated variables with
equal variances. The forward diffusion process is governed
by the conditional probability distribution:

q(zn|zn−1) = N (
√
αnzn−1, (1− αn)I) , (2)

where zn is the noisy latent feature sampled at diffusion
step n, n ∈ {1, ..., N}; q(zn|zn−1) denotes the distribu-
tion of zn given zn−1; The parameter αn controls the level
of noise added to zn−1, gradually transforming it until its
distribution approaches N (0, I). For the reverse process,
or the denoising process, starting from a random latent fea-
ture zN , The denoising process then progressively predicts
and eliminates the noise at each diffusion step, ultimately
reconstructing the original motion latent feature z0.

To incorporate multi-condition guidance into the denois-
ing process, we designed our Multi-condition Denoiser Eθ

to predict noise based on the noisy latent feature zn, the dif-
fusion step n, and the guided conditions (fc, ft, fs). The
process of predicting noise can be represented as:

E∗
n = Eθ(zn, n, fc, ft, fs), (3)

where E∗
n denotes the predicted noise at step n. For sim-

plicity, we use Eθ(zn, fc, fs, ft) to represent the time-
dependent version Eθ(zn, n, fc, fs, ft). Further details re-
garding the specific network design and guided strategy can
be found in Sec. 3.4. The objective [20] of our MCM-LDM
can be defined as:

J = EE,n,(fc,ft,fs)

[
∥ E − Eθ(zn, fc, ft, fs) ∥22

]
, (4)

where E represents the Gaussian noise. In addition, we em-
ploy classifier-free guidance [19] during the training of Eθ.
Specifically, we use shared weights for training both the full
condition model Eθ(zn, fc, ft, fs) and the dual condition
model Eθ(zn, fc, ft,∅) without style condition. ∅ is a zero
null style feature. During training, we randomly set fs = ∅
by 25% chance to train these two models.

During the inference phase, the style condition fs is de-
rived from the style motion, while the content condition fc
and trajectory condition ft are provided by the content mo-
tion. The final stylized motion latent feature ẑ0 is obtained
by progressively predicting the noise in the initial random
noise and denoising it. Using the motion decoder D in the
pre-trained VAE, the final stylized motion can be obtained
as x̂1:L = D(ẑ0). By utilizing the classifier-free guidance,
the predicted noise in the n diffusion step is computed using

E∗
n = λEθ(zn, fc, ft, fs) + (1− λ)Eθ(zn, fc, ft,∅) (5)

instead of Equ. 3, where λ is the guidance scale. By adjust-
ing the size of λ, we can adjust the degree of style during
style transfer. Despite being trained for self-reconstruction,
our MCM-LDM effectively incorporates content, trajec-
tory, and style features for significant style transfer dur-
ing inference, even with varying content and style motions.
Moreover, our MCM-LDM ensures that the stylized motion
maintains alignment with the original content motion, ow-
ing to the trajectory condition.
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3.4. Multi-condition Denoiser

Existing methods [11, 45, 52] for diffusion-based motion
generation primarily focus on single-condition guidance.
However, in our work, we address the challenge of multi-
condition diffusion guidance by introducing our Multi-
condition Denoiser Eθ (Fig. 4). Eθ effectively achieves an
adaptive balance in guiding the denoising process for our
condition features (fc, ft, fs) by distinguishing them into
primary and secondary components. Specifically, through
both experiments and everyday observations, we have rec-
ognized the significance of motion content compared to tra-
jectory and style. Therefore, we assign the primary condi-
tion designation to the content fc, while the trajectory ft
and style fs serve as secondary conditions for guiding the
denoising process in our Eθ. Our Eθ utilizes a transfer-
based structure consisting of K layers. We then introduce
the guiding strategies of these conditions.

Primary Condition Guidance. The primary condition
fc is integrated as follows:

z′n = Concat(zn, fc), (6)

where z′n is the concatenated feature vector; Concat(·) rep-
resents concatenation. By doing so, we combine the pri-
mary condition with the noisy latent feature zn before in-
putting it into Eθ, ensuring that the primary condition is
involved throughout the entire denoising process, exerting
its influence on the network.

Secondary Conditions and Their Optimization. For
secondary conditions (trajectory ft and style fs), we first
get the corresponding parameters through:

γs, βs, αs = MLPs(fs),

γt, βt, αt = MLPt(ft),
(7)

where γs, βs, αs, γt, βt, and αt represent the parameters for
the corresponding fs and ft conditions; MLPs(·), MLPt(·)
denotes the different multi-layer perceptron. These param-
eters are then integrated into Eθ using AdaLN-Zero [37]:

ẑn,k′ = ẑn,k−1 + αsMSA(LN(ẑn,k−1)γs + βs),

ẑn,k = ẑn,k′ + αtMLP(LN(ẑn,k′)γt + βt),
(8)

where MSA(·) denotes multi-head self-attention, LN(·) de-
notes layer normalization; ẑn,k−1 and ẑn,k represent the
output of (k − 1)-th and k-th layer of Eθ; ẑn,k′ represents
the intermediate variable in the k-th layer of Eθ; MLP(·) de-
notes the multi-layer perceptron. By applying the secondary
conditions at each layer of our Eθ through AdaLN-Zero,
they guide the denoising process in a secondary manner.

By prioritizing the primary condition and incorporating
the secondary condition in intermediate layers, our Eθ ef-
fectively learns the importance of different conditions, guid-
ing the denoising process. The understanding enables the
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Figure 4. Architecture of Multi-conditon Denoiser. We incor-
porate the content features fc as a primary condition by concate-
nating it with the noisy latent feature zn, achieving a leading role.
In contrast, the trajectory features ft and style features fs serve as
secondary conditions, embedded into content flow dynamically.

network to preserve the significance of motion content, re-
sulting in desirable style transfer results. Consequently, our
approach achieves desirable results in style transfer, as it re-
tains the majority of the motion content, exhibits the speci-
fied style accurately, and preserves the trajectory intact.

4. Experiments

In this section, we conduct a series of experiments to eval-
uate the effectiveness of our MCM-LDM. Firstly, we pro-
vide an overview of the dataset setting and implementation
details. Secondly, we present the quantitative metrics to as-
sess the quality of the stylized motions. Next, we compare
our MCM-LDM with other state-of-the-art methods. Fol-
lowing that, we conduct ablation studies to analyze the im-
pact of our main components. Additionally, we include a
user study to evaluate the performance of our MCM-LDM.
More results and details are provided in the supplements.

4.1. Dataset and Implementation Details

Dataset. As our MCM-LDM aims to achieve arbitrary mo-
tion style transfer, our training data do not need any further
annotated style labels. Therefore, we use a large 3D human
motion dataset HumanML3D [17] to train our model, which
consists of 14,616 diverse motion sequences. The motions
within the dataset are originally taken from AMASS [34]
and HumanAct12 [16] datasets with pre-processing.

Implementation Details. We use an off-the-shelf pre-
trained VAE model from MLD [11], with a latent space size
of 7 × 256. Following [17], the motion is represented as a
combination of 3D joint rotations, positions, velocities, and
foot contact, and the trajectory is obtained by the rotation
and velocity of the root node. For our Content Encoder, we
employ a dimension reduction from 7 to 6. The classifier-
free guidance scale λ is set to 2.5. Our Multi-condition De-
noiser Eθ utilizes a 9-layer architecture with a dimension of
1,024 and 4 heads. We train our model with a batch size of
128 for 400 epochs, requiring a total training time of 6.67
hours with a single RTX 3090.
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4.2. Quantitative Metrics

In this section, we present five metrics that we employ to
quantitatively assess the quality of the stylized motions:
Fréchet Motion Distance (FMD), Content Recognition Ac-
curacy (CRA), Style Recognition Accuracy (SRA), Trajec-
tory Similarity Index (TSI), and Foot Sliding Factor (FSF).
The first three metrics are used to evaluate the overall mo-
tion quality, content preservation, and style expression, re-
spectively. They have been widely used in previous motion
style transfer methods [26, 36, 42, 43]. We further propose
TSI and FSF to evaluate trajectory similarity between the
stylized motion and the content motion, and the foot sliding
factors of the stylized motions. We then provide a detailed
introduction of these metrics.

FMD, CRA, and SRA. To evaluate the quality of styl-
ized motions, we employ FMD as a quantitative metric,
which is a variant of Fréchet Inception Distance (FID) [18].
We train a content classifier as a feature extractor using [49]
on a subset of the HumanML3D test set with annotated con-
tent labels. The FMD is computed based on the feature
vectors obtained from the final pooling layer of the clas-
sifier, comparing the real and generated motion sequences.
A lower FMD value indicates higher motion quality. For
the CRA metric, we utilize the same content classifier to
evaluate this metric. A higher CRA value implies that the
generated motion has a higher potential to preserve the con-
tent of the original content motion. Similarly, for the SRA
metric, we train a style classifier in another subset of the
HumanML3D test set with our annotated style label. The
recognition accuracy of style is calculated to obtain the SRA
value. A higher SRA value indicates better style perfor-
mance of the stylized motions.

TSI and FSF. To better evaluate the trajectory preserva-
tion and the degree of foot sliding in the stylized motions,
we employ the TSI and FSF metrics. Specifically, we calcu-
late the distance between the stylized motion trajectory and
the original content motion trajectory using the Euclidean
distance to obtain the TSI metric. For FSF metric, we cal-
culate the foot sliding displacement generated by the feet
during ground contact for each stylized motion. For more
details, please refer to our supplementary material.

Methods FMD↓ CRA↑ (%) SRA↑ (%) TSI↓ FSF↓
Real Motions – 99.24 100.00 – –

1DConv+AdaIN [1] 42.68 31.18 57.00 0.22 2.05
STGCN+AdaIN [36] 129.44 60.43 17.66 0.11 0.93
Motion Puzzle [26] 113.31 26.31 46.33 0.22 2.43

Ours 27.69 35.75 58.00 0.40 1.28

Table 1. Quantitative evaluation. ‘↑’ (‘↓’) indicates that the value
is better if the metric is larger (smaller); The bold fonts denote
best performers. The results demonstrate that our MCM-LDM
achieves balanced performance in all metrics.

4.3. Comparison with State-of-the-art Methods

In this section, we qualitatively and quantitatively
compare four models, including Motion Puzzle [26],
Conv1D+AdaIN from Aberman et al. [1], STGCN+AdaIN
from Park et al. [36] and ours. To ensure a fair compar-
ison, we retrain Motion Puzzle using the HumanML3D
dataset [17], which is the same dataset used for training
our model. Since the original methods of Aberman et
al.[1] and Park et al. [36] are designed for style-labeled
motion data, we retrain two models, Conv1D+AdaIN and
STGCN+AdaIN, using their key components along with
the Motion Puzzle [26]’s loss function for arbitrary style
transfer. The Conv1D+AdaIN model corresponds to Aber-
man et al. [1]’s method, which utilizes 1D convolution and
AdaIN. On the other hand, the STGCN+AdaIN model rep-
resents Park et al. [36]’s method, which incorporates spatio-
temporal graph convolution and AdaIN.

Qualitative Evaluation. As shown in Fig. 5, our MCM-
LDM demonstrates the ability to generate style transfer re-
sults with attractive style features while avoiding the foot
sliding issue. Specifically, in the first row of Fig. 5, our
stylized motion exhibits more pronounced hand movements
that align with the style motion compared to other methods.
Notably, Motion Puzzle [26] and 1DConv+AdaIN [1] in the
first row suffer from significant foot sliding, as indicated by
the purple line, while STGCN+AdaIN fails to transfer the
style. In contrast, our results maintain appropriate foot con-
tact, as we successfully incorporate the motion trajectory
as an additional diffusion condition in our network. This
approach ensures the preservation of the motion trajectory
without directly copying it from the content motion, leading
to improved foot contact alignment.

Quantitative Evaluation. We also provide multidimen-
sional quantitative evaluations, primarily focusing on the
model’s generated quality, content preservation, style per-
formance, trajectory preservation, and foot sliding degree.
The results of the quantitative evaluations are presented in
Table 1. From the results, our MCM-LDM significantly
outperforms other methods in the FMD metric, indicating
better quality in stylized motions. This can be attributed to
the powerful generation capability of the diffusion model
and the effectiveness of our multi-condition guidance. Ad-
ditionally, we achieve a remarkable balance between con-
tent preservation and style performance. Our MCM-LDM
has the best SRA and the second-best CRA. Though our
CRA is slightly lower than STGCN+AdaIN model, our
method focuses on harmonizing style with content, which
may result in minor content modifications for a more in-
tegrated style. Notably, STGCN+AdaIN, despite its higher
CRA, has the lowest SRA of 17.66, as it tends to reconstruct
the original content motion. Our excellent performance in
style performance and content preservation is attributed to
our successful application of style and content conditional
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Ours 1DConv+AdaIN [1] STGCN+AdaIN [36] Motion Puzzle [26]ContentStyle

Figure 5. Qualitative evaluation. We provide two groups of style transfer cases. The purple line denotes the foot contact with the floor.
We zoom in on the details of foot contact as well as stylistic features for a more straightforward evaluation. The results show that our
MCM-LDM performs better style performance while avoiding the foot sliding issue.

Methods FMD↓ CRA↑ (%) SRA↑ (%) TSI↓
w/o StyleRemover 34.78 93.43 16.88 0.10
w/o ft 29.48 30.18 65.11 0.93
w/o MotionCLIP 138.55 28.18 18.00 0.67

Ours 27.69 35.75 58.00 0.40

Table 2. Ablation study. The results validate the importance of
StyleRemover in Econ, pre-trained MotionCLIP in Esty , and tra-
jectory condition ft to our approach.

Methods FMD↓ CRA↑ (%) SRA↑ (%) TSI↓

w Con. 32.56 33.62 58.66 0.46
w AdaIN 33.43 30.25 59.55 0.51
w Pri. fs 30.09 31.75 58.44 0.46
w Pri. ft 32.81 32.93 55.44 0.49

Ours 27.69 35.75 58.00 0.40

Table 3. Experiments of four guidance strategies in Eθ . ‘w
Con.’ and ‘w AdaIN’ represent the fusion mechanisms of concate-
nation and AdaIN for incorporating the secondary conditions into
Eθ . ‘w Pri. fs’ and ‘w Pri. ft’ respectively represent treating style
or trajectory as a primary condition.

adaptive guidance for diffusion-based motion generation.
We further evaluate the trajectory preservation and

foot sliding using TSI and FSF. Disregarding the
STGCN+AdaIN [36] model, which tends to reconstruct the
original content motion, our MCM-LDM achieves the low-
est FSF. As for the TSI metric, our TSI scores are lower
compared to other methods. This is because other meth-
ods directly replicate the trajectory from the original con-
tent motion to preserve the trajectory, naturally resulting in
high trajectory similarity but inevitably leading to foot slid-
ing issues. In contrast, our MCM-LDM treats trajectories
as an additional condition, allowing the network to learn
trajectory preservation. This achieves a trade-off between
trajectory accuracy and avoiding foot sliding.

4.4. Ablation Study

In this section, we conduct several ablation experiments on
trajectory condition (Table 2), components in the Multi-

Ours
Ours w/o 

StyleRemover
ContentStyle

Ours w/o 
Trajectory

Figure 6. Visualization of ablation study. We present the visual-
ization results of two ablation experiments: without our StyleRe-
move and without the trajectory condition. The results showcase
their importance.

condition Extraction (Table 2), and Guidance Strategy in
Eθ (Table 3).

Importance of the Trajectory Condition. To assess the
impact of the trajectory condition, we design a denoising
network Eθ(zn, fc, fs) that excludes the trajectory condi-
tion (Table 2: ‘w/o ft’), relying solely on content fc and
style fs for guidance. The results show an improvement
in the SRA score from 58.00 to 65.11, indicating enhanced
style performance. However, the TSI score experienced a
significant decrease from 0.40 to 0.93. Fig. 6 visualizes
this decline, revealing the network’s failure to preserve the
original motion trajectories adequately. Such a deficiency is
unacceptable for motion-style transfer. Therefore, by incor-
porating trajectories as an additional condition to Eθ, our
MCM-LDM effectively retains the motion trajectories.

Importance of the Components in Multi-condition
Extraction. We conduct separate experiments to evalu-
ate the importance of the StyleRemover in Econ and the
pre-trained MotionCLIP in Esty . Firstly, we remove the
StyleRemover module from Econ (Table 2: ‘w/o StyleRe-
mover’). The results show that the SRA score decreases

Methods Realism Content Preservation Style Performance

1DConv+AdaIN [1] 3.91±0.56 3.91±0.65 3.86±0.63

STGCN+AdaIN [36] 3.65±0.78 3.89±0.76 3.01±0.74

Motion Puzzle [26] 3.79±0.79 3.90±0.70 3.85±0.69

Ours 4.48±0.43 4.45±0.45 4.43±0.51

Table 4. User study. The results show that our MCM-LDM out-
performs other methods in terms of realism, content preservation,
and style performance.
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from 58.00 to 16.88, while the CRA score increases from
35.75 to 93.43. Fig. 6 further visualizes the style trans-
fer result of this experiment. We find that our MCM-LDM
without StyleRemover fails to transfer the style to the con-
tent, resulting in a direct reconstruction of the content mo-
tion. These results demonstrate that our StyleRemover ef-
fectively prevents the model from excessively relying on
content, thereby achieving successful motion style trans-
fer. Secondly, we experiment with the exclusion of the pre-
trained MotionCLIP and the use of a transformer-based en-
coder to extract style features (Table 2: ‘w/o MotionCLIP’).
The results demonstrate a significant decrease in all metrics,
indicating that the encoder involved in the training process
is ineffective in extracting style features, leading to unsuc-
cessful style transfer. This underscores the importance of
our pre-trained MotionCLIP to capture style characteristics.

Efficiency of the Condition Mechanisms in Multi-
condition Denoiser. We further conduct experiments with
multi-condition settings in our Multi-condition Denoiser
Eθ. First, we conduct experiments to explore using vari-
ous conditions as the primary condition. When style fs is
considered the primary condition (Table 3: ‘w Pri. fs’),
the SRA metric slightly increases, while other metrics ex-
hibit a significant decrease. Conversely, when trajectory ft
is treated as the primary condition (Table 3: ‘w Pri. ft’), all
metrics decrease noticeably. This decrease can be attributed
to the lack of trajectory information, which negatively im-
pacts the performance of style transfer. These findings high-
light the crucial role of treating content as the primary con-
dition to guide the style transfer process effectively. Sec-
ondly, we conduct experiments involving using two other
fusion mechanisms where the secondary conditions are in-
corporated into our Multi-condition Denoiser Eθ. These
fusion mechanisms include concatenation and AdaIN (Ta-
ble 3: ‘w Con.’ and ‘w AdaIN’). The results indicate that
both fusion mechanisms lead to a slight increase in the SRA
metric but a decrease in other metrics. To achieve a more
balanced style transfer effect, we utilize the AdaLN-Zero as
our fusion mechanism.

4.5. User Study

In this section, we present a user study evaluating stylized
motions of our MCM-LDM in comparison with other meth-
ods, including Conv1D+AdaIN [1], STGCN+AdaIN [36],
and Motion Puzzle [26]. Participants are asked to rate re-
sults generated by these methods on a scale of 1 (signif-
icantly inaccurate) to 5 (significantly accurate), based on
three metrics: (1) Realism: the naturalness of the stylized
motion, (2) Content Preservation: the level of the stylized
motion to preserve the content information from content
motion, and (3) Style Performance: the level of the stylized
motion to perform the style features from style motion.

As shown in Table 4, our method achieves the highest

score in three metrics. Moreover, we conduct an ANOVA
test to statistically examine the differences. The overall
ANOVA establishes considerable distinctions among Real-
ism (F=11.749, p<0.01), Content Preservation (F=6.864,
p<0.01), and Style Performance (F=30.619, p<0.01). The
post-hoc analysis suggests that our method is significantly
higher than other methods across three metrics (all p<0.01).
These results further validate the effectiveness of our MCM-
LDM in style transfer, making it more favored by users.

4.6. Limitation and Discussion
Although MCM-LDM could transfer arbitrary motion style
with multi-conditions, it still has some limitations. First,
our MCM-LDM could not generate animations with arbi-
trary trajectories, which is the same as the content, and the
user study may have been biased due to the statistic com-
putation. Second, MCM-LDM tends to be less effective
with motions extending beyond the training dataset’s tem-
poral scope. Another limitation is the model’s capability
to handle content actions that involve intricate interactions
with the environment. Possible directions include explor-
ing advanced trajectory modification techniques, expanding
the training datasets to encompass longer motion sequences,
and enhancing the model’s ability to understand and repli-
cate environmental interactions.

5. Conclusion and Future Work
We introduced a pioneering approach to AMST through
our MCM-LDM. Our model marks a significant advance-
ment in the field of computer animation, particularly in its
nuanced handling of motion trajectory, content, and style.
We proposed a Multi-condition Denoiser to disentangle and
harmoniously integrate the tripartite components of mo-
tion—trajectory, content, and style. This ensures a seam-
less integration of various conditions, thereby maintaining
the authenticity of the animation and enhancing its overall
appeal. In the future, we aim to extend our model’s capabil-
ities to handle more nuanced expressions and subtle human
gestures, thereby enhancing its utility in creating emotion-
ally resonant animations. The potential integration of facial
and finger movements within our framework could lead to
more comprehensive and lifelike character animations.
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