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Abstract

This paper focuses on the high computational complexity
in Large Language Models (LLMs), a significant challenge
in both natural language processing (NLP) and multi-modal
tasks. We propose Low-Rank Approximation for Sparse At-
tention (LoRA-Sparse), an innovative approach that strate-
gically reduces this complexity. LoRA-Sparse introduces
low-rank linear projection layers for sparse attention ap-
proximation. It utilizes an order-mimic training methodol-
ogy, which is crucial for efficiently approximating the self-
attention mechanism in LLMs. We empirically show that
sparse attention not only reduces computational demands,
but also enhances model performance in both NLP and
multi-modal tasks. This surprisingly shows that redundant
attention in LLMs might be non-beneficial. We extensively
validate LoRA-Sparse through rigorous empirical studies in
both (NLP) and multi-modal tasks, demonstrating its effec-
tiveness and general applicability. Based on LLaMA and
LLaVA models, our methods can reduce more than half of
the self-attention computation with even better performance
than full-attention baselines.

1. Introduction

Large Language Models (LLMs) such as LLaMA [42],
T5 [38], PaLM [10], and OPT [50] have gained increas-
ing interest in the research community, showcasing no-
table abilities in complex reasoning and multi-round con-
versation. These models, through extensive pre-training
on large datasets [4], represent significant progress in
natural language processing (NLP). Additionally, in the
multi-modality domain, frameworks like BLIP-2 [26],
LLaVA [30, 31], KOSMOS-1 [18], and PaLM-E [10], have
advanced multi-modal comprehension by effectively fine-
tuning foundational models such as LLaMA [42] and Vi-
cuna [7]. However, LLMs face limitations due to the
quadratic complexity of their self-attention mechanisms,
which leads to increased computational and storage de-
mands as input lengths grow. This issue is particularly pro-
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Figure 1. Image accuracy on ScienceQA [32] with the proposed
sparse attention method. The baseline model is LLaVA-1.5 in 7B
model size. We change the selection ratio in the self-attention
computation in the LoRA-Sparse. We show that sparse attention
can not only save computation, but also improve performance,
with a proper selection ratio, e.g., 30%. The performance grad-
ually goes back the the baseline as the sparsity decreases. In other
words, the heavy computation in self-attention layers in LLMs
might be redundant and even harmful, while removing the use-
less attention is beneficial.

nounced in models dealing with long input sequences.
To address these concerns, we seek to integrate sparsity

into LLMs [17, 28, 46], which offers significant advantages.
1) Computational Efficiency: LLMs typically suffer from
high computational costs due to their large parameter count
and the quadratic complexity of self-attention computa-
tions [4, 10, 38, 50]. Sparse mechanisms improve efficiency
by adaptively selecting important tokens for attention com-
putation, especially in longer input sequences [12, 47]. 2)
Enhanced Interpretability: The interpretability of sparse
mechanisms is particularly vital in LLMs given their large
scale, complex training processes, and diverse application
areas [42, 43]. Because sparsity compresses the attention
map to be more concise and focus on more important to-
kens. A more interpretable LLM fosters trust and under-
standing in intricate scenarios. 3) Multi-Modal Correla-
tion Modeling: Sparse attention mechanisms facilitate the
explicit modeling of correlations between different modali-
ties [10, 18, 26, 31]. We visualize the sparse attention pat-
tern in multi-modal tasks, which show the correlation be-
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tween image and text embeddings. This aspect is especially
beneficial for multi-modal LLMs, enabling them to more
effectively integrate and process information from varied
sources.

Despite such benefits, incorporating sparse attention into
LLMs faces two main challenges. The first challenge is to
keep efficiency. Identifying the most relevant pairwise cor-
relations between query (Q) and key (K) elements requires
computing the full attention map. However, this would
negate the desired acceleration effect. The second chal-
lenge arises from the pre-trained weights. There is a large
gap between the sparse attention and the standard full atten-
tion used in the LLMs’ pre-training stage. Existing litera-
ture typically fine-tunes LLMs based on pre-trained models,
such as LLaMA, Llama2, and Vicuna. For most practition-
ers, starting from the pre-training stage is computationally
prohibitive. When directly applying the typical sparse at-
tention during fine-tuning, its performance is unsatisfactory
due to the discrepancy with the standard full attention.

To address these challenges, we propose a simple but ef-
fective method, Low-Rank Approximation for Sparse At-
tention (LoRA-Sparse), which significantly enhances the
efficiency of LLMs while maintaining their performance.
Specifically, LoRA-Sparse approximates the attention map
in a low-rank space, enabling the identification of the most
relevant Q-K pairs without the need for a full attention map.
It effectively reduces computational demands. Specifically,
we project the d-dimensional Q and K into a r-dimensional
low-rank space (r ≪ d) and compute an approximate at-
tention map in the low-rank space. Then, we select the
most relevant Q-K pairs by sorting the attention scores on
the approximate attention map and compute the sparse at-
tention map in the original d-dimensional space using the
selected Q-K pairs only. Compared to computing the full
attention map, this approach significantly reduces computa-
tional complexity while preserving the most important rela-
tionships between the elements.

For fine-tuning the low-rank layers, we introduce a novel
soft-margin loss function that ensures the low-rank attention
map closely mimics the order of attention scores in the full
attention map. This loss function, referred to as the Order
Mimic Loss, enables a more accurate selection of the most
important Q-K pairs hence better performance. Specifically,
Order Mimic Loss employs 1) a soft-margin loss to opti-
mize the ordering boundary, enhancing both the efficiency
and robustness of the model, and 2) an auxiliary loss to fur-
ther ensure that the dynamic range of the low-rank attention
map closely mirrors the original.

We would like to note that LoRA-Sparse effectively ad-
dresses the challenges by allowing easy adaptation of exist-
ing pre-trained LLMs to incorporate sparse attention. Since
our method operates in a low-rank space and does not mod-
ify the model’s structure or weights, it can be readily ap-

plied to pre-trained LLMs without the need for costly from-
scratch training. This makes LoRA-Sparse a practical and
efficient solution for leveraging sparse attention in both
LLMs and multi-modal LLMs.

In experiments, LoRA-Sparse consistently outperforms
standard attention mechanisms by achieving superior per-
formance with significantly reduced computational require-
ments, as shown in Figure 1. This effectiveness stems from
its ability to filter out noise, focusing on the most relevant
key-value pairs. LoRA-Sparse excels in processing long
input texts, offering better convergence and overall perfor-
mance than standard attention models. This aspect is par-
ticularly crucial for LLMs that frequently handle extensive
sequences. Additionally, LoRA-Sparse is demonstrated to
be highly adaptable in multi-modal scenarios, effectively
managing diverse data types without compromising perfor-
mance. Its versatility and efficiency make it a robust solu-
tion for enhancing LLMs, especially in contexts involving
lengthy input sequences and the integration of multiple data
modalities.

2. Related Work
2.1. Efficient Attention in Transformer Models

Efficient attention mechanisms in Transformer models, piv-
otal for addressing computational and memory intensity in-
herent in their design, have seen significant advancements.
Key approaches include fixed patterns [8], combination of
patterns [48], learnable patterns [21], neural memory [3],
low-rank methods [45], and kernels [9]. Models like the
memory compressed transformer and image transformer
leverage localized attention spans for handling longer se-
quences efficiently [44]. The Set Transformer introduces
inducing points to manage set-input problems [45], while
the sparse transformer employs sparse attention patterns to
reduce complexity [8]. The Axial Transformer uniquely
applies attention along single axes of input tensors, sav-
ing computational resources [3]. These innovations collec-
tively enhance the scalability of Transformer models, mak-
ing them more feasible for applications dealing with large
inputs or long sequences [9, 48] However, as a discrete
module, these methods have not been explored in applica-
tion to pre-trained large language models.

2.2. Efficient Large Language Models

LLMs have received great attention recently in both re-
search and industry areas. Many famous LLMs, in-
cluding GPT-3 [4], T5 [38], PaLM [10], and OPT [50],
LLaMA [42], and Llama2 [43], present notable ability in
many NLP tasks, as they are feasible in complex reasoning,
multi-round conversation, and having world-level knowl-
edge. One limitation in LLMs would be its computation
cost, due to the large amounts of parameters. To overcome

13764



Table 1. Evaluation on ScienceQA [32] for image accuracy with sparse inference. The baseline model is a LLaVA-v1.5 [30] 7B model,
where we conduct sparse attention upon it. For the result without low-rank approximation, we use the standard attention to compute
the sparse formulation introduced in Section 3.2. For the result with low-rank approximation, we fine-tune the model with the method
introduced in Section 3.3. No matter with or without low-rank approximation, the sparse method achieves better performance than the full
attention baseline. It shows that sparsity is beneficial for the performance and redundancy indeed exists in the heavy LLMs. With low-rank
approximation, the model achieves the best performance, which is 0.8% better than the baseline, at the selection ratio of 0.5. The accuracy
goes back to the baseline level as sparsity decreases.

Selection ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
LLaVA-v1.5 7B (baseline) 67.6

Low-rank approximation ✗ 67.2 67.2 67.5 67.7 67.8 68.3 68.5 67.6 67.2
✓ 67.4 67.6 67.8 67.8 68.4 68.0 67.8 67.2 67.0

this obstacle, some literature investigates various techniques
to make LLMs efficient, including pruning [46], quantiza-
tion [28], and distillation [17]. In this work, we study the
efficiency in attention patterns of LLMs, which is also a
large proportion of the overall computation, especially for
the long-context inputs.

2.3. Multi-modal Large Language Models

Multi-modal LLMs have also been popular in these days,
based upon the development of LLMs, including BLIP-
2 [26], FROMAGe [22], KOSMOS-1 [18], and PaLM-
E [10]. They are typically trained upon LLMs with image-
text pairs. For example, OpenFlamingo [1], LLaMA-
Adapter [49], LLaVA [30, 31], and Mini-GPT4 [51] are
fine-tuned upon LLaMA [42], Llama2 [43], and Vicuna [7]
models. The training approach involves text-image align-
ment and visual instruction tuning. Similar to LLMs, the
multi-modal LLMs also have the computational limitation.

3. Method

In this section, we first review the formulation of self-
attention in Section 3.1. Then, we introduce the aspects of
our method. We first show that sparse attention can benefit
performance in LLMs in Section 3.2. After that, we present
a low-rank approximation manner in Section 3.3. Finally,
we introduce the loss function in Section 3.4.

3.1. Preliminary

Multi-head Attention in Transformers. Transform-
ers [44] are network architectures that are based on self-
attention mechanisms. Given a set of tokens x, for example,
text tokens in a sequence or image patches in vision trans-
formers [14], the multi-head attention module first projects
them into queries, keys, and values with linear projection
layers.

Q = xWq, K = xWk, V = xWv. (1)

After that, the multi-attention head computes an attention
map Mattn between queries and keys via the softmax func-
tion.

Mattn = softmax(QKT /
√
d), (2)

where d is the dimension of each multi-attention head. We
then multiply the attention map Mattn with the values V
and further project with a linear projection layer Wo.

O = (MattnV )Wo. (3)

There are typically hundreds or thousands of input tokens x.
Thus, the computational cost in the self-attention computa-
tion is usually expensive, especially in the case of LLMs or
when the number of input tokens is large. A straight idea
is that sparse attention would be a proper manner for ef-
ficiency. In the following, we study the effects of sparse
attention on LLMs.

3.2. Empirical Study on the Sparsity in LLMs

In this section, we empirically show that sparse attention
can be beneficial in LLMs. The computations in the self-
attention layers in LLMs are somewhat redundant. In other
words, in the self-attention computations, some keys and
values could be irrelevant to the target, while these irrele-
vant keys and values still have some influence on the re-
sults. We conduct a series of plain experiments that directly
sparsify the attention during inference, without fine-tuning.

During inference, we first compute the attention map
Mattn via the softmax function, find the important entries
(i.e., the largest attention scores), and mask the others to
be zeros. Specifically, given the sparse ratio s%, for each
query, we select the top s% keys in the attention map Mattn.
Then we multiply the resultant sparse attention map with the
values, following Eq. 3.

In Table 1, we evaluate the sparse attention inference on
both LLMs and multi-modal LLMs. For LLMs, we eval-
uate LLaMA [42] 7B models on NLP benchmarks. For
multi-modal LLMs, we evaluate LLaVA [30] 7B models on
ScienceQA [32] benchmark. We find that with a proper se-
lection ratio s, clear improvements with sparse attention can
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Figure 2. Overall architecture of the low-rank approximation sparse attention (LoRA-Sparse) for LLMs. Given an attention map, we
sort its entries (i.e., attention scores of query-key pairs) to obtain an order map, where the numbers reflect the importance orders for each
individual row. For example, a number 1 at (2,3) indicates that the third key is the most important key to the second query. We take the full
attention map computed by queries and keys as the Ground Truth (GT) so that the corresponding order map is referred to as the GT Order
Map. We introduce two low-rank linear projections for queries and keys, and the order map associated with the attention map approximated
with the low-rank queries and keys is referred to as the Predicted Order Map. During training, we supervise the low-rank attention with the
standard attention in an order mimic manner, i.e., we let the Predicted Order Map mimic the GT Order Map. During inference, we use the
low-rank attention for top keys/values selection, sparsifying the attention by avoiding redundant computation. This example shows that we
set the sparse ratio to be 40% so that only the two most important keys out of five keys are selected for each query.

be observed upon baseline results obtained with full atten-
tion. For example, on the LLaVA [30] 7B model, sparse
attention inference introduces 0.9% accuracy increase.

It is noted that these improvements require no additional
fine-tuning and are free-lunch during inference. In other
words, due to the trait of softmax and the redundant com-
putation in self-attention layers, it is beneficial to sparsify
attention and remove irrelevant keys/values.

3.3. Low-rank Approximation

Although the sparse attention implementation in Section 3.2
is effective, it relies on the attention map Mattn. The com-
putation cost of Mattn is still expensive. In this section,
we introduce a low-rank manner to approximate the atten-
tion map. It costs much less than the standard attention map
computation, but is still feasible for sparse approximation.

As shown in Figure 2, we introduce two additional linear
layers that compress queries Q and keys K into Q̂ and K̂ in
a low-rank space,

Q̂ = QWq̂, K̂ = KWk̂, (4)

where Wq̂ ∈ Rd×r, Wk̂ ∈ Rd×r, and r ≪ d.
After that, we use the compressed queries Q̂ and keys

K̂ to compute an attention map M̂attn, which is an ap-
proximation of the standard attention map Mattn. Because

M̂attn is much more efficient to compute than Mattn, we
use M̂attn to estimate the importance in the actual attention
map Mattn. Similar to Section 3.2, we sparsify and skip un-
necessary multiplication among queries, keys, and values.

3.4. Training with Order Mimic

Based on the analysis above, it is evident that sparse at-
tention, which focuses only on the most relevant key-value
pairs, can enhance the accuracy of pre-trained language
models. To achieve an accurate approximation of the or-
der of query-key relevance, we propose an efficient order-
mimic training strategy that aligns the order of sorted atten-
tion scores in the approximated attention map M̂attn with
that of the original attention map Mattn. Given the sparse
ratio of s%, for an arbitrary i−th query, we regard the most
relevant s% keys (i.e., the keys with attention scores higher
than the s% percentile) as positive samples according to the
original attention map. The remaining keys are treated as
negative samples. The indices of these positive and nega-
tive samples are denoted as ϕi

+ and ϕi
−, respectively.

We note that an ideal ordering method needs to rank the
positive samples above the negative ones by a large mar-
gin. Motivated by this, the corresponding training objective
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using hard-hinge loss [15] can be formulated as

min
θ

∑
i

∑
∀ϕi

+

∑
∀ϕi

−

max(Q̂iK̂
T
ϕi
−
− Q̂iK̂

T
ϕi
+
+ λ, 0), (5)

where θ denotes the trainable parameters and λ indicates
a pre-defined positive margin. However, this training ob-
jective is applied to uniformly sampled pairs, resulting in a
greater focus on intra-class distances rather than inter-class
distances hence trivial solutions. Moreover, pair-wise rela-
tions demand a substantial computational burden. There-
fore, we propose to only optimize the ordering boundary to
avoid trivial solutions and expensive computations:

min
θ

∑
i

max(max
ϕi
−

(Q̂iK̂
T
ϕi
−
)−min

ϕi
+

(Q̂iK̂
T
ϕi
+
) + λ, 0).

(6)

To make the objective function smooth and easy to opti-
mize, we further improve it by introducing the soft-margin
loss [29] to replace the hard-hinge loss. Thus, the eventually
proposed Order Mimic Loss can be formulated as:

Lorder =
1

N

∑
i

log(1 + exppi),

where pi = max
ϕi
−

(Q̂iK̂
T
ϕi
−
)−min

ϕi
+

(Q̂iK̂
T
ϕi
+
) .

Intuitively, Order Mimic Loss encourages the lowest-
scoring positive samples to attain a higher score than the
highest-scoring negative sample, thereby fulfilling the or-
dering requirements of the entire set. Additionally, by fo-
cusing only on the most challenging cases, the network pays
more attention to the difficult inter-class distances, and the
complexity can be reduced from O(N3) to O(N2). Never-
theless, we note that the proposed training objective focuses
solely on ordering, overlooking the specific magnitude, ren-
dering it sensitive to the initial state of the network and the
sample noise, which in turn affects the selection of bound-
ary pairs.

Therefore, to further improve the robustness, we intro-
duced an auxiliary loss to directly constrain the magnitude
of the predicted low-rank attention map, ensuring its dy-
namic range is similar to that of the original attention map.
Similar to [36], we adopt a magnitude loss to achieve it:

Lmag =
1

N2

∑
−δ(QKT ) log δ(Q̂K̂T ), (7)

where δ(·) indicates the sigmoid function. This approach
could provide a better initial state for network training and
facilitate more efficient convergence. Furthermore, we fuse
the proposed two training objectives to form the training
loss for the network:

L = αLorder + βLmag. (8)

Table 2. The effects of the rank in the attention map approxima-
tion. We evaluate our method on the LLaVA-1.5 [30] 7B models
and ScienceQA [32] for image accuracy. We find that rank 8 is
enough for approximation. There is no further improvement on
larger ranks.

Rank 1 2 4 8 16 32
Ours 64.6 66.6 67.6 68.4 68.5 68.5

Through two predefined hyper-parameters, α and β, we can
control the significance of rank and magnitude during the
training process.

4. Experiments

In this section, we first introduce the experimental setting
in Section 4.1. In Section 4.2, we conduct several ablation
studies on the factors, including the rank in the low-rank
approximation, and the effects of loss weights. After that,
we present the main results in both LLMs and multi-modal
LLMs in Section 4.3.1 and Section 4.3.2.

4.1. Experimental Settings

4.1.1 Language Models

Training For long-context language modeling, our pro-
posed LoRA-Sparse architecture is fine-tuned on the
RedPajama-V2 dataset [11], an expansive collection featur-
ing, for 1000 iterations, with global 64 batch size in the tar-
get context length. This dataset is particularly notable for
its breadth and quality. For the LLM benchmarks, we fine-
tune our models with the Alpaca [41] data. It contains 52k
instruction tuning data for supervised fine-tuning.

Evaluation For long-context language modeling, we as-
sess our model using the validation split of PG19 [37] for
perplexity. Each selected document contained a minimum
of 32,768 SentencePiece tokens, a format optimized for ma-
chine learning models dealing with languages. We limited
our evaluation to the initial target context length tokens per
document to maintain consistency. To effectively measure
perplexity across different context lengths, we used a slid-
ing window approach with a stride of 256 tokens, offering
a balance between contextual breadth and computational
feasibility. For the LLM benchmarks, we use the bench-
marks provided in the open-sourced lm-evaluation-harness
project1. It contains many benchmarks for language mod-
els. We use 13 popular benchmarks for evaluation.

1https://github.com/EleutherAI/lm-evaluation-harness
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Table 3. The effects of loss weights. In this experiment, we use
LLaVA-1.5 [30] as the baseline model and evaluate our models
on ScienceQA [32] for image accuracy. When the loss weight is
0, it means that the loss is disabled. We find that both order and
magnitude losses are helpful, while only one of them presents sub-
optimal accuracy. In addition, larger loss weights have no effect.

α 1.0 0 1.0 1.0 2.0 2.0
β 1.0 1.0 0 2.0 1.0 2.0
Acc 68.4 68.1 67.4 68.0 67.8 68.2

Table 4. Evaluation on long-context language modeling. We eval-
uate perplexity on PG19 [37] validation set. Lower perplexity is
better. Due to the 2048 context length limitation of LLaMA [42],
it presents unsatisfied results in a longer context. Our sparse at-
tention method has effects on long-context language modeling, as
it reduces the number of keys and queries that are included in the
attention computation. We show that our method maintains good
perplexity from 4096 to 16384 context length.

Model Size Context Length
4096 8192 16384

LLaMA 7B + Ours 10.80 10.82 11.01
LLaMA 13B + Ours 9.91 9.98 10.04

Table 5. Comparison to the deformable mechanism that is based
on linear interpolation, which is another approach to efficient at-
tention operations. It is observed that directly using the original
deformable mechanism degrades the performance. Compared to
deformable attention, sparse attention is a better option.

Tasks arc-easy arc-challenge openbookqa piqa
Baseline 73.4 45.6 32.2 79.4
Deformable 24.4 21.4 23.0 53.2
Ours 73.2 47.3 32.6 79.4

4.1.2 Multimodality Models

Training In the multimodality experiments of LoRA-
Sparse, we meticulously adhere to the dataset config-
uration as delineated in LLAVA1.5 [30]. For instruc-
tion tuning, we engage with a comprehensive mixture of
datasets, encompassing the VQA datasets (VQAv2 [16],
GQA [19], OKVQA [34]), OCR datasets (OCRVQA [35],
TextCaps [39]), region-level VQA (Visual Genome [23],
RefCOCO [20, 33]), along with visual and language con-
versation data from LLaVA [31] and ShareGPT, summing
up to a total of 665K instances.

Evaluation To benchmark the efficacy, we leverage a
diverse suite of benchmarks that span a spectrum of
multi-modal tasks. These benchmarks include GQA [19],

TextVQA [40], POPE [27], ScienceQA [32], SEED-
Bench [25], and LLaVA-Bench [31]. This comprehensive
evaluation strategy ensures that our findings are robust, pro-
viding a nuanced understanding of our model’s capabilities
in interpreting and integrating complex multi-modal data.

4.2. Ablation studies

4.2.1 Rank in the approximation

In Table 2, we ablate the rank of the low-rank projections
for attention map approximation. We fine-tune the LLavA-
1.5 [30] with 7B parameters without the proposed method
and evaluate the image accuracy on ScienceQA [32]. We
show that the rank indeed affects the performance. The per-
formance improves as the rank increases to 8. The accura-
cies with rank 16 and 32 are comparable to that with rank
8. Thus, we set the rank as 8 by default in experiments.

4.2.2 Loss weights

In Table 3, we evaluate the effects of loss weights dur-
ing fine-tuning. We conduct experiments on LLaVA-
1.5 [30] 7B model and evaluate the image accuracy on Sci-
enceQA [32]. With a loss weight of 0, the loss is disabled
during fine-tuning. We show that both the magnitude loss
and the order loss are effective. We also observe that larger
loss weights (e.g., 2) are not helpful. Thus, we set both loss
weights to be 1 as a default setting in experiments.

4.3. Main Results

4.3.1 Large language models

LLM benchmarks In Table 6, we evaluate our method
on 13 LLM benchmarks. We fine-tune LLaMA 7B on the
Alpaca [41] instruction tuning dataset for supervised fine-
tuning. The baseline model uses the standard full atten-
tion in both fine-tuning and evaluation. Our method uses
the low-rank approximation sparse attention that is intro-
duced in Section 3.2 during fine-tuning and inference. We
set the sparse ratio as 0.5 in this experiment. We show
that our method achieves comparable or even better perfor-
mance than the full attention baseline. For example, on the
arc-challenge benchmark, our method improves the base-
line from 45.6% to 47.3% by 1.7%, while saving 50% com-
putation in the self-attention modules. There are only two
tasks, winogrande and record, where the performance de-
grades with sparse attention.

Long-context language modeling In Table 4, we eval-
uate our method on long-context language modeling. We
fine-tune LLaMA [42] 7B model on Redpajama [11] dataset
with our low-rank sparse attention approximation method
and the position interpolation [6] extension. We evaluate
our method on PG19 validation set for perplexity in various
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Table 6. Evaluation on LLM benchmarks in the lm-evaluation-harness project. We train the LLaMA [42] 7B model using the Alpaca [41]
data for supervised fine-tuning (SFT). The baseline uses full attention in both fine-tuning and evaluation. Our method uses sparse inference
and the low-rank approximation method introduced in Section 3.3 during fine-tuning. It shows that on most benchmarks, sparse inference
introduces comparable or even better performance than the baseline. On only two benchmarks, arc-easy and record, the performance
degrades but the gap is marginal.

Model wsc sst wic race hellasway mrpc piqa openbookqa mnli record Rte arc-easy arc-challengh
Baseline 36.5 70.9 50.2 42.1 60.0 68.4 79.4 32.2 42.8 92.2 63.2 73.4 45.6
Ours 36.5 75.8 50.3 42.5 60.1 68.4 79.4 32.6 44.0 91.8 63.9 73.2 47.3

Table 7. Comparison with multi-modal LLMs on mutli-modal benchmarks including GQA [19], ScienceQA [32], TextVQA [40],
POPE [27], SEED-Bench [25], and LLaVA-Bench [31]. Our method achieves comparable or even better performance than the state-of-
the-art LLaVA-1.5 [30] model with lower compute. We show that sparse attention is not only efficient but also beneficial to performance.

Method LLM GQA ScienceQA-Image TextVQA POPE SEED-Bench LLaVA-Bench
BLIP-2 [26] Vicuna-13B 41.0 61.0 42.5 85.3 46.4 38.1
InstructBLIP [13] Vicuna-7B 49.2 60.5 50.1 - 53.4 60.9
InstructBLIP [13] Vicuna-13B 49.5 63.1 50.7 78.9 - 58.2
Shikra [5] Vicuna-13B - - - - - -
IDEFICS-9B [24] LLaMA-7B 38.4 - 25.9 - - -
IDEFICS-80B [24] LLaMA-65B 45.2 - 30.9 - - -
Qwen-VL [2] Qwen-7B 59.3 67.1 63.8 - 56.3 -
Qwen-VL-Chat [2] Qwen-7B 57.5 68.2 61.5 - 58.2 -
LLaVA-1.5 [30] Vicuna-7B 62.0 67.6 58.2 85.9 58.6 63.4
Ours Vicuna-7B 62.4 68.4 58.2 86.8 58.8 63.4

context lengths, from 4096 to 16384. We show that with
our sparse attention, models maintain much lower perplex-
ity than LLaMA baselines, which have a limited 2048 con-
text length. This shows that sparse attention is beneficial in
the long sequence inputs for LLMs.

4.3.2 Multi-modal large language models

In Table 7, we compare our method with SOTA multi-
modal LLMs in benchmarks, including GQA [19], Sci-
enceQA [32] in image accuracy, TextVQA [40], POPE [27],
SEED-Bench [25], and LLaVA-Bench [31]. Our method
follows LLaVA-1.5 for the settings in fine-tuning and eval-
uation, except that we include the low-rank approximation
for sparse inference. During inference, we set the sparse ra-
tio as 0.5. In this experiment, we show that our method can
bring improvements upon the SOTA LLaVA-1.5 baseline,
while saving computational cost in the sparse attention, i.e.,
about 50% attention computation.

4.4. Comparison to Deformable Mechanism

Deformable mechanism [12, 47, 52] is another common ap-
proach to efficient models. In this section, we show that
the deformable mechanism in attention operations, which
learns the attention offsets via (bi-)linear interpolation, can
not work well in fine-tuning LLMs. We fine-tune the

LLaMA [42] 7B model with the Alpaca [41] data in a super-
vised fine-tuning or instruction-tuning manner. The base-
line model uses full attention in both fine-tuning and infer-
ence. Ours is fine-tuned and tested with the proposed sparse
attention. We evaluate the models on 4 LLM benchmarks.
Table 5 shows that directly using the original deformable
mechanism degrades the performance. This phenomenon
can be explained that the interpolation mechanism that is
commonly adopted by deformable operators is designed for
image features and is improper for attention in LLMs, be-
cause tokens in LLMs are discrete and not smooth among
neighbors. In contrast, our method retains the original at-
tention with additional low-rank layers, which are not only
efficient but also compatible with the pre-trained LLMs.

4.5. Visualization

In Figure 3, we show the visualization of attention weights
in our low-rank sparse attention upon the LLaVA-1.5 7B
model. We evaluate our model on ScienceQA [32] test
split. We use the attention weights in the last self-attention
layer in the LLM for visualization. We average the atten-
tion weights among multi-attention heads and select the top
30% visual keys/values for highlighting. In the visualiza-
tion, we show that the highlighted areas are highly related
to the keywords in questions or the predicted answers (the
bold font). This proves the effects of ours.
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Below is a food web from Little Rock Lake, a
freshwater lake ecosystem in Wisconsin. A food
web models how the matter eaten by
organisms moves through an ecosystem. The
arrows in a food web represent how matter
moves between organisms in an ecosystem.
Which of the following organisms is the
primary consumer in this food web?
A. Copepod
B. Black crappie
C. Bacteria

What is the name of
the colony shown?
A. Maryland
B. New Hampshire
C. Rhode Island
D. Vermont

Which property do these three objects have in
common?
A. Blue
B. Hard
C. Sticky

Which property do these three objects have in
common?
A. Fragile
B. Bouncy
C. Yellow

Look at the models of molecules below.
Select the elementary substance.
A. Carbon tetrachloride
B. Acetaldehyde
C. Bromine

Did you notice that this tile sea
star is missing one of its arms? If
a tile sea star loses an arm, it
can regrow the arm over time.
This ability is called regeneration.
Can Fromia monilis cells make
their own food?
A. Yes
B. No

Arctic wolves live in the
Canadian Arctic and
Greenland. The is adapted
to be camouflaged in the
snow. Figure: Arctic wolf.
Which animal is also
adapted to be
camouflaged in the snow?
A. Short-tailed weasel
B. Common hawk-cuckoo

Which property matches
this object?
A. Stretchy
B. Blue

Figure 3. Visualization of sparse attention weights in multi-modal LLMs. We combine our low-rank sparse approximation method into
the LLaVA-1.5 [30] 7B model. We collect the predicted attention weights during the evaluation on ScienceQA [32] test split. We use the
attention weights predicted in the last self-attention layer in the model for visualization. In the figure, we highlight the top 30% attentions
on the average of attention heads. We show that the top attention is related to the questions or the predicted answer. We highlight the
predicted answer in bold font.

5. Conclusion

In this paper, we analyze the sparse attention mechanism
in multi-modal LLMs. Surprisingly, sparsity in LLMs is
not only efficient but also beneficial to performance. This
implies that some of the heavy computations in LLMs are
redundant or even harmful. To realize both efficiency and
higher accuracy, we introduce a low-rank approximation
method, which predicts an attention map in a low-rank man-
ner instead of the standard multiplication between queries
and keys. Then, we utilize the order of attention scores in
the approximated attention map to select queries and keys
for the actual attention computation. In experiments, we
show that our method is effective in both LLMs and multi-

modal extensions. Results upon LLaMA [42] on language
model benchmarks and multi-modal LLaVA [31] models
present strong performance and efficiency.

Limitations and Broader Impacts. In this study on
Large Language Models (LLMs), we find that sparse at-
tention not only increases efficiency but also boosts per-
formance. This suggests some computational processes
in LLMs are redundant. A novel low-rank approximation
method is introduced for efficiency and accuracy. However,
a key limitation is that sparse attention offers limited GPU
acceleration at lower sparsity levels, indicating a need for
further optimization in such scenarios.
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