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Figure 1. Collaborative semantic occupancy prediction leverages the power of collaboration in multi-agent systems for 3D occupancy
prediction and semantic segmentation. This approach enables a deeper understanding of the 3D road environment by sharing latent features
among connected automated vehicles (CAVs), surpassing the ground truth captured by a multi-camera system in the ego vehicle.

Abstract

Collaborative perception in automated vehicles lever-
ages the exchange of information between agents, aiming to
elevate perception results. Previous camera-based collabo-
rative 3D perception methods typically employ 3D bound-
ing boxes or bird’s eye views as representations of the en-
vironment. However, these approaches fall short in offering
a comprehensive 3D environmental prediction. To bridge
this gap, we introduce the first method for collaborative 3D
semantic occupancy prediction. Particularly, it improves
local 3D semantic occupancy predictions by hybrid fusion
of (i) semantic and occupancy task features, and (ii) com-
pressed orthogonal attention features shared between vehi-
cles. Additionally, due to the lack of a collaborative percep-
tion dataset designed for semantic occupancy prediction,
we augment a current collaborative perception dataset to
include 3D collaborative semantic occupancy labels for a
more robust evaluation. The experimental findings highlight
that: (i) our collaborative semantic occupancy predictions
excel above the results from single vehicles by over 30%,
and (ii) models anchored on semantic occupancy outpace
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state-of-the-art collaborative 3D detection techniques in
subsequent perception applications, showcasing enhanced
accuracy and enriched semantic-awareness in road envi-
ronments.

1. Introduction

Collaborative perception, also known as cooperative per-
ception, significantly improves the accuracy and complete-
ness of each connected and automated vehicle’s (CAV)
sensing capabilities by integrating multiple viewpoints, sur-
passing the limitations of single-vehicle systems [11, 12,
15, 16, 25, 26, 35, 42, 45, 50]. This approach enables
CAVs to achieve comparable or superior perception abili-
ties, even with cost-effective sensors. Notably, recent re-
search in [12] suggests that camera-based systems may out-
perform LiDAR in 3D perception through collaboration
in Vehicle-to-Everything (V2X) communication networks.
Previous studies in camera-based collaborative perception
typically processed inputs from various CAVs into simpli-
fied formats such as 3D bounding boxes or Bird’s Eye View
(BEV) segmentation. While efficient, these methods tend
to miss important 3D semantic details, which are indispens-
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able for holistic scene understanding and reliable execution
of downstream applications.

Lately, camera-based 3D semantic occupancy predic-
tion, also known as semantic scene completion [31], has
become a pioneering method in 3D perception [2, 5, 7, 13,
14, 19, 23, 29, 30, 32, 34, 37–39, 46, 51, 52]. This approach
uses RGB camera data to predict the semantic occupancy
status of voxels in 3D space, involving both the determina-
tion of voxel occupancy and semantic classes of occupied
voxels. This research enhances single CAVs’ environmental
understanding, improving decision-making in downstream
applications for automated vehicles. However, this task
based on RGB imagery through collaborative methods has
not been explored.

To bridge this gap, we delve into the feasibility of 3D
semantic occupancy prediction in the context of collabo-
rative perception, as shown in Fig. 1, and introduce the
Collaborative Hybrid Feature Fusion (CoHFF) Framework.
Our approach involves separate pre-training for the dual
subtasks of predicting both semantics and occupancy.
We then extract the high-dimensional features from these
pretrained models for dual fusion processes: inter-CAV
semantic information fusion via V2X Feature Fusion, and
intra-CAV fusion of semantic information with occupancy
status through task feature fusion. This fusion yields a
comprehensive decoding of each voxel’s occupancy and
semantic details in 3D space.

In order to evaluate the performance of our framework,
we extend the existing collaborative perception dataset
OPV2V [41]. By reproducing OPV2V scenarios in the
CARLA simulator, we collect comprehensive 3D voxel
groundtruth with semantic labels across 12 categories. Our
experiments show, that for the task of semantic occupancy
prediction, a collaborative approach significantly outper-
forms single-vehicle performance in most categories, as in-
tuitively expected. We also validate the effectiveness of
task feature fusion: our findings show that the task fu-
sion, by incorporating features as prior knowledge of each
other, enhances subtask performance beyond what sepa-
rately trained models achieved. Additionally, training tasks
independently result in more task-specific features and thus
can be easier to compress. Our experiments prove that we
achieve more complex 3D perception with a communica-
tion volume comparable to existing methods.
Contributions To summarize, our main contributions are
threefold:
• We introduce the first camera-based framework for col-

laborative semantic occupancy prediction, enabling more
precise and comprehensive 3D semantic occupancy seg-
mentation than single-vehicle systems through feature
sharing in V2X communication networks. The perfor-
mance can be enhanced by over 30% via collaboration.

• We propose the hybrid feature fusion approach, which
not only facilitates efficient collaboration among CAVs,
but also markedly enhances the performance over models
pre-trained solely for occupancy prediction or semantic
voxel segmentation.

• We enrich the collaborative perception dataset
OPV2V [41] with voxel ground truth containing
12 categories semantic, bolstering the framework evalu-
ation. Our method, CoHFF, achieves comparable results
to current leading methods in subsequent 3D perception
applications, and additionally offers more semantic
details in road environment.

2. Related work
2.1. Collaborative perception

In intelligent transportation systems, collaborative percep-
tion empowers CAVs to attain a more accurate and holistic
understanding of the road environment via V2X communi-
cation and data fusion. Typically, data fusion in collabora-
tive perception falls into three categories: early, middle, and
late fusion. Given the bandwidth limitations of V2X net-
works, the prevalent approach is middle fusion, where deep
latent space features are exchanged [11, 12, 15, 16, 25, 26,
35, 42, 45, 50]. The advantage of middle fusion lies in its
ability to convey critical information beyond mere object-
level details, bypassing the need to share raw data. The
development of datasets specifically designed for collabo-
rative perception [8, 11, 17, 27, 44, 48, 49, 55] has led to
remarkable progress in learning-based approaches in recent
years. However, these datasets fall short in offering ground
truth data for 3D semantic occupancy, which motivates us
to extend the dataset in this work, aiming to access the per-
formance of collaborative semantic occupancy prediction.
Collaborative Camera 3D Perception. Compared to
LiDAR-driven collaborative perception [44], camera-based
methods are often more challenging, due to the absence of
explicit depth information in RGB data. However, given the
lower price and smaller weight of cameras, they inherently
have a higher potential for large-scale deployment. Previ-
ous work in [40] and [12] has validated that, with collabo-
ration, camera-based 3D perception can match or even out-
perform LiDAR performance. Given that current research
on camera-based collaborative perception either focuses on
3D bounding box detection and BEV semantic segmenta-
tion, there remains a research gap in semantic occupancy
prediction. Hence, in this study, our aim is to pioneer and
explore the topic of collaborative occupancy segmentation.

2.2. Camera-based semantic occupancy prediction

Occupancy segmentation, which segments a voxel-based
3D environment model [28, 53], has achieved notable suc-
cess in the realm of autonomous driving. Original occu-
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Figure 2. The CoHFF Framework consists of four key modules: (1) Occupancy Prediction Task Net, for occupancy feature extraction;
(2) Semantic Segmentation Task Net, creating semantic plane-based embeddings; (3) V2X Feature Fusion, merging CAV features via
deformable self-attention; and (4) Task Feature Fusion, uniting all task features to enhance semantic occupancy prediction.

pancy segmentation methods lean heavily on LiDAR, since
its point cloud inherits 3D information, aligning naturally
with voxel-based environmental models. The recent work
proposed in [15] explored the collaborative semantic occu-
pancy prediction based on LiDAR. However, with cameras
offering richer environmental details, camera-driven 3D oc-
cupancy segmentation is gradually emerging as a novel do-
main. Recent work in the past year, e.g. [2, 5, 7, 9, 13, 14,
19, 20, 23, 29, 30, 32, 34, 37–39, 51, 52] have also delved
into methods for achieving semantic occupancy prediction
based on RGB data, yielding promising performance, but
only for single vehicle perception.

Furthermore, the datasets for the vision-based
3D Semantic Occupancy Prediction, e.g. Semantic-
KITTI [1], SSC-Benchmark [18], OpenOccupancy [36],
and Occ3D [33] have been developed specifically for
camera-based 3D occupancy segmentation tasks, thus
offering resources for continued research. However,
those datasets do not support collaborative perception in
multi-agent scenarios. Generally, agents sharing different
perspective information through collaboration can further
enhance voxel-based occupancy segmentation. Due to
semantic occupancy prediction offering a more nuanced
3D environmental understanding than collaborative 3D
perception methods focused on bounding boxes or BEV
perception, it likely requires the exchange of more com-
plex, higher-dimensional features. Determining the most
effective information for communication to facilitate the
transmission of denser, more informative data stands as a
significant challenge.

2.3. Plane-based features

TPVFormer [13] decomposes features for occupancy seg-
mentation into a 3D space. [6] introduced a K-Planes de-
composition technique designed to reconstruct static 3D
scenes and dynamic 4D videos. Building on the founda-
tions laid by [6], and drawing inspiration from [13], we

consider to project semantically relevant information onto
orthogonal planes, facilitating information sharing through
more streamlined communication. By sharing these plane-
based features, we establish the foundational structure of
our approach.

3. Methodology
Our CoHFF framework consists of four key modules,
namely occupancy prediction Task Net, Semantic Segmen-
tation Task Net, V2X Feature Fusion and Task Feature Fu-
sion, as shown in Fig. 2. It achieves camera-based col-
laborative semantic occupancy prediction by sharing plane-
based semantic features via V2X communication.

3.1. Problem formulation

Given a network of CAVs, defined by a global communica-
tion network represented as an undirect graph G = (N , E).
For each CAV i, the set of connected CAVs, is denoted by
Ni = {j|(i, j) ∈ E}, where E is the existing communica-
tion links between two CAVs, and j denotes the index of the
CAVs connecting to i. We consider the input data in RGB
format, and denote Ii as the image data for a CAV i. The
environment model is represented as a 3D voxel grid in one
hot embedding V ∈ RX×Y×Z×C , where X , Y and Z are
voxel grid dimensions. For each CAV i, Vi represents the
predicted occupancy of voxels, while V

(0)
i represents the

ground truth of these voxels. The objective of collabora-
tive semantic occupancy prediction, as aligned with the op-
timization problem in [11, 12], is defined as follows:

max
θ,M

∑
i

g(Φθ(Ii, {Mi→j |j ∈ Ni}),V(0)
i ),

s.t.
∑
i

|{Mi→j |j ∈ Ni}| ≤ B, (1)

where g(·) is the perception metric for optimization. Φ rep-
resents the model parametrized by θ, and Mi→j denotes
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the message transmitted from CAV i to CAV j. The size of
these messages is constrained by a communication budget
upper bound B ∈ R+.

Considering the communication upper bound, instead
of directly sending high-dimensional voxel-sized features
FV , we opt to transmit features FP from orthogonal
planes. This approach reduces the messages fromMFV ∈
RX×Y×Z×F to MPxz ∈ RX×Z×F and MPyz ∈
RY×Z×F , where Pxz and Pyz denote the features pro-
jected on the xz- and yz-planes respectively. F represents
the length of a single feature vector. For instance, in a
voxel space of 100 × 100 × 8 with a feature dimension of
128, transmitting orthogonal plane features can reduce com-
munication volume by 50×, from 39.05 MB to 0.78 MB,
which is comparable to existing collaborative perception
methods, yet it offers more extensive and detailed seman-
tic 3D scene information. Based on these considerations,
we introduce our framework in the following section.

3.2. Framework design

We divide our method into two distinct pre-communication
tasks: 3D occupancy prediction and semantic voxel seg-
mentation. We believe that occupancy features enhance the
semantic segmentation performance by providing geometry
insight of distinct object classes. Meanwhile, semantic in-
formation can suggest changes of a voxel occupancy. Based
on this interplay, our approach initially focuses on indepen-
dent pre-training for each task. Then we fuse the features
from both tasks to learn a combined semantic occupancy
predictor that yields better performance for each individual
task. This assumption is experimentally validated by the ab-
lation study in Tab. 3. Consequently, our framework com-
prises two specialized pre-trained networks: an occupancy
prediction task network and a semantic segmentation task
network, as shown in Fig. 2.
Occupancy prediction task network. The occupancy pre-
diction necessitates the conversion of 2D image data into
a 3D occupancy grid. We first use an off-the-shelf depth
prediction network Φdepth(·) to determine the depth of
each pixel. Following the work in [11, 12], we employ
CaDNN [3] for depth estimation. This depth data is then
embedded into voxel space through a 3D Emedder, re-
sulting in a preliminary voxel representation. This voxel-
based road environment is further completed by a 3D occu-
pancy encoder Φocc(·). Finally, the occupancy task features
Focc ∈ RX×Y×Z×F is extracted for task fusion.
Semantic segmentation task network. In the segmen-
tation network, we process RGB data to generate fea-
ture maps Fseg using Φimg(·), which are then subjected
to deformable cross-attention [54] to facilitate mapping
onto a 3D semantic segmentation space. Drawing inspi-
ration from K-Planes [6] and TPVformer [13], we project
these features onto three spatially orthogonal planes P =

{Pxy,Pxz,Pyz}. Among these dense and informative 3D
feature representations, two are transmitted via V2X mes-
sages, i.e. M = {MPxz

,MPyz}. The reason behind not
sending the Pxy plane, is that the we use the Pxy of the ego
vehicle for reconstructing the 3D features, which facilitates
the alignment of the feature space with the detection range
of interest of ego vehicle.

Both networks generate high-dimensional features that
are fed into a hybrid feature fusion network, thereby form-
ing the core of CoHFF for semantic occupancy prediction.

3.3. Hybrid feature fusion

V2X Feature Fusion. Given one CAV j communicating
to the ego vehicle i, the features of the CAV condensed by
the segmentation network can contain overlapping informa-
tion, particularly regarding semantics in proximity to the
ego vehicle, which the ego vehicle itself can accurately pre-
dict. We implement a masking technique to selectively fil-
ter these plane-based features of the CAV, before they are
communicated to the ego vehicle. By adjusting a sparsi-
fication rate hyperparameter, we reduce the volume of the
CAV´s plane-based features shared during collaboration, in
line with the communication budget. The compressed mes-
sage M̄ = {M̄Pxz

,M̄Pyz} can be acquired as follows:

P̄xz
j , P̄yz

j ← Pxz
j ⊙Hxz

j ,Pyz
j ⊙Hyz

j , (2)

where Hxz
j and Hyz

j represent the learnable feature masks
for features on x-z and y-z planes.

Additionally, we ensure relative pose awareness between
the ego vehicle and other CAVs. Specifically, we feed the
filtered plane features and the relative pose information into
an MLP network combined with a Sigmoid function, in line
with the methodology proposed in [24].

We now attend these pose-aware filtered plane features
from the CAV (P̄xz

j , P̄yz
j ) over the three plane features of

the ego vehicle (Pxy
i , Pxz

i , Pyz
i ). In particular, we use de-

formable self-attention to update the all five feature planes.
The fusion and updating of these planes are accomplished
by plane self-attention (PSA), as follows:

PSA(p) = DA(p,R, {Pi, P̄
xz
j , P̄yz

j |j ∈ Ni}), (3)

where DA(·) is deformable self-attention, p ∈ RF is a
query andR is a set of reference points, as described in [54].
Pi denotes all the three planes in ego vehicle.

The updated 2D plane features are used in the next step
to reconstruct 3D semantic segmentation features Fseg . The
semantic segmentation feature fsegx,y,z at a specific Voxel lo-
cation x, y, z can be reconstructed as follows:

fsegx,y,z = pxy
i,z + p̄xz

j,y + p̄yz
j,x ∈ RF ,∀j ∈ Ni, (4)

where p̄xz
j,y and p̄yz

j,x is plane features from CAV j, and pxy
i,z

is the plane (BEV) features from ego vehicle. This idea of
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Algorithm 1 : CoHFF framework for collaborative
semantic occupancy prediction.

1: for each CAV i in parallel do
2: Focc

i ← Φocc(Proj(Φdepth(Ii), Ii)))
3: Fimg

i ← Φimg(Ii)
4: update plane-based features Pxz

i ,Pyz
i ,Pxy

i using
deformable cross- and self-attention [54]

5: P̄xz
i , P̄yz

i ← Pxz
i ⊙Hxz

i ,Pyz
i ⊙Hyz

i

6: M̄i ← {P̄xz
i , P̄yz

i }
7: CAV i broadcasts messages M̄i

8: for j ∈ Ni do
9: CAV i receives messages M̄j

10: end for
11: update {Pi, P̄

xz
j , P̄yz

j |j ∈ Ni} using self-attention
based on (3)

12: reconstruct F seg
j based on (4) ▷ VFF

13: Vi ← Φtff (Focc
i ,Fseg

i , {Fseg
j |j ∈ Ni}) ▷ TFF

14: end for

sum of projected features for 3D reconstruction is originally
proposed in [13], with our work adapting it to multi-agent
scenarios.
Task Feature Fusion. After retrieving global semantic in-
formation as Fseg , the final step aims at fusion with features
Focc from the occupancy prediction task. To accomplish
this, Fseg and Focc are concatenated and passed to a 3D
depth-wise convolution network [47], in order to produce
the final semantic voxel map. This task feature fusion net-
work Φtff (·) is implemented as follows:

Vi = Φtff (Focc
i ,Fseg

i , {Fseg
j |j ∈ Ni}) ∈ RX×Y×Z×C .

(5)
The CoHFF pseudocode is given in Algorithm 1.

3.4. Losses

We train the completion network training using focal loss
proposed in [21], applying it to a dataset with binary la-
bels {0, 1}. For both the segmentation network and the hy-
brid feature fusion network, we employ a weighted cross-
entropy loss to train for semantic labels. Notably, in this
context, the label for the empty is also designated as 0.

4. Dataset
To effectively evaluate collaborative semantic occupancy
prediction, a dataset that supports collaborative percep-
tion and includes 3D semantic occupancy labels is crucial.
Thus, we enhance the OPV2V dataset [41] by integrating
12 different 3D semantic occupancy labels, as shown in
Tab. 4 This enhancement is achieved using the high-fidelity
CARLA simulator [4] and the OpenCDA autonomous driv-
ing simulation framework [43]. We position four semantic
LiDARs at the original camera sites to precisely capture the

Table 1. Comparison 3D object detection with AP2 of vehicles.

Approach # Agents AP@0.5 AP@0.7

DiscoNet (NeurIPS 21) Up to 7 36.00 12.50
V2X-ViT (ECCV 22) Up to 7 39.82 16.43
Where2Comm (NeurIPS 22) Up to 7 47.30 19.30
CoCa3D (CVPR 23) 71 69.10 49.50
CoHFF Up to 7 48.51 36.39

CoCa3D-2 (CVPR 23) 2 25.90 12.60
CoHFF 2 36.63 27.95

1 CoCa3D is trained on OPV2V+, where extended agents provide more input
information for better results.

2 We calculate the 3D IoU by comparing the predicted voxels with the ground
truth voxels for each object, rather than using 3D bounding boxes due to the
potential unnecessary occupancy in 3D bounding boxes.

Table 2. Comparison of BEV semantic segmentation with IoU in the
class of Vehicle, Road and Others.

Approach # Agents Vehicle Road Others1

CoBEVT (CoRL 22) 2 46.13 52.41 -
CoHFF 2 47.40 63.36 40.27

CoBEVT (CoRL 22) Up to 7 60.40 63.00 -
CoHFF Up to 7 64.44 57.28 45.89

1 It refers to additional object classes identified through semantic segmentation pre-
dictions projected onto the BEV plane. These categories include buildings, fences,
terrain, poles, vegetation, walls, guard rails, traffic signs, and bridges. The IoU for
these objects is calculated and reported as IoU.

semantic occupancy ground truth within the cameras’ FoV.
In addition, we associate ground truth data from all CAVs
to create a detailed collaborative ground truth for collabora-
tive supervision. Furthermore, to comprehensively capture
occluded semantic occupancies for all CAVs, we include a
simulation replay in our data collection process, where each
CAV is equipped with 18 semantic LiDARs. This strategic
configuration is crucial for effectively evaluating comple-
tion tasks, as it guarantees extensive data collection, en-
compassing areas not visible in direct associated FoV. In
alignment with the original OPV2V protocol, we replay the
simulation and generate a multi-tier ground truth.

5. Experimental evaluation

5.1. Experiment setup

Baselines. Considering the unexplored domain of collabo-
rative occupancy segmentation, we extend the findings from
CoHFF to address downstream applications, including BEV
perception and 3D detection. In our analysis, we eval-
uate these outcomes with those from state-of-the-art col-
laborative perception models that employ multi-view cam-
eras: CoBEVT [40] for BEV perception and CoCa3D [12]
for 3D detection. Furthermore, we examine contemporary
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Table 3. CoHFF achieves robust IoU and mIoU performance,
when the communication volume (CV) is reduced by setting vari-
ous sparsification rates (Spar. Rate).

Spar. Rate 0.00 0.50 0.80 0.95 0.99

CV (MB) (↓) 16.53 8.27 3.31 0.83 0.17

IoU (↑) 50.46 49.56 49.53 48.52 48.02
mIoU (↑) 34.16 32.97 32.70 30.13 29.48

methods that integrate alternative modalities, particularly
those blending LiDAR with camera inputs or relying solely
on LiDAR, including DiscoNet [16], V2X-ViT [42] and
Where2Comm [11].
Implementation details. Following the previous work for
collaborative perception evaluation on the OPV2V dataset
used in [11], we utilize a 40×40×3.2 meter detection area
with a grid size of 100 x 100 x 8, resulting in a voxel size of
0.4m3. We allow CAVs to transmit and share features with
a length of 128 for V2X Feature Fusion. Our experiment
incorporates the analysis of 12 semantic labels plus an ad-
ditional empty label. We employ CaDNN [3] with 50 depth
categories and a single out-of-range category for depth es-
timation, as well as ResNet101 [10] and FPN [22] as RGB
the image backbone. For Voxel completion, we utilize a 3D
depth-wise CNN [47] and use deformable attention [54] in
hybrid feature fusion.
Evaluation metrics. Following the evaluation of semantic
occupancy prediction in previous work, such as [2, 13, 19],
we primarily utilize the metric Intersection over Union
(IoU) for evaluation. This involves calculating IoU for each
individual class and the mean IoU (mIoU) across all classes.
Additionally, for evaluations in subsequent applications, we
compute the Average Precision (AP) at IoU threshold of 0.5
and 0.7, and BEV 2D IoU to compare with other baselines.
Specifically, the AP value is calculated only for voxels la-
beled as vehicles, and the IoU is determined for each pair
of predicted and actual vehicles. For BEV IoU, voxels are
projected onto the BEV plane and categorized into the cor-
responding semantic classes.

5.2. Comparison

Collaborative 3D object detection. First, we compare
the performance of CoHFF in 3D detection applications.
As shown in Tab. 1, with up to 7 agents’ collaborative
perception, CoHFF achieves comparable performance to
Where2comm at AP@0.5 and obtains an 88.5% improve-
ment at AP@0.7. We believe this is primarily due to se-
mantic occupancy prediction, which makes the perception
results closer to the actual observed shapes, rather than in-
ferring a non-existent bounding box in the scenarios. We
also observe that CoCa3D, on the OPV2V+ dataset [12],

achieves significantly better performance due to receiving
more information from CAVs. To compare directly with
CoCa3D, we also conduct scenarios where only two agents
communicated at a time. We can see that CoHFF has made
significant improvements at both AP@0.5 and AP@0.7.
Collaborative BEV segementation. Tab. 2 presents a com-
parison between CoHFF and CoBEVT in BEV semantic
segmentation. Note that errors in height prediction from 3D
voxel occupancy mapping to the BEV plane may be over-
looked during the projection process. Despite this, CoHFF
achieves even better performance in predicting vehicles and
roads in BEV compared to CoBEVT. Additionally, CoHFF
is capable of detecting a wider range of other semantic cat-
egories in 3D occupancy.

5.3. Ablation study

To validate our hypothesis that independently obtained se-
mantic and occupancy feature information can simultane-
ously strengthen the original semantic and occupancy tasks,
we have decomposed the semantic occupancy prediction
into two separate tasks. Tab. 4 shows an ablation study by
altering the components used. Meanwhile, we also verify
the enhancement of collaborative perception over single ve-
hicle perception in terms of semantic occupancy.
CoHFF for occupancy prediction. When focusing solely
on binary occupancy predictions (as shown at Occ. Pred. in
Tab. 4), we use voxels processed from raw LiDAR point
clouds as a reference, and analyze the IoU in different
semantic classes based on semantic occupancy in ground
truth. It is observed that by utilizing an occupancy pre-
diction task network to process depth predictions, the over-
all prediction accuracy is enhanced. Additionally, signifi-
cant improvements in predicting large objects in occupancy
results are noted by integrating features from a semantic
segmentation task network, leading to an increased over-
all IoU. However, a concurrent decline in the mIoU is ob-
served alongside the increase in IoU. This phenomenon is
attributed to the influence of semantic features, which seem
to steer the model towards prioritizing easily detectable cat-
egories, potentially at the expense of smaller or less distinct
categories. Finally, through collaboration, the overall IoU
and mIoU are further strengthened on the basis of task fea-
ture fusion.
CoHFF for semantic segmentation. In our semantic seg-
mentation task (as shown at Sem. Seg. in Tab. 4), after inte-
grating features from occupancy prediction, we observe an
approximate 2% increase in IoU, but a more substantial over
41% enhancement in mIoU. We attribute this improvement
to the features derived from occupancy prediction, which
seem to aid the easier detection of smaller-scale objects,
thereby refining their semantic predictions. Consistent with
the occupancy prediction task, the final collaboration fur-
ther elevates the results of semantic segmentation.
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Table 4. Component ablation study on occupancy prediction (Occ. Pred.), semantic segmentation (Sem. Seg.), and
semantic occupancy prediction (Sem. Occ. Pred.) tasks. The components include: Occupancy Prediction Task Net
(OPTN), Semantic Segmentation Task Net (SSTN), Task Feature Fusion (TFF) and V2X Feature Fusion (VFF). The
gray color in table cells indicates that the corresponding component is not applicable for the task.

Task type Occ. Pred. Sem. Seg. Sem. Occ. Pred.

OPTN RL 1 ✓ ✓ ✓ ✓ ✓
SSTN ✓ ✓ ✓ ✓ ✓

TFF ✓ ✓ ✓ ✓ ✓ ✓
VFF (Collaboration) ✓ ✓ ✓

IoU (↑) 49.35 67.22 76.62 86.37 41.30 42.11 51.38 38.52 50.46
mIoU (↑) 57.12 64.01 59.16 69.15 21.59 30.51 35.91 24.85 34.16

Building (5.40%) 67.50 68.36 41.29 48.41 9.65 27.25 15.06 21.04 25.72
Fence (0.85%) 59.40 62.05 51.60 65.01 11.67 30.29 30.91 20.50 27.83

Terrain (4.80%) 43.60 49.78 68.21 79.81 51.18 51.41 61.98 43.93 48.30
Pole (0.39%) 66.30 70.67 62.31 64.12 2.14 36.80 40.74 31.66 42.74

Road (40.53%) 51.47 77.78 91.26 93.00 56.82 60.02 64.09 55.83 61.77
Side walk (35.64%) 45.46 58.46 74.37 90.53 25.22 16.87 36.03 17.31 39.62
Vegetation (1.11%) 43.61 44.43 38.87 41.57 9.12 22.13 20.99 14.49 20.59

Vehicles (9.14%) 41.40 63.53 59.52 76.48 59.58 69.81 75.88 58.55 63.28
Wall (2.01%) 71.51 79.35 49.63 81.20 32.55 39.80 58.49 33.30 58.27

Guard rail (0.04%) 49.67 46.03 41.35 43.33 1.10 1.95 1.80 1.54 1.94
Traffic signs (0.05%) 68.98 69.41 52.35 62.54 0.00 9.77 11.69 0.00 16.33

Bridge (0.04%) 76.53 78.23 79.08 83.84 0.00 0.00 13.30 0.00 3.53
1 RL (Raw LiDAR) is used as a baseline for the evaluation on the task of occupancy prediction.

Collaboration enhances semantic occupancy prediction.
In the final evaluation of our semantic occupancy prediction
(see column Sem. Occ. Pred. in Tab. 4), we further demon-
strate the benefits brought by collaboration. By collabora-
tion, the IoU for each category is improved. Notably, some
previously undetectable, low-prevalence categories such as
traffic signs and bridges can be detected after collaboration.
Ultimately, there is an approximate 31% increase in overall
IoU and around a 37% enhancement in mIoU.

5.4. Robustness with low communication budget

In Tab. 3, we increase the sparsification rate to mask the
plane-based features transmitted by CAVs, achieving effi-
cient V2X information exchange under a low communica-
tion budget. The CoHFF model exhibits stable IoU perfor-
mance across various levels of sparsification. Even when
the communication volume is shrinked by 97×, the accu-
racy only decreases by 5% compared to the original. Mean-
while, the mIoU drops by 15%. Despite this, due to the
model’s training under collaborative supervision, it still out-
performs the non-collaborative approach.

5.5. Visual analysis

Fig. 3 presents visual results from the CoHFF model, which
are compared from multiple perspectives with the ground

truth data, i.e. the ground truth in the ego vehicle’s FoV
(Ego GT) and the ground truth across all CAVs FoVs (Col-
laborative GT). It is evident that, overall, the model accu-
rately predicts voxels in various classes such as roads, side-
walks, traffic signs, walls, and fences. We particularly focus
on vehicle predictions, as they are among the most critical
categories in road environment perception. For clarity, each
vehicle object in the figure is numbered.
Vehicle geometry completion. The CoHFF model predicts
more complete vehicle objects than those in the Ego GT,
such as vehicles 1, 3, 4, and 7. In some instances, the pre-
dictions even surpass the completeness of vehicle shapes
found in Collaborative GT.
Occluded vehicle detection. CoHFF successfully predicts
vehicles outside of the FoV, such as vehicle 6, by utilizing
minimal pixel information. This demonstrates that CoHFF
can effectively detect occluded vehicles.

6. Conclusion

In this work, we explore the task of camera-based seman-
tic occupancy prediction through the lens of collaborative
perception. We introduce the CoHFF framework, which
significantly enhances the perception performance by over
30% through integrating features from different tasks and
various CAVs. Since currently no dataset specifically de-
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Figure 3. Illustration of collaborative semantic occupancy prediction from multiple perspectives, compared to the ground truth in the
ego vehicle’s FoV and the collaborative FoV across CAVs. This visualization emphasizes the advanced object detection capabilities in
collaborative settings, particularly for objects obscured in the ego vehicle’s FoV, such as the vehicle with ID 6.

signed for collaborative semantic occupancy prediction ex-
ists, we also extend the OPV2V dataset with 3D semantic
occupancy labels. Our experiments validate that collabo-
ration yields better semantic occupancy prediction results
than single-vehicle approaches.

Limitation. Although we demonstrate the immense poten-
tial of collaboration for semantic occupancy prediction us-
ing simulation data, its performance with real-world data
remains to be verified. The collection and development of

a specialized dataset, repleted with semantic occupancy la-
bels and derived from multi-agent perception scenarios in
real-world settings, are highly anticipated.
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