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Abstract

How important is it for training and evaluation sets to
not have class overlap in image retrieval? We revisit Google
Landmarks v2 clean [56], the most popular training set, by
identifying and removing class overlap with Revisited Oxford
and Paris [34], the most popular evaluation set. By compar-
ing the original and the new RGLDv2-clean on a benchmark
of reproduced state-of-the-art methods, our findings are strik-
ing. Not only is there a dramatic drop in performance, but it
is inconsistent across methods, changing the ranking.

What does it take to focus on objects or interest and ig-
nore background clutter when indexing? Do we need to train
an object detector and the representation separately? Do we
need location supervision? We introduce Single-stage Detect-
to-Retrieve (CiDeR), an end-to-end, single-stage pipeline to
detect objects of interest and extract a global image represen-
tation. We outperform previous state-of-the-art on both exist-
ing training sets and the new RGLDv2-clean. Our dataset
is available at https://github.com/dealicious-
inc/RGLDv2-clean.

1. Introduction

Instance-level image retrieval is a significant computer

vision problem, attracting substantial investigation before

and after deep learning. High-quality datasets are crucial for

advancing research. Image retrieval has benefited from the

availability of landmark datasets [2, 8, 36, 28, 56]. Apart

from depicting particular landmarks, an important property

of training sets [8, 36] is that they do not contain landmarks

overlapping with the evaluation sets [31, 32, 34]. Google
landmarks [56] has gained widespread adoption in state of

the art benchmarks, but falls short in this property [55].

At the same time, a fundamental challenge in image re-

trieval is to find a particular object among other objects or

background clutter. In this direction, it is common to use

attention [15, 27, 46] but it is more effective use object detec-

tion [41, 40] in order to represent only objects of interest for

retrieval. These detect-to-retrieve (D2R) [48] methods how-
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(a) Two-stage (b) One-stage

Figure 1. It is beneficial for image retrieval to detect objects of interest in

database images and only represent those. (a) Two-stage pipeline. Previous

works involve two-stage embedding extraction at indexing, or a two-stage

training process, and they may use location supervision or not. (b) One-
stage pipeline. We use a single-stage embedding extraction at training and

indexing; training is end-to-end and uses no location supervision.

ever, necessitate complex two-stage training and indexing

pipelines, as shown in Figure 1(a), often requiring a separate

training set with location supervision.

Motivated by the above challenges, we investigate two

directions in this work. First, in the direction of data, we

revisit GLDv2-clean dataset [56]. We analyze and remove

overlaps of landmark categories with evaluation sets [34],

introducing a new version, RGLDv2-clean. We then repro-

duce and benchmark state-of-the-art methods on the new

dataset and compare with the original. Remarkably, we find

that, although the images removed are only a tiny fraction,

there is a dramatic drop in performance.

Second, in the direction of the method, we introduce

CiDeR, a simple attention-based approach to detect objects

of interest at different levels and obtain a global image rep-

resentation that effectively ignores background clutter. Im-

portantly, as shown in Figure 1(b), this is a streamlined

end-to-end approach that only needs single-stage training,

single-stage indexing and is free of any location supervision.

In summary, we make the following contributions:

1. We introduce RGLDv2-clean, a new version of an es-

tablished dataset for image retrieval.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. We show that it is critical to have no class overlap

between training and evaluation sets.

3. We introduce CiDeR, an end-to-end, single-stage D2R

method requiring no location supervision.

4. By using exisiting components developed outside im-

age retrieval, we outperform more complex, specialized

state-of-the-art retrieval models on several datasets.

2. Related Works

Instance-level image retrieval Research on image re-

trieval can be categorized according to the descriptors used.

Local descriptors [28, 44, 7] have been applied before deep

learning, using SIFT [23] for example. Given that multi-

ple descriptors are generated per image, aggregation meth-

ods [31, 14, 49] have been developed. Deep learning exten-

sions include methods such as DELF [28], DELG [3], and

extensions of ASMK [48, 50]. DELF is similar to our work

in that it uses spatial attention without location supervision,

but differs in that it uses it for local descriptors.

Global descriptors [2, 56, 46, 59, 47] are useful as they

only generate a single feature per image, simplifying the

retrieval process. Research has focused on spatial pool-

ing [38, 36, 1, 15, 51, 8, 36] to extract descriptors from

3D convolutional activations. Local descriptors can still be

used in a second re-ranking stage after filtering by global

descriptors, but this is computationally expensive.

Detect-to-Retrieve (D2R) It is beneficial for image re-

trieval to detect objects of interest in database images and

ignore background clutter [26, 43, 4, 16, 18, 39, 45]. Follow-

ing Teichmann et al. [48], we call these methods detect-to-
retrieve (D2R). In most existing studies, either training or

indexing are two-stage processes, for example learn to detect

and learn to retrieve; also, most rely on location supervision

in learning to detect.

For example, DIR [8] performs 1-stage indexing but 2-

stage training for a region proposal network (RPN) and

for retrieval. Its location supervision does not involve hu-

mans but rather originates in automatically analyzing the

dataset, hence technically training is 3-stage. Salvador et
al. [43] performs 1-stage end-to-end training, but is using

human location supervision, in fact from the evaluation set.
R-ASMK [48], involves 2-stage training and 2-stage index-

ing. It also uses large-scale human location supervision from

an independent set.

Table 1 shows previous studies organized according to

their properties. We can see that, unlike previous studies,

we propose a novel method that supports 1-stage training,

indexing and inference, as well as allowing end-to-end D2R

learning without location supervision. Compared with the

previous studies, ours more thus efficient.

METHOD LD GD D2R E2E SELF LAND

DELF [28] � �
DELG [3] � � �
Tolias et al. [50] � �
DIR [8] � �
AGeM [9] � �
SOLAR [27] � �
GLAM [46] � �
Kucer et al. [16] � �
PS-Net [18] � �
Peng et al. [30] � �
Zhang et al. [62] � � �
Liao et al. [22] � � �
R-ASMK [48] � � �
Salvador et al. [43] � � � �
CiDeR (Ours) � � � � �

Table 1. Related work on instance-level image retrieval. LD: local descrip-

tors; GD: global descriptors. [O]: off-the-shelf (pre-trained on ImageNet);

D2R: detect-to-retrieve; E2E (D2R only): end-to-end (single-stage) training

for detection and retrieval; SELF (D2R only): self-localization (no location

supervision); LAND: landmark datasets.

3. Revisiting Google Landmarks v2

Motivation A key weakness of current landmark retrieval

datasets is their fragmented origins: training and evaluation

sets are often independently collected and released by dif-

ferent studies. Initial datasets contained tens of thousands of

images, a number that has now grown into the millions.

Evaluation sets such as Oxford5k (Ox5k) [31] and Paris6k

(Par6k) [32], as well as their more recent versions, Re-

visited Oxford (ROxford or ROxf) and Paris (RParis or

RPar) [34], are commonly used for benchmarking. Concur-

rently, training sets such as Neural Codes (NC) [2], Neural
Codes clean (NC-clean) [8], SfM-120k [36], Google Land-

marks v1 (GLDv1) [28], and Google Landmarks v2 (GLDv2

and GLDv2-clean) [56] have been sequentially introduced

and are widely used for representation learning.

These training sets are typically curated according to two

criteria: first, to depict particular landmarks, and second, to

not contain landmarks that overlap with those in the evalu-

ation sets. They are originally collected by text-based web

search using particular landmark names as queries. This of-

ten results in noisy images in addition to images depicting

the landmarks. Thus, NC, GLDv1 and GLDv2 are noisy
datasets. To solve this problem, images are filtered in differ-

ent ways [8, 35] to ensure that they contain only the same

landmark (instance). Accordingly, NC-clean, SfM-120k, and

GLDv2-clean are clean datasets.

The clean datasets are also typically filtered to remove

overlap with the evaluation sets. However, while NC-clean

and SfM-120k adhere to both criteria, GLDv2-clean falls

short of the second criterion. This discrepancy is not a lim-
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Training:
GLDv2-clean

Training:
NC-clean

Training:
SfM-120k

Evaluation: ROxford Evaluation: RParis

Figure 2. Confirming overlapping landmark categories between training sets (GLDv2-clean, NC-clean, SfM-120k) and evaluation sets (ROxford, RParis).

Red box: query image. The query image from the evaluation set in each box/row is followed by top-5 most similar images from the training set. Pink box:

training image landmark identical with query (evaluation) image landmark. More examples can be found in the Appendix.

itation of GLDv2-clean per se, because the dataset comes

with its own split of training, index and query images. How-

ever, the community is still using the ROxford and RParis

evaluation sets, whose landmarks have not been removed

from GLDv2-clean. Besides, landmarks are still overlapping

between the GLDv2-clean training and index sets.

This discrepancy is particularly concerning because

GLDv2-clean is the most common training set in state-of-the-

art studies. It has been acknowledged in previous work [55]

and in broader community discussions1. The effect is that

results of training on GLDv2-clean are not directly compara-

ble with those of training on NC-clean or SfM-120k. Results

on GLDv2-clean may show artificially inflated performance.

This is often attributed to its larger scale but may in fact be

due to overlap. Our study aims to address this problem by

introducing a new version of GLDv2-clean.

Identifying overlapping landmarks First, it is necessary

to confirm whether common landmark categories exist be-

tween the training and evaluation sets. We extract image

features from the training sets GLDv2-clean, NC-clean, and

SfM-120k, as well as the evaluation sets ROxf and RPar.

The features of the training sets are then indexed and the

features of the evaluation sets ROxf and RPar are used as

queries to search into the training sets.

Figure 2 displays the results. Interestingly, none of the

retrieved images from NC-clean and SfM-120k training sets

depict the same landmark as the query image from the eval-

uation set. By contrast, the top-5 most similar images from

GLDv2-clean all depict the same landmark as the query.

This suggests that using GLDv2-clean for training could

lead to artificially inflated performance during evaluation,

when compared to NC-clean and SfM-120k. A fair compari-

son between training sets should require no overlap with the

evaluation set.

Verification Now, focusing on GLDv2-clean training set,

we verify the overlapping landmarks. Each image in this

set belongs to a landmark category and each category is

1https://github.com/MCC-WH/Token/issues/1

Figure 3. Ranking and verification pipeline to remove landmark categories

from GLDv2-clean that overlap with those of the ROxf and RPar evalua-

tion sets and obtain the revisited version, RGLDv2-clean.

identified by a GID and has a landmark name. We begin by

visual matching. In particular, we retrieve images for each

query image from the evaluation set as above and we filter

the top-k ranked images by two verification steps.

First, we automatically verify that the same landmark

is depicted by using robust spatial matching on correspon-

dences obtained by local features and descriptors. Second,

since automatic verification may fail, three human evaluators

visually inspect all matches obtained in the first step. We

only keep matches that are confirmed by at least one human

evaluator. For every query from the evaluation set, we col-

lect all confirmed visual matches from GLDv2-clean and we

remove the entire landmark category of the GID that appears

more frequently in this image collection.
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EVAL #EVAL IMG #DUPL EVAL #DUPL GLDV2 GID #DUPL GLDV2 IMG

RPar 70 36 (51%) 11 1,227
ROxf 70 38 (54%) 6 315
TEXT 1 23

TOTAL 140 74 18 1,565

Table 2. Statistical information about duplicate images/categories with

(ROxford, RParis) and GLDV2. EVAL:Evaluation Sets. DUPL:duplicated.

IMG:Image. GID:GLDV2 category.

TRAINING SET #IMAGES #CATEGORIES

NC-clean 27,965 581
SfM-120k 117,369 713
GLDv2-clean 1,580,470 81,313

RGLDv2-clean (ours) 1,578,905 81,295

Table 3. Statistics of clean landmark training sets for image retrieval.

Independently, we collect all GIDs where the landmark

name contains “Oxford” or “Paris” and we also mark them

as candidate for removal. The entire landmark category of

a GID is removed if it is confirmed by at least one human

evaluator that it is in one the evaluation sets. This is the

case for “Hotel des Invalides Paris”. Figure 3 illustrates the

complete ranking and verification process.

Revisited GLDv2-clean (RGLDv2-clean) By removing

a number of landmark categories from GLDv2-clean as spec-

ified above, we derive a revisited version of the dataset,

which we call RGLDv2-clean. As shown in Table 2, RPar

and ROxf have landmark overlap with GLDv2-clean respec-

tively for 36 and 38 out of 70 queries, which corresponds to

a percentage of 51% and 54%, respectively. This is a very

large percentage, as it represents more than half queries in

both evaluation sets. In the new dataset, we remove 1,565

images from 18 GIDs of GLDv2-clean.

Table 3 compares statistics between existing clean

datasets and the new RGLDv2-clean. We observe that a

very small proportion of images and landmark categories are

removed from GLDv2-clean to derive RGLDv2-clean. Yet,

it remains to find what is the effect on retrieval performance,

when evaluated on ROxf and RPar. For fair comparisons,

we exclude from our experiments previous results obtained

by training on GLDv2-clean; we limit to NC-clean, SfM-

120k and the new RGLDv2-clean.

4. Single-stage pipeline for D2R
Motivation From the perspective of instance-level image

retrieval, the key challenge is that target objects or instances

are situated in different contexts within the image. One com-

mon solution is to use object localization or detection, isolat-

ing the objects of interest from the background. The detected

objects are then used to extract an image representation for

retrieval, as shown in Figure 1(a). This two-stage process

can be applied to the indexed set, the queries, or both.

This approach comes with certain limitations. First, in

Figure 4. Attentional localization (AL). Given a feature tensor F ∈
R
w×h×d, we obtain a spatial attention map A ∈ R

w×h (1) and we

apply multiple thresholding operations to obtain a sequence of masks

M1, . . .MT (3). The masks are applied independently to F and the re-

sulting tensors are fused into a single tensor F� by a convex combination

with learnable weights w1, . . . , wT (4).

addition to the training set for representation learning, a spe-

cialized training set is also required that is annotated with

location information for the objects of interest [41, 40]. Sec-

ond, the two stages are often trained separately rather than

end-to-end. Third, this approach incurs higher computational

cost at indexing and search because it requires two forward

passes through the network for each image.

In this work, we attempt to address these limitations. We

replace the localization step with a spatial attention mech-

anism, which does not require location supervision. This

allows us to solve for both localization and representation

learning through a single, end-to-end learning process on

a single network, as illustrated in Figure 1(b). This has the

advantage of eliminating the need for a specialized training

set for localization and the separate training cycles.

Attentional localization (AL) This component, depicted

in Figure 1(b) and elaborated in Figure 4, is designed for in-

stance detection and subsequent image representation based

on the detected objects. It employs a spatial attention mecha-

nism [15, 28, 57], which does not need location supervision.

Given a feature tensor F ∈ R
w×h×d, where w × h is the

spatial resolution and d the feature dimension, we obtain the

spatial attention map

A = η(ζ(f �(F))) ∈ R
w×h. (1)

Here, f � is a simple mapping, for example a 1× 1 convolu-

tional layer that reduces dimension to 1, ζ(x) := ln(1 + ex)
for x ∈ R is the softplus function and

η(X) :=
X −minX

maxX −minX
∈ R

w×h (2)

linearly normalizes X ∈ R
w×h to the interval [0, 1]. To iden-

tify object regions, we then apply a sequence of thresholding

operations, obtaining a corresponding sequence of masks

Mi(p) =

{
β, if A(p) < τi
1, otherwise

(3)
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for i ∈ {1, . . . , T}. Here, T is the number of masks, p ∈
{1, . . . , w}×{1, . . . , h} is the spatial position, τi ∈ [0, 1] is

the i-th threshold, β is a scalar corresponding to background

and 1 corresponds to foreground.

Unlike a conventional fixed value like β = 0, we use a

dynamic, randomized approach. In particular, for each p, we

draw a sample ε from a normal distribution and we clip it

to [0, 1] by defining β = min(0,max(1, ε)). The motivation

is that randomness compensates for incorrect predictions of

the attention map (1), especially at an early stage of training.

This choice is ablated in Table 8.

Figure 5 shows examples of attentional localization. Com-

paring (a) with (b) shows that the spatial attention map gen-

erated by our model is much more attentive to the object

being searched than the pretrained network. These results

show that the background is removed relatively well, despite

not using any location supervision at training.

The sequence of masks M1, . . . ,MT (3) is applied inde-

pendently to the feature tensor F and the resulting tensors

are fused into a single tensor

F� = H(M1 � F, . . . ,MT � F) ∈ R
w×h×d, (4)

where � denotes Hadamard product over spatial dimen-

sion, with broadcasting over the feature dimension. Fusion

amounts to a learnable convex combination

H(F1, . . . ,FT ) =
w1F1 + · · ·+ wTFT

w1 + · · ·+ wT
, (5)

where, for i ∈ {1, . . . , T}, the i-th weight is defined as

wi = ζ(αi) and αi is a learnable parameter. Thus, the im-

portance of each threshold in localizing objects from the

spatial attention map is implicitly learned from data, without

supervision. Table 9 ablates the effect of the number T of

thresholds on the fusion efficacy.

5. Experiments
5.1. Implementation

Components Most instance-level image retrieval studies

propose a kind of head on top of the backbone network that

performs a particular operation to enhance retrieval perfor-

mance. The same is happening independently in studies of

category-level tasks like localization, even though the op-

erations may be similar. Comparison is often challenging,

when official code is not released. Our focus is on detection

for retrieval in this work but we still need to compare with

SOTA methods, which may perform different operations. We

thus follow a neutral approach whereby we reuse existing,

well-established components from the literature, introduced

either for instance-level or category-level tasks.

In particular, given an input image x ∈ X , where X is

the image space, we obtain an embedding u = f(x) ∈ R
d,

(a) A, pre-trained (b) A, ours (c) Mask Mi (d) Bounding box

Figure 5. Attentional localization (AL). (a) Spatial attention map A (1)

learned on frozen ResNet101, as pre-trained on ImageNet. (b) Same, but

with the network fine-tuned on RGLDv2-clean. (c) Binary mask Mi (3)

for i = 2, with β = 0 for visualization. (d) Detected regions as bounding

boxes of connected components of Mi, overlaid on input image (in blue).

where d is the embedding dimension and

f = fp ◦ f � ◦ f c ◦ fe ◦ f b (6)

is the composition of a number of functions. Here,

• f b : X → R
w×h×d is the backbone network;

• fe : Rw×h×d → R
w×h×d is backbone enhancement

(BE), including non-local interactions like ECNet [53],

NLNet [54], Gather-Excite [12] or SENet [13];

• f c : Rw×h×d → R
w×h×d is selective context (SC),

enriching contextual information to apply locality more

effectively like ASPP [5] or SKNet [21];

• f � : Rw×h×d → R
w×h×d is our attentional localiza-

tion (AL) (section 4), localizing objects of interest in

an unsupervised fashion;

• fp : R
w×h×d → R

d is a spatial pooling operation,

such as GAP or GeM [36], optionally followed by other

mappings, e.g. whitening.

In the Appendix, we ablate different options for fe, f c and

we specify our choice for fp; then in subsection 5.5 we

ablate, apart from hyperparameters of f �, the effect of the

presence of components fe, f c, f � on the overall perfor-

mance. By default, we embed images using f (6), where

for each component we use default settings as specified in

subsection 5.5 or in the Appendix.

Settings Certain existing works [8, 28] train the backbone

network first on classification loss without the head corre-

sponding to the method and then fine-tune including the head.

We refer to this approach as “fine-tuning” (FT). To allow for

comparisons, we train our model in two ways. Without fine-
tuning, referred to as CiDeR, everything is trained in a single

stage end-to-end. With fine-tuning, referred to as CiDeR-FT,

we freeze the backbone while only training the head in the

second stage. We give more details in the Appendix, along
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METHOD TRAIN SET

BASE MEDIUM HARD

MEAN DIFF
Ox5k Par6k ROxf RPar ROxf RPar

mAP mAP mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

Yokoo et al. [46] GLDv2-clean 91.9 94.5 72.8 86.7 84.2 95.9 49.9 62.1 69.7 88.4 79.5 -5.4

Yokoo et al. [60]† RGLDv2-clean 86.1 93.9 64.5 81.0 84.1 95.4 35.6 51.5 68.7 86.4 74.1

SOLAR [58] GLDv2-clean – – 79.7 – 88.6 – 60.0 – 75.3 – 75.9 -8

SOLAR [27]† RGLDv2-clean 90.6 94.4 70.8 84.6 84.1 95.4 48.0 62.3 68.7 86.4 67.9

GLAM [46] GLDv2-clean 94.2 95.6 78.6 88.2 88.5 97.0 60.2 72.9 76.8 93.4 83.4 -4.1

GLAM [46]‡ RGLDv2-clean 90.9 94.1 72.2 84.7 83.0 95.0 49.6 61.6 65.6 87.6 79.3

DOLG [47] GLDv2-clean – – 78.8 – 87.8 – 58.0 – 74.1 – 74.7 -7.4

DOLG [59]† RGLDv2-clean 88.3 93.9 70.8 85.3 83.2 95.4 47.4 60.0 67.9 87.4 67.3

Token [58] GLDv2-clean – – 82.3 – 75.6 – 66.6 – 78.6 – 75.8 -18.2

Token [58]† RGLDv2-clean 84.3 90.0 61.4 76.4 75.8 94.0 36.9 55.2 54.4 81.0 57.6

Table 4. Comparison of the original GLDv2-clean training set with our revisited version RGLDv2-clean for a number of SOTA methods that we reproduce

with ResNet101 backbone, ArcFace loss and same sampling, settings and hyperparameters. †/‡: official/our code.

with all experimental setings.

5.2. Revisited vs. original GLDv2-clean

We reproduce a number of state-of-the-art (SOTA) meth-

ods using official code where available, we train them on

both the original GLDv2-clean dataset our revisited version

RGLDv2-clean and we compare their performance on the

evaluation sets. To ensure a fair evaluation, we use the same

ResNet101 backbone [8, 15, 36, 9, 27, 60, 46, 59, 58] and

ArcFace loss [60, 46, 59, 58, 47] as in previous studies.

Table 4 shows that using RGLDv2-clean leads to severe

performance degradation across all methods, ranging from

1% up to 30%. Because the difference between the two train-

ing sets in terms of both images and landmark categories is

very small (Table 3), this degradation can be safely attributed

to the overlap of landmarks between the original training set,

GLDv2-clean, and the evaluation sets, Oxford5k and Paris6k,

as discussed in section 3. In other words, this experiment

demonstrates that existing studies using GLDv2-clean as a

training set have artificially inflated accuracy metrics com-

paring with studies using other training sets with no overlap,

such as NC-clean and SfM-120k.

5.3. Comparison with state of the art

Existing clean datasets Table 5 compares different meth-

ods using global or local descriptors, with or without a D2R

approach, on existing clean datasets NC-clean and SfM-

120k, which do not overlap with the evaluation sets.

Comparing with methods using global descriptors with-

out D2R, our method demonstrates SOTA performance and

brings significant improvements over AGeM [9], the pre-

vious best competitor. In particular, 2.9%, 0.6% mAP on

Ox5k, Par6k Base, 9.2%, 18.2% on ROxf, RPar Medium,

and 6.4%, 9.5% on ROxf, RPar Hard.

Comparing with methods using global descriptors with-

out D2R, our method outperforms the highest-ranking ap-

proach by DIR+RPN [8], which was trained on the SfM-120k

dataset. Specifically, our method improves mAP by 7.4% on

Ox5k dataset and by 1.1% on Par6k. Interestingly, methods

in the D2R category employ different training sets, as no

single dataset provides annotations for both D2R tasks. Our

study is unique in being single-stage, end-to-end (E2E) train-

able and at the same time requiring no location supervision

(LOC), thereby eliminating the need for a detection-specific

training set.

New clean dataset, distractors Table 6 provides complete

experimental results, including the impact of introducing 1

million distractors (R1M) into the evaluation set, on our new

clean training set, RGLDv2-clean, as well as the previous

most popular clean set, SfM-120k. Contrary to previous

studies, we compare methods trained on the same training

and evaluation sets to ensure fairness.

Without fine-tuning, we improve 1.3% mAP on ROxf

+R1M (medium), 5.1% on ROxf+R1M (hard), 1.7% on

RParis+R1M (medium), and 0.8% on RParis+R1M (hard)

compared to DOLG [59] on RGLDv2-clean. With fine-

tuning, our CiDeR-FT establishes new SOTA for nearly

all metrics. In particular, we improve 4.5% mAP on ROxf

+R1M (medium), 5.3% on ROxf+R1M (hard), 4.3% on

RParis+R1M (medium), and 3.1% on RParis+R1M (hard)

compared to DOLG [59] on RGLDv2-clean.

5.4. Visualization

Ranking and spatial attention Figure 6 shows examples

of the top-5 ranking images retrieved for a number of queries

by our model, along with the associated spatial attention map.

The spatial attention map A (1) focuses exclusively on the

object of interest as specified by the cropped area provided

by the evaluation set, essentially ignoring the background.

Embedding space Figure 7 shows t-SNE visualizations

of image embeddings of the RParis dataset [34], obtained

by the off-the shelf network as pre-trained on ImageNet vs.

our method with fine-tuning on SfM-120k [36]. It indicates

superior embedding quality for our model.
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METHOD TRAIN SET NET POOLING LOSS FT E2E SELF DIM
BASE RMEDIUM RHARD

MEAN

OXF5K PAR6K ROxf RPar ROxf RPar

LOCAL DESCRIPTORS

HesAff-rSIFT-ASMK�+SP [34] SfM-120k R50 – – � – – – – – 60.6 61.4 36.7 35.0 –
DELF-ASMK�+SP [34] SfM-120k R50 – CLS � – – – – – 67.8 76.9 43.1 55.4 –

LOCAL DESCRIPTORS+D2R

R-ASMK� [48] NC-clean R50 – CLS,LOCAL � – – – 69.9 78.7 45.6 57.7 –
R-ASMK�+SP [48] NC-clean R50 – CLS,LOCAL � – – – 71.9 78.0 48.5 54.0 –

GLOBAL DESCRIPTORS

DIR [47] SfM-120k R101 RMAC TP � – – 2048 79.0 86.3 53.5 68.3 25.5 42.4 59.2
Radenovic et al. [36, 34] SfM-120k R101 GeM SIA – – 2048 87.8 92.7 64.7 77.2 38.5 56.3 69.5
AGeM [9] SfM-120k R101 GeM SIA – – 2048 – – 67.0 78.1 40.7 57.3 –
SOLAR [47] SfM-120k R101 GeM TP,SOS � – – 2048 78.5 86.3 52.5 70.9 27.1 46.7 60.3
GLAM [46] SfM-120k R101 GeM AF – – 512 89.7 91.1 66.2 77.5 39.5 54.3 69.7
DOLG [47] SfM-120k R101 GeM,GAP AF – – 512 72.8 74.5 46.4 56.6 18.1 26.6 49.2

GLOBAL DESCRIPTORS+D2R

Mei et al. [26] [O] R101 FC CLS 4096 38.4 – – – – – –
Salvador et al. [43] Pascal VOC V16 GSP CLS,LOCAL � 512 67.9 72.9 – – – – –
Chen et al. [4] OpenImageV4 [17] R50 MAC MSE � 2048 50.2 65.2 – – – – –
Liao et al. [22] Oxford,Paris A,V16 CroW CLS,LOCAL 768 80.1 90.3 – – – – –
DIR+RPN [8] NC-clean R101 RMAC TP � 2048 85.2 94.0 – – – – –

CiDeR (Ours) SfM-120k R101 GeM AF � � 2048 89.9 92.0 67.3 79.4 42.4 57.5 71.4
CiDeR-FT (Ours) SfM-120k R101 GeM AF � � � 2048 92.6 95.1 76.2 84.5 58.9 68.9 79.4

Table 5. Properties and mAP comparison of SOTA on existing training sets with no overlap with evaluation sets. FT: fine-tuning; E2E (D2R only): end-to-end

(single-stage) training for detection and retrieval; SELF (D2R only): self-localization (no location supervision). Network: R50/101: ResNet50/101; V16:

VGG16; A: AlexNet. Pooling: GAP: global average pooling; GSP: global sum pooling. Loss: AF: ArcFace; TP: triplet; CLS: softmax; SIA: siamese; SOS:

second-order similarity; MSE: mean square error; LOCAL: Localization Loss; SP: spatial verification. [O]: Off-the-shelf (pre-trained on ImageNet). Red: best

result; blue: our results higher than previous methods; black bold: best previous method per block.

METHOD

BASE MEDIUM HARD

Ox5k Par6k ROxf ROxf +R1M RPar RPar +R1M ROxf ROxf +R1M RPar RPar +R1M
mAP mAP mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

GLOBAL DESCRIPTORS (SFM-120K)

DIR [47] 79.0 86.3 53.5 76.9 – – 68.3 97.7 – – 25.5 42.0 – – 42.4 83.6 – –
Filip et al. [36, 34] 87.8 92.7 64.7 84.7 45.2 71.7 77.2 98.1 52.3 95.3 38.5 53.0 19.9 34.9 56.3 89.1 24.7 73.3
AGeM [9] – – 67.0 – – – 78.1 – – – 40.7 – – – 57.3 – – –
SOLAR [47] 78.5 86.3 52.5 73.6 – – 70.9 98.1 – – 27.1 41.4 – – 46.7 83.6 – –
GeM [47] 79.0 82.6 54.0 72.5 – – 64.3 92.6 – – 25.8 42.2 – – 36.6 67.6 – –
GLAM [47] 89.7 91.1 66.2 – – – 77.5 – – – 39.5 – – – 54.3 – – –
DOLG [47] 72.8 74.5 46.4 66.8 – – 56.6 91.1 – – 18.1 27.9 – – 26.6 62.6 – –

CiDeR (Ours) 89.9 92.0 67.3 85.1 50.3 75.5 79.4 97.9 51.4 95.7 42.4 56.4 22.4 35.9 57.5 87.1 22.4 69.4
CiDeR-FT (Ours) 92.6 95.1 76.2 87.3 60.5 78.6 84.5 98.0 56.9 95.9 58.9 71.1 36.8 55.7 68.9 91.3 30.1 73.9

GLOBAL DESCRIPTORS (RGLDV2-CLEAN)

Yokoo et al. [60]† (Base) 86.1 93.9 64.5 81.0 51.3 72.1 84.1 95.4 54.2 90.3 35.6 51.5 22.2 42.9 68.7 86.4 27.4 66.9

SOLAR [27]† 90.6 94.4 70.8 84.6 55.8 76.1 80.3 94.6 57.6 92.0 48.0 62.3 30.3 45.3 61.8 83.9 30.7 71.6

GLAM [46]‡ 90.9 94.1 72.2 84.7 58.6 76.1 83.0 95.0 58.6 91.7 49.6 61.6 34.1 50.9 65.6 87.6 33.3 72.1

DOLG [59]† 88.3 93.9 70.8 85.3 57.3 76.8 83.2 95.4 57.3 92.0 47.4 60.0 29.5 46.2 67.9 87.4 32.7 72.4
Token [58]† 81.2 89.6 60.8 77.7 44.0 60.9 75.8 94.3 44.1 86.9 37.3 54.1 23.2 37.7 54.8 81.3 19.7 54.4

CiDeR (Ours) 89.8 94.6 73.7 85.5 58.6 76.3 84.6 96.7 59.0 95.1 54.9 66.6 34.6 54.7 68.5 89.1 33.5 76.9
CiDeR-FT (Ours) 90.9 96.1 77.8 88.0 61.8 78.0 87.4 97.0 61.6 94.3 61.9 70.4 39.4 56.8 75.3 90.0 35.8 72.7

Table 6. Large-scale mAP comparison of SOTA on training sets with no overlap with evaluation sets. In the new RGLDv2-clean, settings are same as in

Table 4. In the existing SfM-120k, results are as published. †/‡: official/our code. Red: best results; blue: our results higher than previous methods; black bold:

best previous method per block. FT:fine-tuning.

5.5. Ablation study

Design ablation We study the effect of the presence of

components fe, f c, f � (6) on the overall performance of

the proposed model. Starting from the baseline, which is

ResNet101 backbone (f b) followed by GeM pooling (fp),

we add selective context (SC, f c), attentional localization

(AL, f �) and backbone enhancement (BE, fe). Table 7 pro-

vides the results, illustrating the performance gains achieved

by the proposed components.

Mask background β We study the effect of setting the

background value β in masks (3) to a fixed value vs. clipping
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Query Top-1 Top-2 Top-3 Top-4 Top-5

Figure 6. Examples of top-5 ranking images retrieved by our CiDeR model from evaluation sets Ox5k/Par6k and associated spatial attention map A (1). The

red rectangle within the query on the left is the cropped area provided by the evaluation set and is actually used as the query image.

Pre-trained Ours

(a)

(b)

(c)

Figure 7. T-SNE visualization of image embeddings of the revisited Paris
(RPar) evaluation set under (a) easy, (b) medium, and (c) hard proto-

cols [34]. Pre-trained: ResNet101 off-the shelf as pre-trained on ImageNet.

Ours: our CiDeR-FT with fine-tuning on SfM-120k [36]. Positive images

for each protocol are colored based on their query landmark category.

SC AL BE OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

80.2 83.2 55.1 67.7 25.8 40.7
� 87.6 90.7 64.7 76.6 38.2 52.7
� � 89.4 91.1 66.1 76.7 40.6 53.3

� � 88.2 91.5 66.0 78.4 40.8 55.9
� � 89.7 92.0 67.0 79.4 41.0 57.4
� � � 89.9 92.0 67.3 79.4 42.4 57.5

Table 7. Effect of different components on mAP performance. Training on

SfM-120k. Baseline: ResNet101 with GeM pooling. SC: selective context;

AL: attentional localization; BE: backbone enhancement.

a sample ε from the normal distribution. Table 8 indicates

that our dynamic, randomized approach is superior when

ε ∼ N (0.1, 0.9), which we choose as default.

Number of masks T We study the effect of the number

of masks T (3) in our attentional localization, obtained by

thresholding operations on the spatial attention map A (1).

Table 9 shows that optimal performance is achieved for T =

β SETTING OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

Fixed (0.0) 87.4 91.6 64.9 77.5 39.1 53.8
Fixed (0.5) 87.5 91.7 64.8 77.7 38.8 54.3
N (0.1, 0.5) 90.2 90.5 67.4 78.1 40.2 55.2
N (0.1, 0.9) 89.9 92.0 67.3 79.4 42.4 57.5

Table 8. Effect on mAP of different mask background β (3) settings in our

attentional localization. Training on SfM-120k.

T OXF5K PAR6K
MEDIUM HARD

ROxf RPar ROxf RPar

1 87.5 91.7 64.8 77.7 38.8 54.3
2 89.9 92.0 67.3 79.4 42.4 57.5
3 89.4 92.2 67.5 78.5 42.4 55.3
6 89.4 91.6 66.5 78.1 40.5 55.0

Table 9. Effect on mAP of number of masks T (3) in our attentional local-

ization. Training on SfM-120k.

2, which we choose as default.

6. Conclusion
We confirm that training and evaluation sets for instance-

level image retrieval really should not have class overlap.

Our new RGLDv2-clean dataset makes fair comparisons

possible with previous clean datasets. The comparison be-

tween the two versions reveals that class overlap indeed

brings inflated performance, although the relative difference

in number of images is small. Importantly, the ranking of

SOTA methods is different on the two training sets.

On the algorithmic front, D2R methods typically require

an additional object detection training stage with location su-

pervision, which is inherently inefficient. Our method CiDeR

provides a single-stage training pipeline without the need for

location supervision. CiDeR improves the SOTA not only on

established clean training sets but also on the newly released

RGLDv2-clean.
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