
Model Adaptation for Time Constrained Embodied Control

Jaehyun Song*, Minjong Yoo*, Honguk Woo†

Department of Computer Science and Engineering, Sungkyunkwan University
{s7159540, mjyoo2, hwoo}@skku.edu

Abstract

When adopting a deep learning model for embodied
agents, it is required that the model structure be optimized
for specific tasks and operational conditions. Such opti-
mization can be static such as model compression or dy-
namic such as adaptive inference. Yet, these techniques have
not been fully investigated for embodied control systems
subject to time constraints, which necessitate sequential
decision-making for multiple tasks, each with distinct infer-
ence latency limitations. In this paper, we present MoDeC,
a time constraint-aware embodied control framework using
the modular model adaptation. We formulate model adap-
tation to varying operational conditions on resource and
time restrictions as dynamic routing on a modular network,
incorporating these conditions as part of multi-task objec-
tives. Our evaluation across several vision-based embod-
ied environments demonstrates the robustness of MoDeC,
showing that it outperforms other model adaptation meth-
ods in both performance and adherence to time constraints
in robotic manipulation and autonomous driving applica-
tions.

1. Introduction
In the literature on embodied artificial intelligence (embod-
ied AI), where deep learning models have been increasingly
adopted, optimizing the deep learning model structure for
specific tasks and operational conditions becomes crucial.
Several studies focus on static model optimization and com-
pression [12, 21, 34]. On the other hand, there are a few
studies that investigate dynamic model structures, which are
designed to adapt more effectively to conditions that change
over time [1, 2, 18, 23, 39]. These dynamic approaches,
often known as adaptive inference, are particularly bene-
ficial for embodied environments where surrounding con-
ditions evolve and the agent model’s capabilities to adapt
in real-time are essential. Yet, a substantial gap remains in
the exploration of these approaches within the context of
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embodied control systems, especially those operating un-
der strict time constraints and involving more than a single
task. Specifically, the systems are distinct in their require-
ment for sequential decision-making across multiple tasks,
each with its own latency limitations. For example, consider
an autonomous driving agent. This agent must continuously
make driving control decisions in response to moving ob-
stacles. Each decision must be made rapidly and accurately,
as any delay can significantly impact driving safety and ef-
ficiency due to the time-sensitive nature of driving tasks.

To address the challenges faced in such time-constrained
embodied environments, we present MoDeC (MoDel adap-
tation for time constrained Embodied Control), a novel
modular network framework with efficient and adaptive in-
ference capabilities. In embodied AI, where models are de-
ployed on specific hardware with different limitations, the
ability to rapidly adapt to both operational resource con-
ditions and time constraints is crucial. Recognizing this,
we employ a constraint-aware modular model architecture,
which can transform the procedure of time-sensitive infer-
ence into effective module selection within a single mod-
ular network that can be deployed on different target de-
vices. This approach enables dynamic model adaptation to
varied operational conditions in a sample-efficient way. We
also use a meta-learning scheme combined with knowledge
distillation for restructuring the module selection in non-
iterative time-sensitive computations.

Through intensive experiments with several embodied
control scenarios such as robot manipulation tasks in Meta-
world [42], autonomous driving tasks in CARLA [7], and
object navigation tasks in AI2THOR [16], we demonstrate
that our MoDeC framework is applicable for different time
constraints and devices, achieving robust adaptation perfor-
mance in terms of both constraint satisfaction and model
accuracy. For instance, MoDeC shows a performance gain
of 14.4% in success rates over the most competitive base-
line, DS-Net [18] for autonomous driving tasks in CARLA,
while it keeps the violation of time constraints to be less
than 1%. The main contributions of this paper are summa-
rized as follows.
• We present the constraint-aware modular model frame-
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work MoDeC, specifically designed for dynamic multi-
task model adaptation to time constraints and device re-
source specifications.

• We devise an efficient joint learning algorithm for op-
timizing the combinatorial module selection in a model
and stabilizing the model against the large action space
and non-stationarity problems. We also employ the
distillation-based inference optimization.

• We evaluate the framework with several embodied en-
vironments and embedded devices, demonstrating its ro-
bustness and adaptability in terms of time-sensitive infer-
ence performance upon a wide range of tasks and opera-
tional conditions.

2. Related Work
Embodied AI. Achieving an embodied agent requires
learning complex and diverse tasks, as well as adapting to
a constantly changing, real-world environment. Many re-
searchers focused on complex tasks in embodied environ-
ments, including object navigation [3, 5, 8, 33, 37], and
embodied question and answering [6, 24, 31, 41], as well
as model transfer from simulation to deployment environ-
ments [11, 17, 19]. Specifically, Gordon et al. [11] intro-
duced SplitNet, decoupling visual perception and policy
learning. By decomposing the network architecture into a
visual encoder and a task decoder, it allows for rapid adap-
tation to new domains and vision tasks. Li et al. [19] also
presented a learning framework that can adjust a learned
policy to the target environment that differs from the train-
ing environment, utilizing unlabeled data from the target.
While sharing the similar goal to adapt to different embod-
ied environment conditions with the prior works, we focus
on dynamic model adaptation to both time constraints and
device limitations in the context of multi-task policy learn-
ing and inference.
Real-time model inference. Several works have been in-
troduced in the realm of real-time model inference [1, 2,
14, 18, 23, 32, 38]. Specifically, Cai et al. [2] explored the
trade-off between model performance and inference effi-
ciency, by selecting certain nodes of the network and some
of various filter-size CNN layers. Li et al. [18] introduced
DS-Net, where weight ratios within each convolution neural
network determine the network slicing for optimized infer-
ence. Unlike these works that enable the model adaptation
for a given static condition, our work considers instance-
wise operational conditions that can be given as input to the
model for adaptation.
Model adaptation. Various works for quickly adapting a
model to different environment features have been pre-
sented; e.g., for task difficulty levels [4, 15, 18, 30, 35],
unseen tasks [9, 10, 20, 22, 40], and embodied proper-
ties [25, 27]. Wang et al. [35] proposed a framework that
selectively skips CNN layers and channels within layers
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based on the task difficulty. They also exploited an early exit
mechanism for resource-constrained inference. Han et al.
[13] introduced a training algorithm and architecture that
can adjust the latency by pixel-wise masking of CNNs, em-
ploying the latency prediction model and dynamic adjust-
ment of hyperparameters for different devices. In line with
these dynamic model adaptation works, we employ a modu-
lar network architecture and learning algorithm specifically
designed for embodied control systems with multiple tasks,
time constraints, and different device specifications.

3. Approach
3.1. Problem Formulation

We consider reinforcement learning (RL) for multi-
autonomous control tasks in embodied environments. As an
individual task is formulated as a single Markov decision
process (MDP)M, a multi-task MDP is equal to a family
of MDPs {Mi = (S,A,Pi, Ri, γ)}i. S is a set of states,
A is a set of actions, P : S × A × S → [0, 1] is a transi-
tion probability, R : S × A → R is a reward function, and
γ is a discount factor. In multi-task RL, task information
is used to reformulate a family of MDPs in a single MDP.
Accordingly, given a task index i ∈ I , such a reformulated
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MDP can be represented as (S × I,A,PI , RI , γ) where
PI((s, i), a) = Pi(s, a) and RI((s, i), a) = Ri(s, a). Fur-
thermore, we consider time constraints in multi-task RL.
Thus, a set of MDPs is represented as

{Mi,c = (S,A,Pi,c, Ri,c, γ)}i,c (1)

where c ∈ C is a time constraint. In this multi-task RL
with time constraints, an embodied agent is learned to not
only satisfy the time constraints but also maximize the cu-
mulative discounted rewards for devices D where it can be
deployed. Accordingly, the learning objective is to find the
optimal policy π∗ such as

argmax
π

E
I×C

[
N∑
t=0

γtRi,c(st, π(st))

]
, TD(π) ≤ c (2)

where TD(π) represents the inference time on a device D.

3.2. Overall Approach

As illustrated in Figure 1, we address the problem of multi-
task RL with time constraints for embodied control, by em-
ploying the dynamic module selection in a multi-task mod-
ular network. Our framework MoDeC includes three com-
ponents: a modular base network for learning diverse tasks,
a module selection network for performing adaptive infer-
ence under given time constraints, and a device adapter for
configuring the module utilization according to the resource
availability of a specific target device.

To achieve an adaptive policy, our approach utilizes a
modular base network structure. This structure is flexible,
allowing for direct adjustment of the computational load
(in FLOPs) through selective module activation. It empow-
ers the system to effectively balance the trade-off between
accuracy and inference time (delay), thus enabling the
time-sensitive robust model inference. To implement this
structure, we adopt the soft modularization technique [39],
which dynamically determines the weight of the path be-
tween learning modules for given task information. We
implement the module selection network to determine the
modules of the base network for each inference. This facil-
itates instance-wise computational adaptability, by taking
task information and module utilization as input. By joint
learning with the base network in a multi-task environment,
the module selection network learns to determine the effec-
tive combination of modules for a specific task under the
accuracy and inference time trade-off. Finally, to adapt to
time constraints for each device, the device adapter converts
the constraints into tolerable module utilization. This allows
MoDeC to directly use the constraints for inference. Each
device adapter is tailored for its own target device through
few-shot learning.

During the model deployment on a specific target de-
vice, the device adapter infers the appropriate module uti-
lization that adheres to given constraints. Then, the module

utilization is used as input to the module selection network
that determines the modules to use for each input instance
(i.e., each visual state for a multi-task embodied RL agent).
Individual instances contain different task information, and
each can be combined with the module utilization so as to
make effective decisions on the module selection.

4. Learning A Modular Network
We describe the joint learning procedure for the modular
base network and the module selection network.
Modular base network. To achieve a multi-task RL model,
we employ soft modularization [39], a composite structure
with a modular network and a soft routing network. The
modular network infers actions based on state s, and the
soft routing network infers the weights of paths in the mod-
ular network based on both state s and task index τ . We
add a module index set to use m as input to the base net-
work. The base network uses only the modules specified in
m at inference. For batch B = {(s, a, τ)i}i≤n from replay
buffer Dbase, we obtain a pre-trained base network π̄base by
optimizing multi-task loss LMTRL defined as

EB [wτ ∗ (ατ log π̄base(a|s, τ,mfull)−Q(s, a))] . (3)

ατ is a temperature parameter of entropy for each task τ ,
mfull = [1, 1, 1, ..., 1] represents selected modules, and Q
is the learned Q-function. To promote multi-task RL in the
set of tasks, we adjust the learning speed for each task by
adjusting the scale of loss using weights calculated as

wτ =
exp(−ατ )∑

τ∈T exp(−ατ )
. (4)

Joint learning. To enable an embodied agent to quickly
adapt to time constraints, we jointly optimize the pre-trained
base network and the module selection network. The mod-
ule selection network infers module selection m based on
the state s, task-specific information τ , and the number of
modules to use K. The combination of the base network and
module selection network can adjust the inference time by
taking the number of modules to use as input and partially
activating the modules of the base network.

In the process of joint learning, two problems arise: (1)
the combinatorial optimization problem specific to mod-
ule selection, and (2) the non-stationarity in concurrent RL
training. The former comes from an exponentially large
action space in module selection, significantly degrading
the performance and learning efficiency. For instance, with
16 modules, potential combinations reach approximately
105, complicating RL exploration and increasing sample
amounts [26]. Furthermore, in joint learning, the interaction
between the base network and the module selection network
leads to a non-stationary learning environment [29].
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Figure 2. Learning Procedure of MoDeC. On the left side of the figure, the base network and the iterative module selection network
are jointly leaned through a reward function Rims. The iterative module selection network then distills into a single-step decision module
selection network, as shown in the middle side. Finally, as depicted on the right side, the device adapter utilizes few-shot samples to
associate the inference time with the number of modules (module utilization), effectively transforming the constraint representation into a
specific number of modules to use for different devices.

Algorithm 1 Joint learning procedure
Multi-task environment env, Replay buffer Dbase,Dims = ∅
Number of modules in base network N , timesteps t
Learning rate λbase, λims, Pre-trained base network π̄base

Base network πbase, Iterative module selection network πims

loop
t = 0, s0, τ0 = env.reset(), πbase ← π̄base

K ∼ Uniform({1, ..., N})
loop

m0:0 = [0, ..., 0]
for i = 1, ...,K do

m̂i = πims(st, τt,K,m0:i−1)
m0:i = m0:i−1 + m̂i

ri = Rims(πbase, st, τt,m0:i) using (6)
Dims ← Dims ∪ {((st, τt,K,m0:i−1), m̂i, ri)}

end for
πims ← πims − λims · ∇LIMS using (9)
at = πbase(st, τt,m0:K)
st+1, τt+1, rt = env.step(at)
Dbase ← Dbase ∪ {(st, at, rt, st+1)}
πbase ← πbase − λbase · ∇(LMTRL + LRG) using (3), (8)
t = t+ 1

end loop
end loop

Module selection network. To address the combinatorial
optimization problem, we incorporate an iterative decision
making procedure into module selection. The iterative mod-
ule selection network, denoted as πims, operates by sequen-
tially choosing an individual module across a total of K
iterations. This achieves the selection of K modules repre-
sented as a binary vector m ∈ {0, 1}N , where 1 indicates
a selected module and 0 denotes a non-selected one. πims
maps s, τ , and the cumulative sum of module selections
m0:i−1 until the (i−1)th iteration to the ith individual mod-

ule selection denoted as m̂i ∈ {0, 1}N . Thus, the module
selection m for K modules is inferred by

m =

K∑
i=1

πims(s, τ,K,m0:i−1). (5)

To train πims, we directly evaluate each selection, leveraging
a reward function based on the similarity in actions inferred
by the base network πbase.

Given an action inferred through utilizing the en-
tire modules, the reward function Rims is defined from
the difference in distance between πbase(s, τ,mfull) and
πbase(s, τ,m0:i) subsequent to the previous module selec-
tion step:

Rims(πbase, s, τ,m0:i) = Dist(i− 1)− Dist(i) (6)

where Dist(i) = ||πbase(s, τ,mfull)−πbase(s, τ,m0:i)||. This
reward function not only accelerates the learning of the it-
erative module selection network but also minimizes the re-
gret bounds of the actions generated by the base network.
When representing R for given task τ as an L-Lipschitz
function, we can obtain the upper bound of the difference
of rewards in a multi-task environment.

|R(s, πbase(s, τ,mfull))−R(s, πbase(s, τ,m0:i))|
≤ L · Dist(i)

(7)

Thus, by minimizing Dist(K), the difference in rewards in
Eq. (6) is also minimized. This allows the actions inferred
using a subset of modules to closely approximate the opti-
mal reward.

To mitigate performance drops caused by the non-
stationary problems, we avoid dramatic changes in actions
between the pre-trained base network and the fine-tuned
base network by using a regularization loss. Let B =
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{(s, τ,K,m0:ti−1), m̂ti , r)i}i≤n be a sample batch from
replay buffer Dims. The regularization loss LRG is defined
as

EB [∥π̄base(s, τ,mfull)− πbase(s, τ,m0:ti)∥] (8)

where π̄base is the pre-trained base network without ad-
ditional learning. The module selection mfull implies that
whole modules of the base network are selected. Further-
more, we combine Reptile [28], a meta-RL algorithm, with
REINFORCE [36]. The policy loss for the iterative module
selection network LIMS is defined as

EB

[
n∑

i=1

log πims(m̂ti |si, τ,K,m0:ti−1) ·Gi

]
. (9)

Here, Gi is the discounted cumulative sum of rewards at
timesteps i. Given that πk

ims is the result of k updates from
πims with the sample batch relative to the current πbase, the
update for πims is executed with the step-size parameter ϵ.

πims ← πims + ϵ(πk
ims − πims) (10)

The joint learning procedure of the base network and the
iterative module selection network is illustrated on the left
side of Figure 2, with details provided in Algorithm 1.

5. Distillation-based Optimization
We describe two schemes tailored for device-specific adap-
tation, the knowledge distillation for the module selection
network and the few-shot learning for the device adapter. To
enhance the efficiency of the module selection network, we
reconstruct it with single-step inference through knowledge
distillation. While the iterative module selection network
shows superior performance in the large action space, its
inference often incurs excessive delays and computational
loads compared to the base network. The module selection
network, denoted as πms, takes a B = {(s, τ,K)i}i<n from
replay buffer Dms as input in a single step. To train πms
based on πims, we use LMTRL in Eq. (3), with the knowledge
distillation loss LKD defined as

EB

[
∥πms(s, τ,K)−

K∑
i=1

πims(s, τ,K,m0:i−1)∥

]
. (11)

This distillation not only ensures the maintenance of the
module selection performance but also considerably re-
duces the inference time with the module selection network.

6. Few-Shot Device Adaptation
To make our model adaptable under various time constraints
for a specified device, we employ a device adapter that can
manipulate the inference of the module selection network.
This device adapter takes a time constraint, determining the

Algorithm 2 Distillation-based optimization
Multi-task environment env, device D, time-constraint c
Number of modules in base network N , timesteps t
Base network πbase, Iterative module selection network πims

Module selection network πms, Device adapter πda

Inference time TD for device D
Dataset Dms,Dda = ∅, Learning rate λms, λda

/* Distillation-based optimization of πms */
loop

t = 0, s0, τ0 = env.reset()
K ∼ Uniform({1, ..., N})
loop

mt = πms(st, τt,K), at = πbase(st, τt,mt)
m0:K =

∑K
i=0 πims(st, τt,K,m0:i)

st+1, τt+1, rt = env.step(a)
rt = rt − ||mt −m0:K ||2
Dms ← Dms ∪ {((st, τt,K),mt, rt, (st+1, τt+1,K))}
πms ← πms − λms · ∇(LMTRL + LKD) using (3), (11)
t = t+ 1

end loop
end loop
/* Few-shot adaptation through device adapter πda */
loop

t = 0, s0, τ0 = env.reset()
K ∼ Uniform({1, ..., N})
loop

ct, at = TD(πbase(st, τt, πms(st, τt,K)))
st+1, τt+1, rt = env.step(at)
Dda ← Dda ∪ {(K, ct)}
πda ← πda − λda · ∇LDA using (12)
t = t+ 1

end loop
end loop

number of modules to use, ensuring that it does not vio-
late the constraint. By using the adapter, time constraints
are directly grounded as values within the network, enabling
MoDeC to perform the constraint-aware inference.

To train the device adapter πda, we use a pre-trained base
network πbase and distilled module selection model πms with
a loss function specifically designed to accommodate the
constraints of the current device. For a given device, we
collect a model inference dataset Dda and sample batch de-
noted as B = {(K, c)i}i<n, where K is the number of mod-
ules to use and c is the inference time of MoDeC when us-
ing only K modules. The device adapter is optimized by
LDA.

EB [∥πda(c)−K∥ · (1− p)] (12)

Here, p represents the penalty weights applied when the de-
vice adapter predicts the number of modules exceeding K;
otherwise, p is set to 0.

The procedure of distillation-based optimization and
few-shot device adaptation is illustrated on the right side
of Figure 2, with details provided in Algorithm 2.
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Table 1. Performance for Meta-world single task in the success rate with 95% confidence intervals: the best performance is in bold.

Device Constraint DRNet D2NN DS-Net RL-AA MoDeC
Success rate FLOPs Success rate FLOPs Success rate FLOPs Success rate FLOPs Success rate FLOPs

Orin

8 ms - - 26.7± 3.9% 62M 34.8± 11.7% 25M 35.4± 4.4% 149M 57.5± 9.9% 92M
10 ms 18.0± 4.5% 190M 27.3± 3.5% 62M 30.5± 9.3% 159M 34.9± 5.0% 149M 65.0± 13.4% 151M
12 ms 18.0± 4.5% 190M 32.0± 4.4% 110M 31.8± 12.7% 403M 41.2± 4.1% 355M 75.0± 9.4% 229M
14 ms 38.1± 10.6% 364M 54.0± 6.9% 176M 31.5± 9.9% 567M 47.1± 5.0% 360M 74.5± 14.2% 254M
16 ms 39.8± 11.7% 491M 68.0± 8.9% 284M 30.0± 8.1% 758M 47.3± 5.9% 365M 74.5± 14.2% 254M

Xavier

12 ms - - 27.3± 4.2% 62M 31.0± 9.5% 25.48M 33.4± 5.3% 149M 50.0± 7.5% 92M
15 ms 18.0± 4.5% 190M 36.0± 6.8% 62M 30.0± 8.5% 78M 32.1± 4.9% 205M 56.0± 9.4% 151M
18 ms 20.0± 6.7% 243M 38.2± 9.0% 62M 26.0± 6.9% 159M 41.3± 4.4% 355M 86.0± 9.7% 214M
21 ms 20.0± 6.7% 243M 33.8± 5.9% 160M 29.3± 8.8% 403M 45.7± 8.5% 365M 80.0± 13.5% 254M
24 ms 38.0± 10.7% 391M 69.6± 9.0% 284M 28.0± 7.4% 567M 48.0± 6.4% 365M 80.0± 13.5% 254M

Nano

40 ms - - 30.0± 7.5% 62M 32.0± 6.7% 78M 32.1± 6.1% 149M 40.0± 9.2% 114M
46 ms 18.0± 4.5% 190M 24.1± 6.0% 82M 30.7± 4.0% 159M 40.4± 7.7% 355M 47.5± 13.2% 158M
52 ms 37.9± 10.5% 320M 38.0± 12.5% 82M 28.7± 3.9% 403M 42.3± 5.3% 355M 72.5± 10.2% 214M
58 ms 40.9± 10.3% 485M 38.7± 10.3% 180M 28.7± 4.5% 567M 46.1± 4.9% 365M 65.0± 9.2% 258M
64 ms 42.0± 12.5% 539M 68.7± 5.5% 269M 26.7± 3.9% 758M 46.9± 4.4% 365M 65.0± 9.2% 258M

7. Evaluation

7.1. Environments and Devices

(a) Meta-world (b) CARLA (c) AI2THOR

Figure 3. Environments

Meta-world. We use the MT10 benchmark (i.e., 10 differ-
ent control tasks) in Meta-world [42], where each task is
given a specific manipulation objective such as opening a
door or closing a window. We compare the performance of
robot manipulation tasks under time constraints.
CARLA. To demonstrate mission-critical scenarios where
the inference time is of critical importance, we use the
autonomous driving simulator CARLA [7]. Models are
trained for autonomous driving tasks with vision-based
states at a multi-task configuration with 12 different maps.
AI2THOR. We use AI2THOR [16], where an agent navi-
gates the map with egocentric vision states, placing various
objects to complete a rearrangement task. The simulation
environments are represented in Figure 3. In our evaluation,
we test several embedded devices, each with distinct re-
sources and computational capabilities. The devices include
Nvidia Jetson Nano (Nano), Nvidia Jetson Xavier NX 8GB
(Xavier), and Nvidia Jetson AGX Orin 32GB (Orin), with
the Nano being the least powerful, followed by the Xavier
and the Orin being the most powerful. By testing on these
devices with varying levels of capabilities, we can better
understand how our framework adapts to different resource
limitations. This is crucial in embodied AI, where deploy-
ment environments can greatly vary in terms of available

computational resources. The detailed device specifications
are in Table 2.

Table 2. Device Specification

Device Performance CPU Max Freq. GPU Max Freq. Memory
Orin 275 TOPs 2.2 GHz 1.3 GHz 32 GBs

Xavier 21 TOPs 1.9 GHz 1.1 GHz 8 GBs
Nano 472 GFLOPs 0.9 GHz 0.6 GHz 4 GBs

7.2. Comparisons

We use several dynamic model adaptation methods as base-
lines.
• Dynamic Routing Network (DRNet) [2] is a network

comprising serially connected cells, each corresponding
to a directed acyclic graph of nodes. It optimizes by learn-
ing to select paths between the nodes through a loss func-
tion that balances the inference time and performance.
Unlike MoDeC which adapts a single model to differ-
ent conditions, we use individual networks specifically
learned for each constraint condition. We consider DRNet
as a baseline for dynamic (adaptive) inference models.

• Dynamic Deep Neural Networks (D2NN) [23] is a mod-
ular neural network that exploits the accuracy-efficiency
trade-off. It exploits RL in module selection, using the re-
wards calculated according to performance and inference
time. Unlike MoDeC, we use individual networks specif-
ically learned for each constraint condition. We consider
D2NN as an RL baseline tailored for trade-off conditions.

• Dynamic Slimmable Network (DS-Net) [18] is a dynamic
network model, in which an internal gater network deter-
mines the weight ratio for convolution neural layers to
slice the network for inference. To align with our prob-
lem formulation, we modify the gater network (taking the
ratio as input) in a way of conducting instance-wise dy-
namic inference, similar to our approach. In our compari-
son, DS-Net serves as a baseline for adaptive models that
handle multiple constraints within a single policy.

• RL via Asymmetric Architecture (RL-AA) [4] is a hi-
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Table 3. Performance for Meta-world multi-task in the success rate with 95% confidence intervals

Device Constraint DRNet D2NN DS-Net RL-AA MoDeC
Success rate FLOPs Success rate FLOPs Success rate FLOPs Success rate FLOPs Success rate FLOPs

Orin

8 ms − - 20.0± 6.7% 92M 11.7± 7.1% 25M 15.7± 6.9% 149M 27.1± 8.3% 92M
10 ms 12.0± 4.2% 119M 18.0± 5.6% 151M 11.6± 4.4% 159M 15.3± 7.1% 149M 30.3± 10.1% 151M
12 ms 26.7± 5.4% 488M 17.0± 4.8% 229M 23.3± 8.5% 403M 18.5± 8.6% 355M 34.9± 9.7% 229M
14 ms 26.7± 6.1% 488M 51.9± 10.4% 254M 16.7± 8.7% 567M 26.1± 9.1% 355M 53.0± 6.8% 254M
16 ms 30.1± 4.3% 636M 54.1± 8.4% 254M 25.0± 5.7% 758M 28.3± 7.1% 365M 53.0± 6.8% 254M

Xavier

12 ms − - 20.4± 6.7% 92M 18.3± 7.9% 25M 14.0± 7.8% 149M 26.7± 7.6% 92M
15 ms 10.3± 3.2% 119M 23.5± 6.9% 151M 16.7± 5.4% 78M 14.9± 5.3% 149M 29.5± 10.1% 151M
18 ms 19.8± 4.5% 488M 17.3± 4.8% 214M 18.3± 4.2% 159M 23.1± 9.2% 355M 28.1± 9.1% 214M
21 ms 18.8± 3.7% 488M 56.8± 10.1% 254M 21.7± 10.3% 403M 28.1± 6.2% 365M 53.6± 5.9% 254M
24 ms 21.2± 3.8% 636M 53.0± 9.0% 254M 15.0± 5.8% 567M 27.6± 6.5% 365M 53.6± 5.9% 254M

Nano

40 ms − - 23.5± 15.2% 114M 10.4± 8.9% 78M 16.1± 6.1% 149M 27.0± 7.5% 114M
46 ms 10.0± 0.8% 119M 17.5± 8.0% 158M 9.9± 2.1% 159M 23.4± 7.0% 355M 23.0± 5.8% 162M
52 ms 23.3± 5.4% 488M 20.0± 18.3% 214M 13.3± 5.3% 267M 24.1± 6.5% 365M 28.1± 8.1% 217M
58 ms 16.7± 4.9% 488M 52.3± 8.0% 258M 20.0± 9.4% 567M 27.4± 8.6% 365M 53.9± 6.0% 234M
64 ms 23.3± 6.1% 636M 52.5± 17.9% 258M 20.0± 5.4% 758M 26.9± 6.9% 365M 62.1± 4.5% 254M

Table 4. Performance on CARLA in the success rate with 95% confidence intervals

Device Constraint DRNet D2NN DS-Net RL-AA MoDeC
Success rate FLOPs Success rate FLOPs Success rate FLOPs Success rate FLOPs Success rate FLOPs

Orin

8 ms 0.0± 0.0% 16M 0.0± 0.0% 32M 0.0± 0.0% 3M 0.0± 0.0% 34M 8.3± 5.0% 31M
10 ms 0.0± 0.0% 16M 0.0± 0.0% 36M 39.9± 9.0% 10M 0.0± 0.0% 34M 49.7± 9.1% 47M
12 ms 70.1± 6.1% 27M 16.6± 6.8% 42M 71.1± 7.2% 36M 33.1± 5.9% 42M 83.1± 6.8% 60M
14 ms 68.2± 5.4% 48M 41.6± 8.9% 57M 66.7± 8.6% 76M 75.6± 4.9% 72M 79.2± 6.7% 73M
16 ms 70.3± 5.6% 48M 83.3± 6.7% 72M 76.7± 7.7% 132M 77.1± 5.1% 72M 85.8± 5.8% 73M

Xavier

12 ms 0.0± 0.0% 16M 0.0± 0.0% 36M 0.0± 0.0% 3M 0.0± 0.0% 34M 12.3± 6.9% 35M
15 ms 0.0± 0.0% 16M 0.0± 0.0% 36M 35.5± 5.0% 10M 0.0± 0.0% 34M 41.7± 7.7% 47M
18 ms 52.1± 13.1% 27M 27.8± 8.6% 48M 77.1± 9.1% 36M 36.1± 5.1% 42M 80.8± 6.7% 59M
21 ms 71.1± 7.3% 48M 41.7± 9.4% 54M 75.2± 7.9% 76M 58.1± 4.8% 58M 79.1± 7.3% 71M
24 ms 72.2± 8.6% 48M 89.3± 4.4% 72M 83.3± 6.8% 132M 76.4± 5.9% 72M 83.3± 6.7% 73M

Nano

40 ms 0.0± 0.0% 16M 0.0± 0.0% 16M 0.0± 0.0% 3M 0.0± 0.0% 34M 10.4± 4.1% 35M
46 ms 0.0± 0.0% 16M 0.0± 0.0% 36M 0.0± 0.0% 3M 32.7± 5.4% 42M 35.5± 10.3% 43M
52 ms 70.7± 5.6% 27M 51.2± 6.6% 54M 23.1± 15.3% 10M 34.5± 4.6% 42M 77.1± 5.3% 56M
58 ms 69.1± 7.1% 48M 83.5± 7.0% 72M 59.1± 11.2% 32M 74.1± 4.3% 72M 82.0± 5.7% 71M
64 ms 72.9± 5.3% 48M 85.8± 6.1% 72M 65.5± 6.7% 36M 75.3± 5.6% 72M 81.9± 6.1% 73M

Table 5. Performance on AI2THOR in the success rate

Device Constraint DS-Net MoDeC
Seen Unseen Seen Unseen

Orin

8 ms 98.7% 5.8% 97.9% 21.2%
10 ms 96.3% 5.2% 98.0% 45.4%
12 ms 98.5% 4.8% 97.5% 41.7%
14 ms 96.3% 6.0% 98.2% 71.3%
16 ms 97.5% 7.4% 97.9% 81.2%

Xavier

12 ms 97.1% 6.2% 97.2% 20.7%
15 ms 95.7% 8.0% 98.7% 44.0%
18 ms 98.1% 7.4% 97.5% 45.2%
21 ms 97.7% 7.0% 98.0% 69.3%
24 ms 98.0% 8.2% 98.1% 79.1%

erarchical policy to dynamically adjust the module us-
age. The low-level policy consists of two models, each
with a small and large scale, and the high-level policy de-
termines which policy to use. To adapt to various time-
constrained conditions, we include a wider range of low-
level policies, each with varying inference time. We use
RL-AA as a baseline for resource-adaptive RL methods.

7.3. Adaptation Performance

Meta-world Single-task. For 5 individual tasks in MT10,
Table 1 shows the performance under various time con-

straints (in the column of “Constraint”), achieved by our
MoDeC and the baselines (DRNet, D2NN, DS-Net, RL-
AA). Specifically, we evaluate the average success ratio and
computation load (in FLOPs) within the constraint viola-
tion rate of 1% for 3 different devices (in the column of
“Constraint”). As shown, MoDeC achieves superior per-
formance for most configurations. Compared to D2NN,
the most competitive baseline, MoDeC achieves a 25.1%
gain. While sharing a common base network structure with
D2NN, MoDeC shows better performance, as it employs
the iterative module selection and distillation. More impor-
tantly, D2NN needs to be retrained for each configuration
(i.e., each constraint and device setting). MoDeC achieves
this performance superiority across different configurations,
using only a single model without retraining, demonstrat-
ing its adaptation capabilities to different time and resource
constraints.

Meta-world Multi-task. Table 3 compares the perfor-
mance of the MT10 multi-task. MoDeC demonstrates con-
sistently its performance superiority, achieving an average
performance gain of 5.7% over D2NN, the most compet-
itive baseline. This specifies the adaptation capabilities of
MoDeC, achieved not only through module selection but
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also through multi-task learning for the base network.
CARLA. Table 4 shows the performance for autonomous
driving tasks across 12 different maps in CARLA, where
delayed inference often degrades the performance and poses
risks; we implement such a strategy that upon a constraint
violation (i.e., inference delay), the action at the previous
timestep is reused. MoDeC shows 14.4% higher perfor-
mance than DS-Net, which is the most competitive compar-
ison in this experiment. Due to the direct impacts of con-
straint violations in CARLA, the adaptive inference is more
beneficial, compared to the Meta-World tasks. This leads to
better performance by the methods capable of constraint-
aware inference, such as ours and DS-Net. DS-Net shows
a significant performance drop in Nano, which is a small
memory device; DS-Net requires a large computation load
per single layer, unlike ours.
AI2THOR. Table 5 compares the performance for
AI2THOR’s complex navigation tasks, where “Seen” refers
to initial object positions encountered during training and
“Unseen” refers to those not during training. Both MoDeC
and DS-Net perform well in the seen configurations, but
MoDeC demonstrates significantly better performance in
the unseen configurations, showing a performance gap rang-
ing from 15.4% to 70.8%. In MoDeC, the soft modular-
ization combined with module selection facilitates effective
module combinations for different tasks and constraints,
rendering robust performance in unseen configurations.

7.4. Ablation Study

(a) Success Rate (b) Inference Time

Figure 4. Effect of Distillation

Distillation. Figure 4 clarifies the effects of distillation,
where MoDeC-I denotes a MoDeC variant without distil-
lation, which adopts only the iterative module selection net-
work; MoDeC-O denotes another variant, which directly
learns the single-step model selection (without distillation).
As shown, there is a significant difference in inference time
between MoDeC and MoDeC-I as the module utilization
increases in (b), while MoDeC (with distillation) achieves
higher performance in (a). This is because the iterative mod-
ule selection network is learned to infer as closely as possi-
ble to the original action under a limited module utilization,
excluding environment rewards. When using both environ-
ment rewards and action distance, we observe a decline in

the performance of the iterative module selective network.
Due to changes in the environment reward, the actions of
the iterative module selection network are not properly eval-
uated. The performance decline in MoDeC-O stems from
learning the module selection, which requires extensive ex-
ploration, yet is difficult in a single step without distillation.

Figure 5. Effect of Base Network Architecture

Base network architecture. Figure 5 illustrates the effects
of the modular base network architecture, where its number
of layers can be configured differently. In our implemen-
tation, the base network has 4 layers with 4 modules per
layer, each represented as 4 × 4 in the figure. We compare
this with other variants, 2 × 8 and 8 × 2, in Meta-World.
MoDeC shows the best performance by 4 × 4, which is a
hyperparameter in the base network architecture.

8. Conclusions
In this work, we presented MoDeC, which allows embodied
agents to effectively adapt to time constraints on different
target devices. The modular multi-task learning in MoDeC
enables adaptive inference to a wide range of operational
conditions including device resources, time constraints, and
task specifications of embodied agents’ multi-task settings,
by dynamically adjusting the inference within a single
model to satisfy the operational requirement. Through ex-
periments with manipulation, autonomous driving, and ob-
ject navigation scenarios of embodied agents, we verified
that MoDeC is capable of handling those control tasks
through rapid model adaptation to various operational con-
ditions that can change over time. Our future work is to
tackle the challenge of learning complex constraints from
instructions, including safety and resource limitations.
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