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Abstract

Deep neural networks (DNNs) are vulnerable to adver-
sarial perturbation, where an imperceptible perturbation is
added to the image that can fool the DNNs. Diffusion-based
adversarial purification uses the diffusion model to gener-
ate a clean image against such adversarial attacks. Un-
fortunately, the generative process of the diffusion model is
also inevitably affected by adversarial perturbation since
the diffusion model is also a deep neural network where
its input has adversarial perturbation. In this work, we
propose MimicDiffusion, a new diffusion-based adversarial
purification technique that directly approximates the gen-
erative process of the diffusion model with the clean im-
age as input. Concretely, we analyze the differences be-
tween the guided terms using the clean image and the ad-
versarial sample. After that, we first implement MimicD-
iffusion based on Manhattan distance. Then, we propose
two guidance to purify the adversarial perturbation and ap-
proximate the clean diffusion model. Extensive experiments
on three image datasets, including CIFAR-10, CIFAR-
100, and ImageNet, with three classifier backbones includ-
ing WideResNet-70-16, WideResNet-28-10, and ResNet-
50 demonstrate that MimicDiffusion significantly performs
better than the state-of-the-art baselines. On CIFAR-10,
CIFAR-100, and ImageNet, it achieves 92.67%, 61.35%,
and 61.53% average robust accuracy, which are 18.49%,
13.23%, and 17.64% higher, respectively. The code is avail-
able at https://github.com/psky1111/MimicDiffusion.

1. Introduction
Deep neural networks (DNNs) have achieved great suc-
cess in various fields of computer vision, e.g., image de-
tection [31], image classification [34]. However, DNNs are
vulnerable to the adversarial samples [10], where the ad-
versarial sample consists of the clean sample and an imper-
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ceptible adversarial perturbation.
To defend against adversarial attack, adversarial train-

ing [13, 32] has been proposed by leveraging the generated
adversarial samples to train the classifier. For example, Bai
et al. [2] used the adversarial samples as the training data
to train the classifier directly. However, adversarial train-
ing may be ineffective when suffering from unknown attack
methods [9].

In contrast, another popular method for the adversarial
attack is adversarial purification [21, 28, 37]. Given an ad-
versarial sample as the input, adversarial purification meth-
ods aim to purify the adversarial perturbation from the ad-
versarial sample and obtain clean samples. Then, generated
clean samples are fed into the classifier.

As one of the popular generative models, the diffusion
model [15] becomes a potential tool for adversarial purifica-
tion due to generating high-quality images. Previous meth-
ods [21, 28] depended on finding an optimal time step in the
forward process to cover the adversarial perturbation. Then,
the reverse process tries to purify both the Gaussian noise
and adversarial perturbation while keeping the label seman-
tic simultaneously. Yong et al. [37] proposed the score-
based method by using the property that the clear sample
tends to be the lower value of the score function. Nie et
al. [21] proposed the DiffPure based on a small step de-
noiser. Further, some improved methods are based on the
iteration and guided methods [33]. For example, Wang et
al. [33] alleviated the requirement for keeping the label se-
mantic by incorporating a guidance [4].

Despite the success of diffusion-based adversarial pu-
rification methods, we argue that adversarial perturbations
added to clean samples will still affect the generative pro-
cess of the diffusion model, which deviates from the tra-
jectory of the clean diffusion model. Thus, it will generate
extra noise in the synthetic images and cause performance
degradation (More details can be found in Section 3). The
key is to remove the effects of the adversarial perturbation
when performing the generative process.

As shown in Fig. 1, an intuitive approach is that if the
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Figure 1. An illustration of MimicDiffusion. By implementing the
guidance method and using the adversarial sample (clean image
+ adversarial perturbation), we aim to alleviate the influence of
the adversarial perturbation for the reverse process of the diffusion
model such that it is similar to the reverse process with the input
of the clean image.

input is not an adversarial sample but a clean image, the
adversarial perturbation problem would disappear. There-
fore, an interesting idea arises: without knowing the clean
inputs, can we mimic the trajectory of the diffusion model
with clean inputs to reduce the effect of adversarial pertur-
bations?

In this work, we propose a novel MimicDiffusion to re-
duce the negative influence of adversarial perturbations. We
use guided diffusion as a backbone, where the Gaussian
noise is used as input, the adversarial sample is composed
of a clean sample, and adversarial perturbation is used as
guidance. The main problem is that the guided term also
includes adversarial perturbation. Fortunately, adversarial
perturbations are imperceptible. Under this assumption, we
first use Manhattan distance (ℓ1 distance) instead of Eu-
clidean distance (ℓ2 distance). Thus, we reduce the range of
the derivative to +1 or -1. We further show that using Man-
hattan distance can be divided into two cases, short range
and long range, to compare the difference in derivatives of
the adversarial sample and the clean sample. Concretely, 1)
when the Manhattan distance between the generated image
and the clean image is larger than the maximum value in ad-
versarial perturbations, called the long-range distance, we
show that the gradients of the two guidance are the same.
That is what we want. 2) When the Manhattan distance
between the generated image and the clean image is smaller
than the maximum value in adversarial perturbations, called
the short-range distance, the gradients of the two guidance
may or may not be equal.

According to the above observations, we propose two
guidance: one for the long-range distance and another for
the short-range distance. In the long-range guidance, we
can use the adversarial sample as the guidance since the
gradients are the same. In the short-range guidance, we
propose a non-linear transform operation inspired by super-
resolution measurement [4]. This method involves project-
ing the generated image and the adversarial image onto a
higher dimensional space, effectively increasing the Man-

hattan distance between them beyond the maximum value
of adversarial perturbations. Hence, it may be the same as
the case for the long-range distance.

Ultimately, we compare our method to the latest ad-
versarial training and adversarial purification methods on
various strong adaptive attack benchmarks. Extensive
experiments on CIFAR-10, CIFAR-100, and ImageNet
across various classifiers, such as WideResNet-28-10 and
WideResNet-70-16, show that MimicDiffusion achieves
state-of-the-art performance. Compared with the lat-
est adversarial purification methods [37], e.g., AutoAttck
(ℓ∞, ϵ = 8/255) [5], we show the absolute improve-
ment of +18.49%, +13.23% and 17.64% in average robust
accuracy on CIFAR-10, CIFAR-100 and ImageNet with
WideResNet-28-10 respectively.

To sum up, the main contributions of this paper are:
• We propose a new perspective for diffusion-based adver-

sarial purification methods, which mimic the generative
process of the diffusion model with the clean image as
input to reduce the negative influence of adversarial per-
turbation.

• We propose a novel MimicDiffusion, where we use Man-
hattan distance and propose long-range and short-range
guidance to bridge the gap between clean and adversarial
samples.

• The experimental results show that our model achieves
state-of-the-art performance on various adaptive attack
benchmarks.

2. Related Work
Adversarial training uses the adversarial samples to train
the classifier [20]. Thus, the classifier can also correctly
recognize the adversarial samples. For example, Kang et
al. [16] used ordinary differential equations to re-sample the
feature point from the Lyapunov-stable equilibrium points.
Sven et al. [11] proposed the data augmentation method to
generate many adversarial samples and improve robust prior
knowledge.

Adversarial purification uses the generative models
to generate clean images and could be regarded as the
classifier-agnostic method. These methods try to remove
the adversarial perturbation in the adversarial sample. Thus,
the classifier can be fixed. Pouya et al. [26] used the gen-
erative adversarial network (GANs) to purify the perturba-
tion. Meanwhile, the score-based match model [30, 37] was
proposed to eliminate the influence of the perturbation and
recover a clean image based on the score-based match net-
work. We empirically compare our method with the pre-
vious works, and the experimental results show that our
method can achieve significant improvements.

Diffusion model based adversarial purification. Re-
cently, Nie et al. [21] proposed the diffusion-based ad-
versarial purification method, which proved that generated
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images from the diffusion model tend to be clean im-
ages. Therefore, one entire diffusion process step could
purify the adversarial perturbation. However, limited by
the different designs in different types of diffusion mod-
els [17], it is difficult to reach the optimal performance un-
der adversarial purification. To alleviate this, GDPM [33]
proposed an iteration-based method and incorporated the
guided method [4] to keep the label semantic under the iter-
ation process. Proven by Lee et al. [19], GDPM and Nie et
al. rely on finding an optimal hyperparameter setting, e.g.,
the optimal time step. Eventually, adversarial perturbation
still influences the adversarial purification methods.

3. Preliminary

We first give some definitions. In the adversarial purifi-
cation, we have a diffusion model, e.g., the score func-
tion sθ(xt) = ∇x log p(x; t), that is trained on the origi-
nal dataset. Now given the adversarial sample denoted as
xadv , where xadv = xori + ϕ and xori is the clean image
(unknown) and ϕ is the adversarial perturbation (unknown)
generated by adversarial attack methods, adversarial purifi-
cation aims to recover the clean image xori from the inputs
of the adversarial sample xadv .

Diffusion model based adversarial purification. The
idea is to remove both the adversarial purification and Gaus-
sian noise in the reverse process of the diffusion model.
First, it finds a time step t∗ such that:

xt∗ =
√
σ(t∗)xadv +

√
(1− σ(t∗))ϵ

=
√
σ(t∗)(xori + ϕ) +

√
(1− σ(t∗))ϵ,

(1)

where it is the forward process of diffusion model [15], xt∗

is the state in the t∗ time, σ(∗) is the noise schedule re-
lated to the time step t, and ϵ ∼ N (0, 1) is the Gaussian
noise. Then, the reverse process of diffusion model [15] is
performed on xt∗ to generate the clean image x̂ori.

In the above approaches, the key to success is finding an
optimal t∗ [21], and thus the performance is sensitive to the
value of t∗.

Guided-diffusion based adversarial purification. One
of the state-of-the-art methods is the guided diffusion
model [33]. In the guided diffusion methods, the adversarial
sample xadv is used as guidance, and it starts from the pure
Gaussian noise xT in the reverse process. In the t time step,
the guided generating process is formulated as follows:

∇x log p(xt|xadv; t) = ∇x log p(xt; t)︸ ︷︷ ︸
Score Function

+∇x log p(x
adv|xt; t)︸ ︷︷ ︸

Guidance Term

.

(2)
The score function is already known, and the guidance term

can be approximated as [4]:

∇x log p(x
adv|xt; t) = −Rt∇xtd(x̂t, x

adv),

x̂t =
xt −

√
1− σ(t)sθ(xt)√

σ(t)
,

(3)

where sθ(xt) is the known score function [30] with the pa-
rameter θ for xt in the t time, x̂t is the estimation for x0 in
the t time, Rt is the guided factor related to the t time, and
d(∗, ∗) is the ℓ2 norm distance metric.

Motivation. However, we argue that adversarial pertur-
bation will influence the trajectory of the guided method. To
show this, considering the Eq. 3 with the ℓ2 distance norm,
we have

−Rt∇xtd(x̂t, x
adv) = −Rt∇xt ||x̂t − xadv||22

= −Rt∇xt
||x̂t − xori − ϕ||22

= −Rt
∂||x̂t − xori − ϕ||22

∂x̂t

∂x̂t

∂xt
.

(4)

Then, the Jacobi matrix for the partial part is:

∂||x̂t − xori − ϕ||22
∂x̂t

= ∇xtJ((x̂t − xori − ϕ)2)

= 2J(x̂t − xori − ϕ),

(5)

where J(∗) is the operation to calculate the Jacobi matrix.
From Eq. 5, we can see that the gradient of the guidance
term also includes the adversarial perturbation ϕ. Hence,
the adversarial perturbation still influences the generative
process of the guided diffusion model, which would cause
the generated trajectory to deviate from the correct direc-
tion.

Suppose that we can replace the adversarial input to the
clean sample xori, according to Eq. 4 - Eq. 5, we have

Rt∇xtd(x̂t, x
ori) ∝ 2RtJ((x̂t − xori)

∂x̂t

∂xt
). (6)

Hence, if we can mimic the diffusion model with clean im-
ages as inputs, we can remove the negative influence of the
adversarial perturbation.

4. Method
In this paper, we aim to remove the influence of the adver-
sarial perturbation on the guided diffusion model. Accord-
ing to our motivation, we want to approximate the gradients
of the guided terms with the adversarial sample and clean
sample as inputs:

∇xtd(x̂t, x
adv) ≈ ∇xtd(x̂t, x

ori). (7)

Manhattan distance. It is difficult to approximate the
derivatives for different inputs for Euclidean distance. For-
tunately, a common distance metric, i.e., Manhattan dis-
tance, might have the same gradients for different inputs.
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Figure 2. An overview of the proposed MimicDiffusion, where xT is the pure Gaussian noise, [s, e] is the interval to implement the
guidance method noted as conditional by using xadv as the measurement, the other time step without the guidance method noted as
unconditional, denoise is one step reverse process, long-range guidance is used to eliminate the adversarial perturbation in the long-range
condition. Short-range guidance is used to alleviate the adversarial perturbation in the short-range condition.

We denote ||x||min = min(|x1|, |x2|, · · · , |xn|), where n is
the number of values in x.

Lemma 1. Let ||ϕ||∞ < ξ and xadv = xori + ϕ, then
we have the following relations for any xt: 1) when ||xt −
xori||min > ξ, we have ∇xt

||xt − xadv||1 = ∇xt
||xt −

xori||1; 2) when ||xt − xori||min ≤ ξ, we have ∇xt
||xt −

xadv||1
Unknown←→ ∇xt

||xt − xori||1.

Proof. The proof is simple based on the derivative of ℓ1,
which can only be +1 or -1. We have:

∇xt ||xt − xadv||1 = ∇xt ||xt − xori − ϕ||1
= Sign(xt − xori − ϕ),

(8)

where Sign(x) = 1 if x > 0 otherwise Sign(x) = −1.
When ||xt − xori||min > ξ, we have (xt − xori) > ξ or
(−xt + xori) > ξ. In the two cases, it is easy to verify that

Sign(xt − xori − ϕ) = Sign(xt − xori). (9)

Hence, we have∇xt
||xt−xadv||1 = Sign(xt−xori−ϕ) =

Sign(xt − xori) = ∇xt
||xt − xori||1.

When ||xt − xori||min < ξ, the distance between xt and
xori is too close, and we cannot clarify the relation between
∇xt
||xt − xadv|| and∇xt

||xt − xori||.

Lemma 1 shows two interesting observations. When t
is large and xt will tend to Gaussian noise, thus it satisfies
||xt−xori||min > ξ, and the gradients for the absolute value
of |xt − xadv| and |xt − xori| are equal. On the contrary,
when t is small and the distance between xt and xadv is

too close, i.e., ||xt − xori||min ≤ ξ, we cannot clarify the
relation between∇xt ||xt − xadv||1 and∇xt ||xt − xori||1.

Based on the two observations, we propose MimicDif-
fusion shown in Fig. 2 to achieve mimicking. Concretely,
we start from the Gaussian noise directly, which can avoid
adding additional perturbation from the adversarial sam-
ple. The adversarial sample is only used as the guidance.
The Manhattan distance is proposed in the guidance term
to reduce the negative influence of adversarial perturbation.
When the generated xt is far from the xori, we call it long-
range distance; we can use the adversarial sample as guid-
ance directly. Then, we propose to use a super-resolution
operation to reduce the extra perturbation when xt is close
to xori called short-range distance. In the end, to better
mimic the trajectory of the guidance with the xori input,
we further propose a novel sampling strategy to implement
guidance in a particular time interval to reduce the extra
noise and time cost at the same time.

Long-range guidance. In the long-range distance situ-
ation, e.g., ||x̂t − xori||min > ξ, based on Lemma 1, we
apply the Manhattan distance:

∂||x̂t − xori − ϕ||1
∂x̂t

= ∇xtJ(|x̂t − xadv|)

= ∇xt
J(|x̂t − xori|)

=
∂||x̂t − xori||1

∂x̂t
,

(10)

In this way, we have∇xtd(x̂t, x
adv) = ∇xtd(x̂t, x

ori) that
can eliminate ϕ, and thus avoid adding extra adversarial per-
turbation from the guidance term.
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Hence, in the long-range distance, we can set the guid-
ance yl = xadv , where the trajectory will be similar to the
diffusion model with clear input. The long-range guidance
can be formulated as:

∇xt
log p(yl|xt) = −Rt∇xt

||x̂t − xadv||1, (11)

where x̂t =
xt−
√

1−σ(t)sθ(xt)√
σ(t)

is the estimated image and

yl = xadv .
Short-range guidance. Based on the definition of short-

range distance, the unknown relation will eventually lead to
the trajectory deviation in small time steps, e.g., the later
phase of the reverse process. To alleviate this, we chose
the super-resolution operation at the short-range distance.
The super-resolution operation is a non-linear mapping op-
eration. Under the transform operation of super-resolution,
the non-linear transform could increase the Manhattan dis-
tance to change the short-range distance to the long-range
distance. In this condition, based on the Eq.10, we elimi-
nate the perturbation term and let the trajectory of the diffu-
sion model go back to that with the clear input and achieve
the mimicking.

Therefore, in the short-range guidance term, we use the
super-resolution operation [4] to map the adversarial sample
to the guidance sample ys = H(xadv). The estimated im-
age x̂t is also performed via the super-resolution operation,
which is defined as:

∇xt
log p(ys|xt) =

−Rt∇xt
||H(x̂t)−H(xadv)||1,

(12)

where H(∗) is the super-resolution (x4) operator [4] and is
a non-linear transform to project images of low resolution
onto high resolution, which could be calculated based on
the Bicubic interpolation [4], the bias leads by Bicubic in-
terpolation will increase the Manhattan distance, and thus
achieve a change from the short-range distance to the long-
range distance.

To apply two guidance, the guidance term in Eq. 2 could
be re-defined as:

∇xt log p(y
l|xt) +∇xt log p(y

s|xt), (13)

where the two guidance are independent since the long-
range and short-range guidance are two independent cases.
Eq. 13 could be calculated directly based on Eq. 11 and
Eq. 12.

Following the advice of DPS [4], the guided factor is:

Rt =
1

σ(t)2
. (14)

Note that the proposed method tries to mimic the trajectory
of the diffusion model with xori input, and there is no seri-
ous setting for MimicDiffusion.

Algorithm 1 The overall algorithm for MimicDiffusion

Input: xadv , T ▷ Pre-trained diffusion model
Output: x0

1: s = 50%T, e = 20%T ▷ Initialize sampling strategy
2: xT ∼ N (0, 1)
3: for t in [T, T − 1, ..., 1] do
4: Calculate x̂t and xt−1 by the Reverse process
5: if t ∈ [s, e] then
6: Calculate Rt by Eq. 14
7: gl ← ∇xt

log p(yl|xt) by Eq. 11
8: gs ← ∇xt log p(y

s|xt) by Eq. 12
9: xt−1 ← xt−1 + gl + gs

10: else
11: xt−1 ← xt−1

12: end if
13: end for

Return: x0

Sampling strategy. It is difficult to let the entire reverse
process be the long-range distance. Besides, calculating the
gradient has a high computation cost. To alleviate these,
we choose to implement the guided method in the middle
phase of the reverse process of all time steps. Following
the empirical finding [38], the whole generation time step
is in [T :: 0]. We choose the middle phase of the reverse
process, i.e., [s :: e], to implement the guided method and
vice versa, not to implement the guided method, where s =
50%T, e = 20%T . In this way, we avoid implementing
the guided method in small time steps to avoid adding extra
perturbation, reducing the time cost at the same time, and
thus try to avoid implementing the guidance method on the
short-range distance part.

Algorithm 1 summarizes the proposed MimicDiffusion.
In our method, the hyperparameters include the Rt and the
interval [s, e]. For the guided factor, it could be calculated
directly without additional constraints. Due to the proposed
multi-guidance’s independent property, we use the same
guided factor for both guidance terms. In the end, Yu et
al. [38] showed that minor numerical fluctuation under the
middle phase of the reverse process for s and e will have
little influence on the performance of the guided method.
Therefore, we successfully achieve the adversarial purifica-
tion without the serious setting.

5. Experiment
5.1. Experimental Settings

Datasets and network architectures. We consider three
datasets for evaluation: CIFAR-10, CIFAR-100 [18], and
ImageNet [25]. Meanwhile, we compare various state-
of-the-art defense methods reported by the standardized
benchmark: RobustBench [6] on CIFAR-10 and CIFAR-
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100 while comparing other adversarial purification meth-
ods on CIFAR-10. We consider two widely used back-
bones on RobustBench for classifiers: WideResNet-28-10
and WideResNet-70-16 [39]. For ImageNet, we consider
the ResNet-50 as the backbone.

Adversarial attack methods. We evaluate our
method with the common adversarial attack method:
the strong adversarial attack method AutoAttack [5]
with two settings: AutoAttack(ℓ∞, ϵ = 8/255) and
AutoAttack(ℓ2, ϵ = 0.5) respectively, projected gradient
descent (PGD) attack(ℓ∞, ϵ = 8/255) [20], and C&W at-
tack [3]. Meanwhile, to make a fair comparison with other
adversarial purification methods, we evaluate our method
with the adaptive attack: Backward pass differentiable ap-
proximation (BPDA+EOT) [14]. Meanwhile, we use the
adjoint method to get the gradient of the reverse process for
white-box attacks. The experimental results for the C&W
and PGD attacks are reported in the supplementary mate-
rial. In the end, we also reports the performance following
the surrogate process in Appendix [19]

Pre-trained diffusion model. We use the unconditional
CIFAR-10 checkpoint of EDM offered by NVIDIA [17] for
our method on CIFAR-10 datasets. We fine-tune the uncon-
ditional CIFAR-10 checkpoint based on CIFAR-100 for our
method following the training method offered by NVIDIA
[17]. For ImageNet, we use the pre-trained diffusion model
offered by Nie et al. [21]. We evaluate our model on a sin-
gle RTX4090 GPU with 24 GB memory. For CIFAR-10
and CIFAR-100, T = 100. For ImageNet, T = 1000.
Evaluation metrics. We use standard accuracy and ro-
bust accuracy as the evaluation metrics following the prior
works [21]. Meanwhile, following the experimental setting
[21] to reduce the computation cost of applying adaptive at-
tacks, we evaluate the robust accuracy for all methods with
BPDA+EOT attack on a fixed subset of 512 images ran-
domly sampled from the test set. Meanwhile, the visualiza-
tion for the purified images is reported in the supplementary
material.

5.2. Experimental Results

We first report the results of MimicDiffusion compared with
the state-of-the-art adversarial training method reported by
RobustBench [6] against the ℓ∞ and ℓ2 threat models, re-
spectively.

CIFAR-10. Table. 1 shows the robustness performance
against the AutoAttack with ℓ∞ and ϵ = 8/255. Specif-
ically, MimicDiffusion improves the average robust accu-
racy by 21.64% on WideResNet-28-10 and by 20.69% on
WideResNet-70-16, respectively, compared with the best
baseline method. Meanwhile, compared with the adver-
sarial training methods that need extra data, MimicDiffu-
sion improves the average robust accuracy by 29.97% on
WideResNet-28-10 and by 23.97% on WideResNet-70-16,

respectively. It should be noted that our method effectively
narrows the gap between standard accuracy and robust ac-
curacy, showcasing the efficacy of mimicking the diffusion
model using clean images, where the gap between stan-
dard accuracy and robust accuracy is 0.65% and 1.1% on
WideResNet-28-10 and WideResNet-70-16 respectively.

Table. 2 shows the robustness performance against the
AutoAttack with ℓ2 and ϵ = 0.5. Specifically, MimicD-
iffusion improves the average robust accuracy by 13.28%
on WideResNet-28-10 and by 11.09% on WideResNet-70-
16, respectively, compared with the best baseline method.
Meanwhile, MimicDiffusion outperforms the method with
the extra data. Except for the improvement in the robust ac-
curacy, the gap between the standard and robust accuracy
is still reduced. These results confirm that MimicDiffusion
effectively improves accuracy against the ℓ2 threat. To sum
up, the experimental results on CIFAR-10 show the effec-
tiveness of MimicDiffusion in defending against ℓ∞ and ℓ2
threat models on CIFAR-10. Meanwhile, MimicDiffusion
keeps a high level of standard accuracy, which demonstrates
the validity of MimicDiffusion.

CIFAR-100. Table. 3 shows the robustness performance
against the AutoAttack with ℓ∞ and ϵ = 8/255. It can be
found that MimicDiffusion improves the average robust ac-
curacy by 18.68% on WideResNet-28-10 and by 19.59%
on WideResNet-70-16, respectively. Even with the min-
imum level of MimicDiffusion, we still improve the av-
erage robust accuracy by 13.23% on WideResNet-28-10
and by 15.28% on WideResNet-70-16. Meanwhile, based
on the different datasets, our method tends to reduce the
gap between standard and robust accuracy. These results
prove that our model achieves the mimicking and signif-
icantly outperforms other baseline models on the CIFAR-
100 dataset.

ImageNet. We report the extra experimental results on
ImageNet [25] shown in the Supplementary. These results
follow the experimental setting in Nie et al. [21]. Accord-
ing to the results, we still see a significant improvement,
with the average robust accuracy increasing by 17.64%.
Meanwhile, MimicDiffusion successfully reduces the gap
between standard accuracy and robust accuracy.

Overall, experimental results demonstrate that MimicD-
iffusion achieves a significant improvement in defending
the ℓ∞ and ℓ2 threat model on CIFAR-10 and defending the
ℓ∞ threat model on CIFAR-100 and ImageNet. This also
demonstrates the effectiveness of the proposed method for
adversarial purification.

Defense against unseen threats. To demonstrate
the effectiveness of MimicDiffusion, we compare it with
other adversarial purification methods using BPDA+EOT
(ℓ∞, ϵ = 8/255) [14]. This attack, which is adaptive and
stochastic, is specifically designed for purification methods,
as some adversarial purification methods are not compati-
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Table 1. Standard accuracy and robust accuracy against AutoAttack ℓ∞(ϵ = 8/255) on CIFAR-10 (*methods use extra data)

Method Backbone Standard Accuracy(%) Robust Accuracy(%)

Zhang et al. [40]* WideResNet-28-10 89.36 59.96
Wu et al. [35]* WideResNet-28-10 88.25 62.11

Gowal et al. [12]* WideResNet-28-10 89.48 62.70
Wu et al. [35] WideResNet-28-10 85.36 59.18

Gowal et al. [13] WideResNet-28-10 87.33 61.72
Rebuffi et al. [23] WideResNet-28-10 87.50 65.24

GDPM [33] WideResNet-28-10 84.85 71.18
Nie et al. [21] WideResNet-28-10 89.23 71.03

MimicDiffusion (Our) WideResNet-28-10 93.32 ± 2.94 92.67 ± 3.15

Gowal et al. [12]* WideResNet-70-16 91.10 66.02
Rebuffi et al. [23]* WideResNet-70-16 92.23 68.56
Gowal et al. [12] WideResNet-70-16 85.29 59.57
Rebuffi et al. [23] WideResNet-70-16 88.54 64.46
Gowal et al. [13] WideResNet-70-16 88.74 66.60

Nie et al. [21] WideResNet-70-16 91.04 71.84
MimicDiffusion (Our) WideResNet-70-16 93.63 ± 2.67 92.53 ± 3.06

Table 2. Standard accuracy and robust accuracy against AutoAttack ℓ2(ϵ = 0.5) on CIFAR-10 (*methods use extra data)

Method Classifier Standard Accuracy(%) Robust Accuracy(%)

Augustin et al. [1]* WideResNet-28-10 92.23 77.93
Rony et al. [24] WideResNet-28-10 89.05 66.41
Ding et al. [8] WideResNet-28-10 88.02 67.77
Wu et al. [35]* WideResNet-28-10 88.51 72.85

Sehwag et al. [27]* WideResNet-28-10 90.31 75.39
Rebuffi et al. [23] WideResNet-28-10 91.79 78.32

GDPM WideResNet-28-10 92.00 75.28
Nie et al. [21] WideResNet-28-10 91.38 78.98

MimicDiffusion (Our) WideResNet-28-10 93.66 ± 3.22 92.26 ± 3.40

Gowal et al. [12]* WideResNet-70-16 94.74 79.88
Rebuffi et al. [23]* WideResNet-70-16 95.74 81.44
Gowal et al. [12] WideResNet-70-16 90.90 74.03
Rebuffi et al. [23] WideResNet-70-16 92.41 80.86

Nie et al. [21] WideResNet-70-16 93.24 81.17
MimicDiffusion (Our) WideResNet-70-16 93.49 ± 2.77 92.26 ± 2.78

ble with AutoAttack. The experimental results are shown in
Table. 4. It can be found that MimicDiffusion also gets
the best performance in terms of robust accuracy, which
improves the average robust accuracy by almost 4.35% in
the worst performance. Meanwhile, we find that there is a
smaller gap between standard accuracy and robust accuracy
for mimic diffusion, which demonstrates its success.

5.3. Ablation Study

As shown in Table. 5, we list the different combinations
among MimicDiffusion. To prove the necessity for two

guidance, it can be found that using each guidance indi-
vidually results in a significant decrease in robust accuracy.
Then, Compared with the ℓ2 norm, widely used in previ-
ous methods, ℓ1 norm could increase 31.93% robust accu-
racy and achieve a large improvement, which proves the ef-
fectiveness of Lemma 1. Meanwhile, the super-resolution
guidance should change the short-range to the long-range.
This means that using the gs and gl significantly improves
the robust accuracy by almost 66.32%

24671



Table 3. Standard accuracy and robust accuracy against AutoAttack ℓ∞(ϵ = 8/255) on CIFAR-100 (*methods use extra data)

Method Classifier Standard Accuracy(%) Robust Accuracy(%)

Debenedetti et al. [7]* XCiT-M12 69.21 34.21
Debenedetti et al. [7]* XCiT-L12 70.76 35.08

Gowal et al. [12]* WideResNet-70-16 69.15 36.88

Pang et al. [22] WideResNet-28-10 63.66 31.08
Rebuffi et al. [23] WideResNet-28-10 62.41 32.06
Wang et al. [34] WideResNet-28-10 72.58 38.83

Pang et al. [22] WideResNet-70-16 65.56 33.05
Rebuffi et al. [23] WideResNet-70-16 63.56 34.64
Wang et al. [34] WideResNet-70-16 75.22 42.67

MimicDiffusion (Our) WideResNet-28-10 63.53 ± 6.17 61.35 ± 5.45
MimicDiffusion (Our) WideResNet-70-16 64.32 ± 5.77 62.26 ± 4.31

Table 4. Standard accuracy and robust accuracy against BPDA+EOT (ℓ∞, ϵ = 8/255) on WideResNet-28-10 for CIFAR-10

Method Purification Standard Accuracy(%) Robust Accuracy(%)

Song et al. [29] Gibbs Update 95.00 9.00
Yang et al. [36]* Mask+Recon. 94.00 15.00
Hill et al. [14]* EBM+LD 70.76 35.08

Yong et al. [37]* DSM+LD 86.14 70.01

Nie et al. [21](t∗ = 0.0075) Diffusion 91.38 77.62
NIe et al. [21](t∗ = 0.1) Diffusion 89.23 81.56

GDPM [33] Diffusion 90.36 77.31
MimicDiffusion (Our) Diffusion 92.5 ± 5.12 92.00 ± 6.1

gl gs d Sampling Standard(%) Robust(%)
√

ℓ2 86.42 16.7√
ℓ2 10.89 10.00√
ℓ1 88.39 22.78√
ℓ1 10.80 7.10√ √
ℓ2 91.03 57.07√ √
ℓ1 91.30 89.10√ √
ℓ1

√
93.30 92.60

Table 5. Ablation study for MimicDiffusion based on CIFAR-
10 against AutoAttack(ℓ∞, ϵ = 8/255) with WideResNet-28-10,
where Sampling is sampling strategy, standard is standard accu-
racy, and robust is robust accuracy.

6. Conclusion

We proposed a new defense method called MimicDiffusion
to achieve adversarial purification by mimicking the trajec-
tory of the diffusion model using clean images as the input
without serious settings. Specifically, using the two pro-
posed guidance methods with the Manhattan distance can
mitigate the negative impact caused by adversarial perturba-

tion, as mentioned in Lemma 1. To show the robust perfor-
mance of our method, we conducted thorough experiments
on CIFAR-10, CIFAR-100, and ImageNet with three clas-
sifier backbones: WideResNet-70-16, WideResNet-28-10,
and ResNet-50. The experimental results showed that our
method performed best in defense of various strong adap-
tive attacks such as AutoAttack, PGD attack, C&W attack,
and BPDA+EOT. These results show that MimicDiffusion
could mimic the trajectory of the diffusion model using the
clean image as the input.

Despite the large improvement, the proposed two guid-
ance require calculating the gradients and will increase the
computation cost. We will explore finding a gradient-free
guided method in further work.
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