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Abstract

Recently, integrating video foundation models and large

language models to build a video understanding system

can overcome the limitations of specific pre-defined vision

tasks. Yet, existing systems can only handle videos with very

few frames. For long videos, the computation complexity,

memory cost, and long-term temporal connection impose

additional challenges. Taking advantage of the Atkinson-

Shiffrin memory model, with tokens in Transformers being

employed as the carriers of memory in combination with

our specially designed memory mechanism, we propose

the MovieChat to overcome these challenges. MovieChat

achieves state-of-the-art performance in long video under-

standing, along with the released MovieChat-1K bench-

mark with 1K long video and 14K manual annotations for

validation of the effectiveness of our method. The code,

models and data can be found in https://rese1f.

github.io/MovieChat.

1. Introduction

Recent advances in Large Language Models

(LLMs) [12, 18, 44, 59, 61] acheive great success in

Natural Language Processing (NLP). It is a natural progres-

sion to introduce multi-modality [15] into LLMs and turn

it into Multi-modal Large Language Models (MLLMs),

which is able to conduct multimodal rationalization and

understanding. MLLMs have shown incredible emergent

capabilities in various multimodal tasks such as perception

(e.g., count, OCR) [1, 30, 31, 40, 65, 81], commonsense

reasoning [23, 25, 30, 31, 33, 40, 58, 81], and code reason-

ing [19, 22, 23, 36, 38, 74], resulting in a potential path to
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Figure 1. VRAM cost under gigabyte (GB) (y-axis) v.s. frame

number (x-axis) comparison. We test the visual-only inference of

all methods at a resolution of 224× 224 without frame sampling.

While the previous method can only support around 100 frames

of inference, MovieChat can handle videos with >10K frames on

a 24GB graphics card. MovieChat has a 10000× advantage over

other methods in terms of the average increase in VRAM cost per

frame (21.3KB to ∼ 200MB per frame).

Artificial General Intelligence (AGI). Compared to LLMs

and other task-specific models, MLLMs provide a more

human-like interpretation of the scenarios, a user-friendly

interface for interaction, and a broader range of capabilities.

Existing vision-centric MLLMs follow the paradigm that

utilizing pre-trained LLMs and visual encoder with addi-

tional learnable modules (Q-former [19, 31, 33, 78] or sim-

ple projection layer [20, 36, 40, 58]). In video field, some

previous works [40,78] follow this paradigm to build video

MLLMs, while works in the other paradigm [34, 63] com-

bine existing visual perception tools and LLMs through Ap-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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plication Programming Interface (API) to build a system

without training. Yet, previously, there is no exploration of

a model or system based on long videos (over one minute),

and there is also a lack of a standardized benchmark to eval-

uate the capabilities of these systems.

In this paper, we present MovieChat, a novel framework

that integrates vision models and LLMs to conduct long

video understanding tasks. We claim that the computation

complexity, memory cost, and long-term temporal connec-

tion are the main challenges for long video understanding.

Atkinson-Shiffrin memory model [5] proposes that short-

term memory functions as a buffer of long-term memory,

serving as a processor for the encoding of information into

long-term memory. Inspired by this, we propose a mem-

ory mechanism to deal with long video understanding tasks,

which includes a rapidly updated short-term memory and a

compact thus sustained long-term memory. We use a slid-

ing window approach to extract video features and repre-

sent them in token form, which are then sequentially fed

into the short-term memory frame by frame. The short-

term memory has a fixed length, and when it reaches its

set limit, the earliest tokens are popped and consolidated

into the long-term memory. After passing through a projec-

tion layer, the video representation is inputted into a large

language model for interaction with the user. As shown in

Fig. 1, our proposed MovieChat mechanism outperforms

other existing methods in terms of Video Random Access

Memory (VRAM) cost. We also release a new bench-

mark, MovieChat-1K, with 1K long videos and 13K manual

question-answering pairs for validation of the effectiveness

of our proposed MovieChat.

The contributions of this work are summarized as:
• We present MovieChat, a novel framework that in-

tegrates vision models and LLMs, which is the first

to support long video (>10K frames) understanding

tasks.

• We propose an effective memory management mecha-

nism to reduce the computation complexity and mem-

ory cost, while enhancing the long-term connection.

• We release the first long video understanding bench-

mark, MovieChat-1K, with manual annotations and

conduct extensive quantitative evaluation and case

studies to evaluate the comparable performance of

both understanding capability and inference cost.

2. Related Works

2.1. Multi­modal Large Language Models

LLMs [12,18,44,59,61,62] have achieved great success

in natural language processing (NLP) tasks recently. Many

works try to build MLLMs [1, 25, 30, 31, 74, 81] by com-

bining models of other modalities. Flamingo [1] bridges

powerful pre-trained vision-only and language-only mod-

els and achieves state-of-the-art performance with few-shot

learning. MiniGPT-4 [81] aligns a frozen visual encoder

with a frozen LLM, Vicuna [18], using just one projection

layer to realize the system. VideoChat [34] integrates video

foundation models and LLMs via a learnable neural inter-

face, excelling in spatiotemporal reasoning, event localiza-

tion, and causal relationship inference. Video-LLaMA [78]

further leverages pre-trained models ImageBind [24] and

LLaMA [61], bootstraping cross-modal training in videos

following BLIP-2. Yet, these methods fail to handle long

video understanding because of high computation complex-

ity, large memory cost, and weak long-term temporal con-

nection. Therefore, our main effort is to introduce an effec-

tive memory mechanism to overcome these challenges.

2.2. Long Video Understanding

Understanding long videos is a challenging task in

computer vision. Prior arts use 3D CNN for long-

term feature bank [66], object/human-centric motion [47,

67], or other forms [51, 68] as video representations.

Building long-form video understanding datasets is chal-

lenging and rarely explored. [54] captures large scale

data from Kinetics-400 [14], but only for generic event

boundary detection tasks. [55] creates a language ground-

ing benchmark from audio descriptions of movies, but

it lacks long-term understanding evaluation. There are

also several datasets of video-caption/description pairs

among various domains, such as cooking (e.g., MPII

Cooking [48–50] and TACoS [45, 46]), instruction (e.g.,

HowTo100M [42] and HiREST [76]), Ego [41], and movie

(e.g., MovieQA [60] and MovieNet [28]) from different

sources such as YouTube [16,42,77], Twitter [6–9], and In-

ternet [10]. Yet, those datasets lack diverse and fine-grained

dense captioning for long videos.

2.3. Memory Models in Vision Tasks

There are some prior works exploring memory mod-

els [56] in various vision tasks in videos, such as video ob-

ject segmentation (VOS) [17,27,52,53], multi-object track-

ing (MOT) [2,13,26,69], visual object tracking (VOT) [35,

39, 73, 80], and action understanding [64]. MeMOT [13]

builds a large spatiotemporal memory that stores the past

observations of the tracked objects. XMem [17] develops

an architecture that incorporates multiple independent yet

deeply-connected feature memory storage to handle long

videos with thousands of frames. We learn from the experi-

ence of those prior arts and further adopt an effective mem-

ory mechanism in combination with LLMs. Our method

focuses on reducing the redundancy of visual tokens in the

video and building a memory mechanism to pass the infor-

mation among a large temporal range.
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Figure 2. Illustration of MovieChat. MovieChat extracts video features with a sliding window and represents them in token form, which

are then sequentially fed into the short-term memory frame by frame. When the fixed-length short-term memory reaches its preset limit, the

earliest tokens are popped and consolidated into the long-term memory. MovieChat incorporates two distinct inference modes: the global

mode, which exclusively utilizes the long-term memory, and the breakpoint mode, which additionally incorporates the current short-term

memory as part of the video representation. The breakpoint mode allows for understanding the video at a specific moment in time. After

passing through a projection layer, the video representation is inputted into a large language model for interaction with the user.

3. MovieChat

3.1. Overview

Our proposed method, MovieChat, comprises several

key components, including the frame-wise visual feature

extractor, the short-term and long-term memory modules,

the video projection layer, and the LLM, as illustrated in

Fig. 2. MovieChat is designed for ultra-long videos (>10K

frames) understanding through interactive dialogue with the

user. To address the impractical storage demands of concur-

rently storing a vast number of frames in both GPU mem-

ory and RAM, we employ a sliding window approach to

efficiently process the video. The short-term memory mod-

ule embeds dense tokens with sliding window and the long-

term memory module periodically updates. MovieChat sup-

ports two inference modes: Breakpoint mode is used to un-

derstand a specific moment in the video, providing insights

and answers based on that particular frame or scene; Global

mode, on the other hand, is employed to comprehend the

entire video as a whole, enabling a comprehensive under-

standing of the overall content and context.

3.2. Visual Feature Extraction

For visual feature extraction, instead of utilizing video-

based foundational models such as ViViT [4] or Video-

Swin [37], we simply use an image-based model to get

frame-wise feature in the form of tokens. To be specific,

we utilize pre-trained models as our visual feature extrac-

tor, including the ViT-G/14 from EVA-CLIP [21] and the

Q-former from BLIP-2 [32]. This is mainly because 1) there

is few video foundation model that makes good alignment

with text, and 2) our proposed memory mechanism can ef-

fectively capture temporal features. Given a raw video, the

visual input v ∈ Z
T×3×H×W is a sequence of T RGB

frames of size H ×W sampled from the video. The visual

features are extracted in a sliding window manner, which

could be formulated as

Bn = {xi = V(vi) | ∀i = 1, ..., C}, n = 1, ..., ⌈
T

C
⌉, (1)

where Bn is the n-th video clip feature within the slid-

ing window spanning C frames. V(·) is the visual feature

extractor, taking as input a single frame vi ∈ Z
3×H×W . xi

∈ R
N×D denotes N extracted visual tokens with respect to

each frame, and D is the feature dimension of each token.

3.3. Short­term Memory

Short-term memory stores the frame tokens in a tem-

porary fixed-length buffer. The previously extracted visual

features by sliding window G times without further process-

ing are used to construct short-term memory, which can be

formulated by:

S =
⋃

n

Bn = {xi | ∀i = 1, ...,K}, n = 1, .., G, (2)
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Algorithm 1 Memory consolidation

Require: S ▷ short-term memory

1: while len(S)>RL do ▷ iterative merge

2: for xi in S do

3: s← sim(xi,xi+1) ▷ tokens similarity

4: end for

5: m← max(s) ▷ the maximum value index

6: xm ← merge(xm,xm+1) ▷ merge

7: del xm+1

8: end while

where S is short-term memory, and K is equal to C × G.

Note that we set short-term memory to contain a fixed

length of K frames since the role of short-term memory

is to assist in video understanding based on previous short-

term contextual information.

The update strategy for short-term memory is based on

the First-in-First-out (FIFO) queue. As a new batch of vi-

sual tokens enters, when the short-term memory reaches its

capacity, we pop the currently stored frames to the memory

consolidation module and clear the short-term memory. The

output video feature obtained from the consolidation mod-

ule augments the long-term memory; on the other hand, it

reinitializes the short-term memory with this feature. The

initialization aims at communicating the information be-

tween different sliding windows, thereby achieving more

efficient compression.

3.4. Long­term Memory

Long-term memory can effectively avoid the problem of

catastrophic knowledge forgetting, which is crucial for han-

dling long video understanding tasks. The features stored

in short-term memory are dense tokens, but due to the lim-

itations of GPU memory and computation cost, storing all

the tokens dropped from short-term memory into long-term

memory buffer in sequence is infeasible. Besides, we ob-

serve significant temporal redundancy in videos, where ac-

tivities span multiple frames with minimal visual changes.

To this end, we propose a method to merge adjacent similar

frames to simplify video feature representation and acceler-

ate video encoding. This method transforms the dense to-

kens to the sparse memories, which are stored in long-term

memory.

As shown in Algorithm 1, we conduct memory consol-

idation by merging the most similar tokens in the adjacent

frames following ToMe [11] periodically. We calculate the

average cosine similarity s among N embedded tokens,

as the tokens can well summarize the information of each

frame:

s =
1

N

N
∑

j=1

[

cos(xj
i ,x

j
i+1

)
]

, (3)

Our goal is to keep RL frames after every merge op-

eration, which also embeds rich information stored in the

long-term memory. RL is the hyper-parameter to control

the trade-offs between performance and efficiency. There-

fore, we greedily merge each set of adjacent frames with

the highest similarity via weighted averaging. The merge

operation is iteratively conducted until the token count

reaches the predefined value set RL for each consolida-

tion operation, resulting in the output video feature v′ ∈
Z
RL×3×H×W . The above algorithm is parameter-free, and

can be easily plugged into a frame-based video encoder.

Although the frame similarity calculation brings additional

computing overhead, it is negligible compared to the effi-

ciency gained by reducing stored frames.

Extend positional encoding. For long-term memory, the

number of tokens exceeds the maximum length of the po-

sitional encoding from the pre-trained model. Thus, our

model utilizes the positional encoding mechanism follow-

ing BERT [29], which results in a portion exceeding the

length threshold n without available positional encoding. In

order to handle long enough long memory, we adopt the hi-

erarchically decomposed positional encoding method pro-

posed by Su et al. [57], which allows to extend the absolute

positional encoding of length from n to n2.

3.5. Inference

Previous methods always use the representation of

the whole video to conduct understanding and question-

answering, which may fail in localizing specific moment

especially in long videos. To this end, we propose two in-

ference modes, global and breakpoint, for long video under-

standing task as follows.

Global mode. Global mode is defined as the understand-

ing and question-answering for the whole video. In this

case, we only use long-term memory L as the video rep-

resentation V.

Breakpoint mode. Breakpoint mode is distinctly defined

as understanding specific moments in a video. Since events

inherently possess continuity, we need to consider not only

the information directly related to the moments stored in

short-term memory S but also the information indirectly

related stored in long-term memory L. Based on this, we

hypothesize that when querying the movie at a specific mo-

ment t, the video representation V should be the aggrega-

tion of L, S , and the current video frame feature xt. We

find that simply concatenating these items yields excellent

performance and leave further exploration of additional ag-

gregation choices for future work.

Subsequently, the video representation V goes through a

Q-former and a linear projection layer before being fed into
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Figure 3. Video-text statistics in MovieChat-1K. It encompasses a diverse set of categories, gathered from multiple question types and

containing a diverse distribution of clip durations. We annotate the video categories that account for more than 4.5% of the total (the

complete list of video categories and their percentages in Appendix). “frm” represents the number of video frames.

Figure 4. Word Cloud of the answer set in MovieChat-1K.

the LLM O, which can be formulated as:

A = O(Q,P(V)), (4)

where P is the projection from visual space to text space.

A represents the answer or instruction, and Q is employed

to denote the question, respectively.

4. A New Benchmark: MovieChat-1K

Previous works on building long video understand-

ing benchmarks either focus on non-question-answering

tasks (e.g., language grounding [55], generic event bound-

ary detection [54], user engagement and movie meta-

data prediction [67], etc.) or lack long-form understand-

ing evaluation [28]. To better evaluate the performance of

MovieChat, we collect a new benchmark for long video un-

derstanding tasks, MovieChat-1K, which contains 1K high

quality video clips sourced from various movies and TV se-

ries with 14K manual annotations.

As shown in Fig. 3a, we collect videos from 15 pop-

ular categories with varying distribution, including docu-

mentary film, detective film, animation film, and so on.

Among these, each video comprises multiple alternating

scenes, contributing to a diverse and dynamic visual nar-

rative within the context of the collection. The visual rep-

resentation in Fig. 3b demonstrates the clip duration distri-

bution of MovieChat-1K. Over 90% of the videos exhibit a

Method
MSVD-QA MSRVTT-QA ActivityNet-QA

Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM [72] 32.2 – 16.8 – 24.7 –

Video Chat [34] 56.3 2.8 45.0 2.5 26.5 2.2

LLaMA Adapter [79] 54.9 3.1 43.8 2.7 34.2 2.7

Video LLaMA [78] 51.6 2.5 29.6 1.8 12.4 1.1

Video-ChatGPT [40] 64.9 3.3 49.3 2.8 35.2 2.7

MovieChat (Ours) 75.2 3.8 52.7 2.6 45.7 3.4

Table 1. Quantitative evaluation for short video question answer-

ing with GPT-3.5 [43]. MovieChat achieves comparable perfor-

mance even it is not specifically designed for for short video

question-answering tasks. The best result is highlighted in bold,

and the second best is underlined.

duration ranging from 10K to 12K frames, while 14.6% of

videos extending beyond 12K frames. Only 8.6% of videos

have duration less than 10k frames.

For each video, we manually set and provide 1 dense

caption for the whole video, 3 question-answering pairs for

global mode and 10 question-answering pairs with times-

tamps for breakpoint mode. Fig. 3c illustrates the dis-

tribution of question types in MovieChat-1K. Note that

MovieChat-1K is specifically designed for long video com-

prehension tasks, the majority of questions are open-ended,

with only a quarter classified as multiple-choice questions,

marked by initiators such as ‘Do,’ ‘Does,’ ‘Is,’ or ‘Are.’

We also compute the word distributions of our provided

question-answer pairs. As illustrated in Fig. 4, which in-

cludes common objects (people, clothes, etc.), time (day,

night, etc.), scenes (indoor, outdoor, etc.), and so on. More

statistics information can be found in appendix.

5. Experiments

We conduct quantitative and qualitative evaluations be-

tween MovieChat and previous methods. Additionally, we

perform ablation studies to investigate MovieChat. Experi-

mental settings and analyses can be found in appendix.
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Method CI DO CU TU CO

Video Chat [34] 2.23 2.50 2.53 1.94 2.24
LLaMA Adapter [79] 2.03 2.32 2.30 1.98 2.15
Video LLaMA [78] 1.96 2.18 2.16 1.82 1.79
Video-ChatGPT [40] 2.40 2.52 2.62 1.98 2.37

MovieChat (Ours) 2.76 2.93 3.01 2.24 2.42

Table 2. Quantitative evaluation for short video generation perfor-

mance with GPT-3.5 [43]. CI stands for correctness of informa-

tion, DO stands for detail orientation, CU stands for contextual un-

derstanding, TU stands for temporal understanding, and CO stands

for consistency. The best result is highlighted in bold, and the sec-

ond best is underlined.

5.1. Quantitative Evaluation

Short video question-answering. We use several widely

used open-ended datasets: MSVD-QA [70], MSRVTT-

QA [71], and ActivityNet-QA [75] for short video question-

answering tasks. The evaluation process is under the as-

sistance of LLM with the default hyper-parameter settings.

The accuracy and relative scores on a scale of 0 to 5 are

reported. Compared to previous methods [34, 40, 78, 79],

MovieChat achieves comparable performance even it is not

specifically designed for short video question-answering

tasks, as shown in Tab. 1.

Short video generative performance. Following [40],

we employ GPT-assisted evaluation to conduct a more com-

prehensive comparison of the text generation performance

between MovieChat and previous methods [34, 40, 72] on

processed ActivityNet-QA [75]. The evaluation pipeline

covers crucial metrics (including Correctness of Infor-

mation, Detailed Orientation, Contextual Understanding,

Temporal Understanding and Consistency) and assigns rela-

tive scores to the generated predictions on a scale of 1-5. We

present the results of the generation performance evaluation

in Tab. 2. The results reveal its competitive performance

across all key aspects compared to previous methods.

Long video question-answering. We evaluate the long

video question-answering performance of MovieChat with

our proposed MovieChat-1K. We split 1,000 videos into

training set (800), test set (100), validation set (100) and

only use test set for final performance evaluation. We

select three recent LLM-based video understanding mod-

els (e.g. Video Chat [34], Video LLaMA [78], and Video-

ChatGPT [40]) as the baselines. Yet, none of those methods

can support such long video (>10K frames). Therefore, to

accommodate their length limitations in global questions,

we uniformly sample from the original video up to the max-

imum frame count which can be officially supported by

each individual model. For breakpoint questions, we ex-

tend half of the maximum frame count before and after the

Method # Frames
Global Mode Breakpoint Mode

Accuracy Score Accuracy Score

Video Chat [34] 32 57.8 3.00 46.1 2.29

Video LLaMA [78] 32 51.7 2.67 39.1 2.04

Video-ChatGPT [40] 100 47.6 2.55 48.0 2.45

MovieChat (ours) 2048 62.3 3.23 48.3 2.57

Table 3. Quantitative evaluation for long video question answer-

ing on MovieChat-1K test set in global mode with the average of

GPT-3.5 [43], Claude [3] and human bling rating. HBR stands for

human blind rating. The best result is highlighted in bold, and the

second best is underlined.

Method CI DO CU TU CO

Video Chat [34] 3.04 2.75 3.09 3.00 3.21
Video LLaMA [78] 2.75 2.24 2.83 2.62 2.97
Video-ChatGPT [40] 2.37 2.30 2.58 2.49 2.69

MovieChat (Ours) 3.11 2.93 3.24 3.17 3.25

Table 4. Quantitative evaluation for long video generation per-

formance in global mode with the average of GPT-3.5 [43],

Claude [3] and human blind rating. CI stands for correctness of

information, DO stands for detail orientation, CU stands for con-

textual understanding, TU stands for temporal understanding, and

CO stands for consistency. The best result is in bold, and the sec-

ond best is underlined.

breakpoint (i.e., placing the breakpoint at the center frame).

To enhance the robustness of the results, we simulta-

neously employ GPT-3.5 [43] and Claude [3] as LLM as-

sistants, with the additional support of human blind rating.

We observe a discrepancy between the accuracy and relative

score generated by the previously LLM-assisted evaluation

method [40] for video question-answering tasks. However,

merely adjusting the prompt for the LLM cannot effectively

address this issue. Therefore, after obtaining the accuracy

and score from the LLM-assisted evaluation method, we

implement manual filtering to remove results with inconsis-

tent values, thus improving the reliability of our outcomes.

As shown in Tab. 3, compared to previous methods [34,

40,78], MovieChat reads more video frames. In both global

mode and breakpoint mode, our method maintains a perfor-

mance gain in terms of the average accuracy and score pro-

vided by LLM assistants and human blind rating. We com-

prehensively evaluate MovieChat’s question-answering per-

formance across different question types compared to base-

lines. The results indicate that our approach outperforms

the baselines in both open-ended and true-false questions.

Long video generative performance. We compare the

quality of answers generated by MovieChat and previous

methods [34, 40, 78] in long video question-answering on

MovieChat-1K. As shown in Tab. 4, with the average score
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Figure 5. Hyperparameter ablation studies on how length of long-term memory buffer llength, short-term memory buffer lshort, consoli-

dation length lmerge and short-term initialization affect the performance of MovieChat on long video understanding. We set lshort = 16,

lmerge = 2 in ablation study of long-term memory, llong = 256, lmerge = 2 in ablation study of short-term memory and lshort = 16 in

ablation study of consolidation length and short-term initialization.

Method
Global Mode Breakpoint Mode

Accuracy Score Accuracy Score

w/o MM 51.4 3.10 38.2 2.31

base 67.8 3.81 50.4 2.96

Table 5. Ablation study on how memory mechanism (MM) affects

the long video question answering. The best result is in bold.

provided by GPT-3.5 [43], Claude [3] and human bling rat-

ing, our approach continues to generate higher-quality an-

swers even as the video contents become more extensive.

5.2. Ablation Study

Short-term and long-term memory buffers. As

MovieChat incorporates a memory mechanism including

short-term memory and long-term memory, it is imper-

ative to evaluate how the proposed memory mechanism

influences the performance. Tab. 5 and Tab. 6 provide the

memory-dependent performance of MovieChat for long

video question-answering and generative tasks with the

average results of GPT-3.5 [43], Claude [3], and human

blind rating. MovieChat with the memory mechanism

significantly outperforms the memory-independent variant,

which signifies the importance of memory mechanisms.

Hyper-parameter ablations. We perform a series of hy-

perparameter ablations based on the MovieChat-1K dataset

to better understand MovieChat. Fig. 5 shows the perfor-

mance when ablating the length of memory buffers, consol-

idation length and short-term initialization with the average

results of GPT-3.5 [43], Claude [3], and human blind rat-

ing. The performance of MovieChat degrades when all four

are significantly changed, showing the validity of our em-

pirically chosen hyperparameyers. Fig. 5 demonstrates that

information obtained from the video expands with the grow-

ing length of memory buffers, while the loss of finer details

intensifies with the fixed length of consolidation. Further-

more, using merged tokens for short-term initialization out-

performs last few tokens and uniform sampling. Addition-

ally, the length of merged tokens and the memory buffer

Method
Global Mode Breakpoint Mode

CI DO CU TU CO CI DO CU TU CO

w/o MM 3.30 2.53 3.28 2.77 3.42 2.42 2.85 2.87 2.00 2.87

base 3.32 3.28 3.40 2.97 3.48 2.97 3.24 3.31 2.70 3.45

Table 6. Ablation study on how memory mechanism (MM) affects

the long video generative performance. CI stands for correctness

of information, DO stands for detail orientation, CU stands for

contextual understanding, TU stands for temporal understanding,

and CO stands for consistency. The best result is in bold.

size have a combined effect on MovieChat’s performance.

5.3. Case Study

We perform an extensive case study of MovieChat on a

variety of open-ended long video (such as cartoon movie

and TV series) for long video question-answering, includ-

ing the breakpoint mode (Q#1) and the global mode

(Q#2). The evaluation is conducted between MovieChat

and previous methods [34, 40, 79] as shown in Fig. 6 . For

Q#1 in breakpoint mode, we mark the timestamp when

the question is asked. For long videos over 10K frames,

MovieChat is still capable of providing excellent responses

to questions regarding both the current moment and the en-

tire video content with less hallucination. More examples

to show long video scene understanding and temporal un-

derstanding ability of MovieChat are available in appendix.

6. Limitation

Although MovieChat has demonstrated impressive abil-

ities in long video understanding, it is still an early-stage

prototype and has some limitations, including: 1) Limited

perception capacities. MovieChat’s performance is hin-

dered by the pretrained short video understanding model.

2) Inadequate Time Processing. MovieChat provides only

rough estimates of the duration proportions of events within

long videos, lacking precision in temporal details.
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Figure 6. Question and answer about a clip from YouTube, which is a tutorial on how to cook steak. The entire instructional process begins

with marinating the steak, followed by pan-searing it, preparing side dishes, and ultimately plating the meal. Green ( Red ) highlights

the correct (wrong) answer and yellow indicates that the model is hallucinating.

7. Conclusion

Conclusively, we presents an innovative video under-

standing system integrating video foundation models and

large language models. By incorporating a memory mech-

anism represented by tokens in Transformers, MovieChat

tackles challenges in analyzing long videos. MovieChat

achieves state-of-the-art performance in long video under-

standing, surpassing existing systems limited to handling

videos with few frames. This work opens up opportunities

for applications requiring a comprehensive understanding

of long-term visual information.
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