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Abstract

Human Mesh Recovery (HMR) aims to estimate the 3D
human body from 2D images, which is a challenging task
due to inherent ambiguities in translating 2D observations
to 3D space. A novel approach called PostureHMR is pro-
posed to leverage a multi-step diffusion-style process, which
converts this task into a posture transformation from an
SMPL T-pose mesh to the target mesh. To inject the learning
process of posture transformation with the physical struc-
ture of the human body model, a kinematics-based forward
process is proposed to interpolate the intermediate state
with pose and shape decomposition. Moreover, a mesh-to-
posture (M2P) decoder is designed, by combining the in-
put of 3D and 2D mesh constraints estimated from the im-
age to model the posture changes in the reverse process. It
mitigates the difficulties of posture change learning directly
from RGB pixels. To overcome the limitation of pixel-level
misalignment of modeling results with the input image, a
new trimap-based rendering loss is designed to highlight
the areas with poor recognition. Experiments conducted on
three widely used datasets demonstrate that the proposed
approach outperforms the state-of-the-art methods.

1. Introduction

Human Mesh Recovery (HMR) aims to reconstruct a 3D
human body mesh from a 2D image. This task has diverse
applications, such as virtual reality, human-computer inter-
action, clothed human reconstruction and posture capture.
With the rise of the metaverse, HMR has become a critical
technology to create digital humans. Unfortunately, HMR
remains a challenging task, due to inherent depth ambigu-
ities, flexible body kinematic structures, diverse visual ap-
pearances and ubiquitous part occlusions [18, 20, 42].

Skinned Multi-Person Linear Model (SMPL) [27] is an
influential open-source statistical model of the human body,
enabling realistic 3D human generation and analysis across
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Figure 1. The SMPL T-pose model and the estimated 3D tar-
get model from the image are progressively updated through Pos-
tureHMR. The 2D mesh estimated by the neural network is com-
bined with the SMPL model of the T-pose, which can gradually
transformed to the target posture via a posture reverse process.
The learning labels corresponding to the intermediate steps are ac-
curately obtained through a kinematics-based forward process.

a wide variety of applications. With the success of statis-
tical human models, such as SCAPE [1], SMPL [27] and
SMPL-X [31], body deformations are factored into identity-
dependent and pose-dependent shape deformations, corre-
sponding to shape and pose parameters in SMPL, respec-
tively. In this paper, they are collectively referred as pos-
ture. Pioneer methods [7, 17, 29] regress the vertex po-
sitions of the mesh, achieving pixel alignment with the
image. However, the reconstruction performance is ad-
versely affected due to the lack of depth information, which
poses challenges for producing reasonable results from side
views. Recently, HMDiff [11] applies the diffusion model
to the HMR task, which generates the 3D model from Gaus-
sian noises in a multiple iteration way. It has demon-
strated promising performance. However, the overall phys-
ical structure is destroyed when adding noises to mesh ver-
tices.

To address the limitations of vertex regression methods,
incorporating the SMPL T-pose model as input enables the
integration of prior knowledge related to depth information.
Models utilizing alternative poses may encounter difficul-
ties in preserving accurate structural information at the joint
regions. Due to the substantial disparity between the input
and output, it becomes challenging to precisely reconstruct
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Figure 2. The framework of the proposed PostureHMR, which progressively captures the posture transition from the standard 3D mesh to
the target posture. The architecture employs diffusion-style learning with a kinematics-based forward process and posture reverse process.
Posture loss, 3D reconstruction loss and trimap-guided rendering loss are comprehensively considered for model training.

the mesh. This process is converted into multiple iterations
from the initial posture to the corresponding posture. Act-
ing as the supervisory information, the mesh model gener-
ated with the SMPL will guide the learning direction during
the intermediate iteration process.

In this paper, we will explore the 3D human mesh re-
covery from a new perspective. A diffusion-style learning
process called PostureHMR is proposed to learn the posture
transformations from the standard SMPL T-pose model to
the target model, as is illustrated in Fig. 1. It mainly com-
prises a kinematics-based forward process and a posture re-
verse process. During the training stage, the SMPL ground
truth mesh is gradually transferred to the SMPL template
mesh in the forward process. The deep learning model is
learned step-by-step from the T-pose to the target posture
in the reverse process. During inference, PostureHMR pro-
gressively adjusts the SMPL template mesh to align with
the posture corresponding to the input image.

The framework of the proposed PostureHMR is illus-
trated in Fig. 2. To maintain the mesh topology, a for-
ward kinematics (FK) based method is proposed during
the forward process, which adopts skeletal animation for
pose transformation and linear interpolation within low-
dimensional shape space. To mitigate the abstraction of
modeling posture from images at the reverse process, a
mesh-to-posture (M2P) decoder is designed with 3D mesh
and 2D mesh constraints estimated from the input images.
This decoder gradually captures non-local and neighbor-
hood interaction information among mesh vertices. More-
over, a trimap-guided rendering loss is provided to address
pixel-level misalignment with the input image. Serving as
a supervisor, this loss enhances the model attention on ar-
eas with poor recognition, facilitating a better alignment.

Through the integration of this strategy alongside posture
loss and 3D reconstruction loss, the entire model incremen-
tally optimizes the posture transformation, achieving pixel
alignment and smooth outcomes.

Different from the classic diffusion models, Pos-
tureHMR refrains from utilizing denoising in the posture
transformation process. This approach preserves the human
body structure throughout the learning process, thereby fa-
cilitating detailed modeling. In addition, the inputted SMPL
model offers abundant pose, shape and depth information,
serving as a robust prior to guide mesh recovery. This
compensates for the absence of depth information when in-
putting a single image, enabling the reconstruction results
to yield reasonable modeling outcomes from various view-
points. The contributions are summarized as follows:
• A posture transformation architecture called Pos-

tureHMR is novelly proposed for 3D human mesh re-
covery. It progressively captures the posture transition
from the standard 3D mesh to the target posture, condi-
tioned by the input 2D image. The architecture employs a
diffusion-style learning with a kinematics-based forward
process and a posture reverse process.

• To model the posture transformation, a forward
kinematics-based skeletal animation is adopted to cap-
ture the human mesh posture tendency during the forward
process. Conditioned by the 2D mesh, a mesh-to-posture
(M2P) decoder is designed to learn the posture transition
at the reverse process, by guiding the 3D mesh towards
the target posture step by step.

• Three factors (posture change, human structure and pixel
alignment) are comprehensively considered for model
training, corresponding to posture loss, 3D reconstruction
loss and trimap-guided rendering loss, respectively.
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• Experiments conducted on three public datasets demon-
strate that PostureHMR achieves promising performance,
which outperforms the state-of-the-art approaches.

2. Related work
2.1. 3D Human Mesh Recovery

Recent research on human mesh recovery from single-
image is classified into two categories: model-based meth-
ods [4, 15, 16, 23, 41, 47, 55] and model-free ones [6, 17,
24, 25, 29, 49]. Model-based methods regress parameters
of the statistical model, which mainly understand the se-
mantic information of the images. However, the transfor-
mation from images to abstract parameter space is highly
non-linear [10, 39], resulting in a rough alignment of mod-
eling results and image evidence [52]. Some works have
introduced different intermediate expressions to reduce the
complexity of model learning, such as 2D/3D bone points
[8, 22, 28], IUV mapping [52] and markers [51]. Recently,
the model-free methods directly regress the vertices of the
mesh with superior flexibility, achieving better pixel align-
ment than model-based methods. However, due to the ab-
sence of depth information from a single image, it is diffi-
cult to recover reasonable results from the side views [48].

In this work, the challenging problem is explored by
leveraging the SMPL template model as an input. The prior
knowledge is incorporated to achieve a physically plausi-
ble reconstruction. Different from optimization methods
[3, 9, 19, 50], posture transformation is deployed in this pa-
per and intermediate models are adopted to guide the itera-
tion.

2.2. Diffusion Models

Diffusion models have gained popularity as generative
models, which have proven effective in generating arbitrary
high-quality images [34, 35]. These models gradually add
Gaussian noises to the original data, subsequently treating
the generation process as a denoising task [13]. In addition
to image generation, the diffusion models have been applied
to other tasks as a new learning framework, such as image
classification [32, 36], segmentation [2, 33] and 3D vision
[12, 37, 38]. Diff-HMR [5] and EgoHMR [54] generate pa-
rameters of SMPL through diffusion models, while HMD-
iff [11] directly adds noises on vertices of the mesh. How-
ever, after introducing noise, the intermediate mesh loses its
reasonable physical distribution, thus posing challenges in
achieving pixel alignment or obtaining smoothed results.

Unlike traditional diffusion methods, our approach con-
verts it into a posture transformation process, which aligns
with the transition of the statistical model from the initial
state to the target state. In addition, the prior knowledge of
human body structure is preserved during the learning pro-
cess by introducing skeletal animation.

3. PostureHMR

3.1. Framework

Given a template human mesh M3d
T and an image I, Pos-

tureHMR aims to recover the 3D positions of human mesh
vertices M3d

0 ∈ RN×3 through T reverse steps, where N
is the number of vertices. PostureHMR comprises a multi-
step diffusion-style process, which consists of a kinematics-
based forward process and a posture reverse process. The
framework is illustrated in Fig. 2. The forward kinematics-
based forward process obtains the posture transformation
from the target posture M3d

0 to SMPL T-pose M3d
T . The

posture reverse process learns the posture change through
the mesh-to-posture (M2P) decoder under the condition of
2D mesh M2d

0 input, which is estimated from the 2D image.
3D mesh: SMPL is a widely used human body statistical
model for realistic human 3D pose and shape estimation. It
provides a differentiable function M(θ, β) that can express
a dedicated human body model in any posture. The initial
state of SMPL is a T-pose model with 6,890 vertices, and
the expressions of different people are obtained by adjusting
the shape θ ∈ R23×3 and the pose β ∈ R10 parameters. In
this paper, the template model of SMPL is used as the initial
input of the mesh-to-posture (M2P) decoder to model the
posture transformation.
2D mesh: A Convolution Neural Network (CNN) back-
bone network, HRNet [45], is used to extract deep fea-
tures from the 2D image. A lightweight decode module is
then conducted to generate a 2D heatmap. The keypoints
P ∈ RK×2 are obtained by calculating the center of mass
of the heatmap. To reduce the redundant calculations due
to the large number of mesh vertices, a coefficient matrix
C is learned. Following [29], the interpolation from sparse
points to a complete 2D mesh is implemented by computing
M2d

0 = CP . The number of output points is 431.

3.2. Forward Kinematics-based Forward Process

The forward process of traditional diffusion models in-
troduces Gaussian noises to the ground truth until complete
diffusion into the noise distribution. To guarantee that the
initial inputs of the model remain a Gaussian distribution
throughout both the training and testing phases, it is gener-
ally advisable to assign a relatively high value (e.g., 1000)
to the iteration number of the diffusion models. Although
DDIM [40] speeds up the inference time by reducing the
number of iterations during inference, the randomness of
the initial sampling can easily lead to the same randomness
into the final modeling results [37], when applied to HMR
tasks. It is straightforward to apply the original sampling
strategy to the vertices by adding noises, which will lose
the physical structure of the human body during the inter-
mediate process. Therefore, it is challenging to establish
the relationship between 3D modeling derived from random
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noises and corresponding input images.
A novel diffusion-style posture transformation method is

proposed in this paper. To facilitate the understanding, the
HMR task is converted to a transformation, from a model
of the initial posture (T-pose) to the target posture of the
input image. By using the T-pose model as the end of the
forward process, the number of iterations is significantly re-
duced and multiple samplings are not required during the
inference. When the positions of the mesh vertices in the
intermediate steps are obtained, the initial and final states
are linearly interpolated like noise diffusion. However, this
approach fails to capture the physical structure of the hu-
man model. Therefore, a new forward process based on for-
ward kinematics is proposed to capture the posture changes
through skeleton animation interpolation.
Forward kinematics. Forward kinematics in skeletal ani-
mation refers to the use of kinematic equations to calculate
the position updates of bone B at different frames. The joint
parameters R and template joint positions J are used to cal-
culate the updates:

B = FK(R, J). (1)

The keypoint positions of the bones with different interpo-
lation results are obtained by interpolating the rotation in-
formation of the bones and combining it with forward kine-
matics (FK) calculation. The positions of mesh vertices are
obtained based on the weight relationship between the bone
points and the vertices of SMPL.
FK-based forward process. The forward process provides
the supervision guidance for the model learning in the re-
verse process, which involves a smooth transition from the
T-pose to the target posture (M3d

T → M3d
T−1 → ... →

M3d
t ... → M3d

0 ). Posture changes are mainly affected by
two factors: pose and shape. Therefore, skeletal animation
interpolation is adopted for pose, while linear interpolation
of the effect of SMPL parameters on vertex offset is used for
shape. The shape-and-pose decomposition is illustrated in
Fig. 3. Interpolation is decomposed into rotation transfor-
mation of pose and linear interpolation of shape. The whole
implementation is formulated as:

q(M3d
t |M3d

T ) = W (R3d
t , Jt, θt,W), (2)

where W (·) is the standard linear blend skinning function.
R3d

t represents the vertices of the rest pose after applying
parameter blend shape deformation, Jt denotes the joint lo-
cations following shape deformation, θt signifies the shape
parameters at t time step and W ∈ RN×K stands for the
blend weights. R3d

t is transformed from the template mesh
M3d

T as:

R3d
t = M3d

0 − t

T
(BS(β0) +BP (θ0)), (3)

Pose

Shape

Figure 3. Illustration of the shape-and-pose decomposition. The
interpolation process includes pose changes driven by skeletal an-
imation and shape changes, respectively.

where BS and BP represent the shape and pose blend shape
offsets for the vertex, respectively. θ at step t is obtained
from the linear interpolation as:

θt = θ0 +
t

T
(θT − θ0), (4)

where θ0 and θT denote the shape parameters of the initial
and final status, respectively.

The proposed method mainly has two advantages over
the original noise diffusion process. First, the T-pose is a
fixed state that requires fewer steps and reduces the ran-
domness of the network. Second, the intermediate state
preserves the physical structure of the human body and im-
poses more regular constraints on the network during the
learning process.

3.3. Posture Reverse Process with 2D Condition

The traditional inverse process is dedicated to grad-
ual denoising and restoring images from Gaussian noise.
Meanwhile, the neural network predicts the noise through
image/text conditions and steps. For the HMR task, the tem-
plate model of SMPL replaces Gaussian noises, and in the
reverse process, the neural network needs to learn the pos-
ture conversion from the T-pose mesh to the target mesh.
Therefore, a mesh-to-posture (M2P) decoder is designed to
learn posture transitions between different iteration steps.
Although it is intuitive to use image features as condition in-
formation to reconstruct a specific input image, this recon-
struction process is very difficult, since the transformation
directly from image input to posture is highly non-linear.
Previous works tend to utilize some intermediate expres-
sions as guidance (e.g., 3D pose [22], segmentation map
[52]) for HMR task. In this paper, a 2D mesh is employed
as a conditioning factor for the modification of 3D mesh.
This 2D mesh is derived through image modeling and aims
to achieve a align result with the input image. Formally,
given the SMPL initial model M3d

T , constraint information
2D mesh M2d

0 and the number of iteration steps k, the re-
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Figure 4. Detailed architecture of the M2P decoder. It combines
3D and 2D mesh as input and outputs body posture transformation.

verse process is formulated as:

pα(M
3d
0:T ) = p(M3d

T )

T∏
k=1

pα(M
3d
k−1|M3d

k ,M2d
0 ), (5)

where α is the parameters of M2P decoder.
M2P decoder. Traditional reverse process for image gen-
eration generally uses U-net as the decoder Fα. How-
ever, in this task, the decoder is built for posture repre-
sentation. The detailed structure of the network is shown
in Fig. 4. To guide the posture learning at the reverse
process, 2D mesh M2d

0 is used as additional information,
which is directly concatenated with 3D mesh M3d

k as in-
puts. It is embedded via a linear layer. Since different
iteration steps share the same network structure, it is nec-
essary to input the current time step information via the
sinusoidal methods and add position embedding to main-
tain the spatial distribution of vertices. These tokens are
sent into L transformers with graph blocks, which consist
of an attention layer, a graphormer block (GRB) layer and a
feedforward (FF) layer. The design of the token is followed
by Graphormer [25], which considers non-local interactions
among mesh vertices and neighborhood vertex interactions
based on mesh topology. Finally, the Multi-Layer Percep-
tron (MLP) head outputs the posture change from k to k−1.

The proposed design has the advantage of modeling the
2D and 3D mesh separately. Image input is more suitable
to model the mesh at the 2D level while the M2P decoder
learns the prior 3D knowledge of the SMPL model. When
the 3D models are constrained with the 2D mesh, the pos-
ture changes can be more accurately captured.

3.4. Model Training and Loss Functions

Trimap-based render loss for 2D mesh learning. While
model-free methods facilitate the achievement of pixel-
aligned with the input image compared to model-based ap-
proaches, they often overlook the edge areas of the hu-
man body. The trimap regions are illustrated in Fig. 5,
which represent the target edge area. This area highly co-
incides with the region where the reconstruction result er-
ror is large. Consequently, this information is employed
to assign weights to the modeling process at various loca-
tions, thereby enhancing the modeling attention in specific
regions. Specifically, differential rendering is performed on
the output results M2d

0 and ground truth M ′2d
0 to obtain the

Ground truth Predict Error region Trimap region

Figure 5. Illustration of the trimap region.

mask. Considering that directly using L1 loss calculation
may be influenced by the background, the IoU loss is used
instead, which is calculated as follows:

Ltri = 2− P ∩G

P ∪G
− P ∩G ∩ Ctri

(P ∪G) ∩ Ctri
, (6)

where P and G represent the model prediction and the
ground truth mask, respectively. Ctri is the trimap re-
gion that is set to the edge l pixel area of the ground truth
mask. The 2D reconstruction loss is defined as: L2d =
Ltri + λ2d

v L2d
v , where L2d

v denotes the L1 loss calculation
of the 2D mesh.
3D mesh learning. The posture learning in the reverse pro-
cess is supervised through the labels generated by the for-
ward process. The posture reconstruction loss Lpos is im-
plemented as follows:

Lpos =
∑T

k=1||(M
′3d
k−1 −M ′3d

k )− Fα(M
3d
k ,M2d

0 , k)||
2

2
.

(7)
Following [29], geometry optimization is incorporated in
each step, including 3D vertex loss, 3D keypoint loss and
surface loss. Please refer to [29] for further details.

Therefore, the loss of 3D reconstruction is expressed as:
L3d = Lpos + λ3d

v L3d
v + λ3d

j L3d
j + λ3d

s L3d
s .

4. Experiments
4.1. Datasets and Evaluation Metrics

Human3.6M [14]: It is the largest indoor benchmark
dataset for the human pose estimation. The training and
testing data are the same as previous works [15, 24, 25].
(S1, S5, S6, S7, S8) are used for training, and (S9, S11) for
testing.
3DPW [44]: It is a benchmark dataset for human mesh es-
timation, which is collected in natural scenes. In the experi-
ment, the model trained by Human3.6M is fine-tuned on its
training set to obtain the evaluation results of the test set.
SURREAL [43]: It is a synthetic dataset by combining var-
ious SMPL models with arbitrary backgrounds. The parti-
tion of training and test sets remains the same as previous
works [7, 29].

This work does not involve any human data that raises
ethical concerns.
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Method Year Human3.6M 3DPW
MPVE ↓ MPJPE ↓ PA-MPJPE ↓ MPVE ↓ MPJPE ↓ PA-MPJPE ↓

HMR [15] CVPR’18 96.1 88.0 56.8 152.7 130.0 81.3
PC-HMR [28] AAAI’21 61.1 47.9 37.3 108.6 87.8 66.9
HybrIK [22] CVPR’21 65.7 54.4 34.5 86.5 74.1 45.0
ROMP [41] ICCV’21 - - - 108.3 91.3 54.9
PARE [18] ICCV’21 - - - 88.6 74.5 46.5
THUNDR [51] ICCV’21 - 55.0 39.8 88.0 74.8 51.5
PyMAF [52] ICCV’21 - 57.7 40.5 110.1 92.8 58.9
ProHMR [20] ICCV’21 - - 41.2 - - 59.8
OCHMR [16] CVPR’22 - - - 107.1 89.7 58.3
3DCrowNet [8] CVPR’22 - - - 98.3 81.7 51.5
CLIFF [23] ECCV’22 - 47.1 32.7 81.2 69.0 43.0
ProPose [10] CVPR’23 - 45.7 29.1 79.4 68.3 40.6
PLIKS [39] CVPR’23 - 49.3 34.7 82.6 66.9 42.8
∗MeshTransformer [24] CVPR’21 - 54.0 36.7 88.2 77.1 47.9
∗MeshGraphormer [25] ICCV’21 - 51.2 34.5 87.7 74.7 45.6
∗FastMETRO [6] ECCV’22 - 52.2 33.7 84.1 73.5 44.6
∗VisDB [48] ECCV’22 - 51.0 34.5 85.5 73.5 44.9
∗PointHMR [17] CVPR’23 - 48.3 32.9 84.1 73.9 44.9
∗DeFormer [49] CVPR’23 - 44.8 31.6 82.6 72.9 44.3
∗HMDiff [11] ICCV’23 - 49.3 32.4 82.4 72.7 44.5
∗Zolly [46] ICCV’23 - 49.4 32.3 76.3 65.0 39.8
∗VirtualMarker [29] CVPR’23 58.0 47.3 32.0 77.9 67.5 41.4
∗PostureHMR - 55.7 44.5 31.0 75.4 64.9 39.6

Table 1. Performance comparison on H3.6M and 3DPW datasets. Model-based and model-free methods (indicated with ∗) cannot be fairly
compared since they use different backbone networks and training strategies.

Similar to [17, 22, 25, 39, 52], Mean-PerVertex-
Error (MPVE), Mean-Per-Joint-Position-Error (MPJPE)
and Procrustes Analysis MPJPE (PA-MPJPE) are used as
the performance metrics. These metrics are reported in mil-
limeters (mm) by default. PVE is calculated as the Average
Point-to-point Euclidean distance between vertices. Fol-
lowing [22, 29], the metric of MPVE on the H3.6M dataset
is also given. MPJPE stands for mean bone key points error.
PA-MPJPE calculates MPJPE after aligning the predictions
to the ground.

4.2. Implementation Details

The 2D mesh learning process involves cropping every
single human region from the input image and uniformly
setting it to 256×256. HRNet-W48 is used as the backbone
network, which is pre-trained on the COCO [26] 2D pose
dataset and the size of the heatmap is 64×64. Similar to
[29], the initial output number of the 2D points is 81. Fol-
lowing [11, 23, 24, 29, 52], additional data from MPIINF-
3DHP [30], UP-3D [21] and COCO training sets are used
for hybrid training to improve the image to 2D mesh re-
construction, and experiments are performed on H3.6M and
3DPW datasets. The 2D mesh estimate model is frozen dur-
ing diffusion model training. The reverse diffusion steps T
is set to 10. The numbers of embedding and transformer
channels are kept at 128 and 512, respectively. Similar to

previous works [11, 25], the coarse human mesh has 431
vertices and the refined mesh contains 6890 vertices, which
is obtained through an MLP layer. The model has trained
for 40 epochs in the 2D and 3D learning stages, with the ini-
tial learning rate of 0.001 for backbone, 5e−4 for 2D mesh
recovery and 5e−5 for 3D posture transformation, respec-
tively. It is reduced by half after 30 epochs. The weight of
the rendering loss is set to 10 and other losses are the same
as [29]. All experiments are carried out on four GeForce
RTX 3090 GPUs.

4.3. Comparison with State-of-the-art Methods

Results on H3.6M and 3DPW. The proposed method is
compared with the state-of-the-art methods on the H3.6M
and 3DPW datasets, which is listed in Table 1. To main-
tain a fair comparison, the results of PLIKS [39] utilizing
additional AGORA data for training are not reported in this
paper. Our approach achieves competitive or superior per-
formance among state-of-the-art (SOTA) methods, thus ef-
fectively validating the advantages of the posture diffusion
learning process. PostureHMR outperforms the vertex re-
gression method (VirtualMarker [29]) and SMPL paramet-
ric regression approaches, such as CLIFF [23], PyMAF [52]
and HybrIK [22]. HMDiff [11] is similar to PostureHMR
as it learns the denoise process to recover the human mesh.
However, our approach achieves better results by transform-
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Method Year MPVE ↓ MPJPE ↓ PA-MPJPE ↓
HMR [15] CVPR’18 85.1 73.6 55.4
DynaBOA [53] PAMI’22 70.7 55.2 34.0
∗Pose2Mesh [7] ECCV’20 68.8 56.6 39.6
∗PC-HMR [28] AAAI’21 59.8 51.7 37.9
∗VirtualMarker CVPR’23 44.7 36.9 28.9
∗PostureHMR - 42.1 35.3 27.4

Table 2. Performance comparison on SURREAL. Model-free
methods are indicated with ∗.

ing the human mesh reconstruction process into a transition
from the T-pose to the target pose, which effectively retains
the physical structure of the human body during the learn-
ing process. MeshGraphormer [25] also utilizes the T-pose
of SMPL as input, which is similar to our method when
the number of iterations is set to 1. However, without mul-
tiple iterations, this method encounters the problem of sub-
stantial differences between the initial posture and the target
one.
Results on SURREAL. SURREAL is a simulation dataset
that contains more changes in shape. The results are pre-
sented in Table 2. Model-based methods are highly non-
linear, such as HMR [15], which model SMPL abstract pa-
rameters directly from images. DynaBOA [53] uses 3D
pose to improve the difficulty of pose parameters model-
ing, but it is still limited by the expression of shape. The
model-free method represented by VirtualMarker is lim-
ited by the ambiguity of depth information. PostureHMR
mainly learns the SMPL template transformation of posture
and retains more human structure information, which out-
performs the state-of-the-art methods.
Qualitative results. PostureHMR is compared with model-
based method CLIFF [23] and model-free method Virtual-
Marker [29], on H3.6M, 3DPW and SURREAL datasets,
which are illustrated in Figs. 6, 7 and 8, respectively.
From the image perspective, PostureHMR and Virtual-
Marker have better pixel alignment compared to CLIFF.
Thanks to the trimap rendering loss, PostureHMR boosts
the performance, since the loss guides the model to focus
on non-aligned areas. For the side view, although CLIFF
models a satisfactory body shape, CLIFF and VirtualMarker
cannot accurately model the pose. The visual appearance
generated by VirtualMarker is squashed, which is caused
due to the ambiguous depth information. PosetureHMR ap-
plies posture transformation to constrain the structure of the
human body during the learning phase, ensuring a smooth
representation of its form. When coupled with prior depth
information, it becomes easier to observe realistic posture
representations from a side perspective.
Limitation. Some failure examples are illustrated in Fig. 9.
Due to the occlusion or incomplete body shape, our method
has incorrect pose estimation. It is notable that the failure
area is confined to the invisible regions. As a potential so-
lution, enhancing the number of occlusion samples via data

Images VM CLIFF GTVM Ours
（a）Mesh estimation results of image view. （b）Side view. 

Ours CLIFF

Figure 6. Qualitative comparison with VirtualMarker [29] and
CLIFF [23] on H3.6M test set.

Images VM CLIFF GTVM Ours

（a）Mesh estimation results of image view. （b）Side view. 
Ours CLIFF

Figure 7. Qualitative comparison on 3DPW test set.

Ours VM Ours GT

（b） Side view. （a）Mesh estimation results of images view. 

VMImages

Figure 8. Qualitative comparison on SURREAL test set.

Images ImagesPredict PredictGT GT

Figure 9. Examples of some failure cases.

augmentation may be effective.

4.4. Ablation Study

Impact of posture learning. The effect of posture trans-
formation is first evaluated in Table 3. A baseline model
is first constructed, sharing the same backbone and decoder
networks as PostureHMR. Its learning is grounded in the
denoising technique employed by the diffusion model. De-
spite the differences in decoder design and the utilization
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Methods MPVE ↓
3DPW SURREAL

Basline 83.2 48.6
Basline + VL 80.3 46.2
Basline + FK 78.5 44.5
Basline + FK + 2D mesh 76.2 42.7
Basline + FK + 2D mesh + render 75.4 42.1

Table 3. Effect of individual component.

of 2D mesh condition, its fundamental learning principles
align with those of HMDiff [11]. The iteration steps are
fixed at 1000. In the test phase, DDIM [40] is utilized to
expedite the process by reducing the number of iterations
to 10. The backbone network learns the condition informa-
tion to incorporate the global image information, producing
a vector with the length of 2048. The vector is concatenated
with the 3D mesh vertices. Compared to the baseline, noise
diffusion is replaced with vertex linear interpolation (Base-
line + VL) between the SMPL T-pose and the ground truth
mesh. This approach significantly outperforms the baseline
model. However, when forward kinematics (Baseline+FK)
is integrated into the posture transformation process, sub-
stantial improvement is obtained. Compared to the method
(Baseline+VL), this approach effectively preserves the prior
knowledge of the physical structure of the human body dur-
ing the inverse learning process. Fig. 10 depicts the mod-
eling outcomes of FK constraints represented by the green
human figure and the results of noise diffusion (w/o FK)
illustrated by the blue human figure. Notably, our method
performs better on surface details.
Impact of 2D conditions. To validate the effectiveness of
the 2D condition design, the initial step involves learning
the 2D representation of the mesh (+2D mesh). Following
this, this representation is employed as a conditioning fac-
tor. When comparing the experimental results with those
obtained using image global features as the conditioning
factor (Baseline+FK), our 2D mesh conditioning approach
demonstrates superior performance. This advantage primar-
ily stems from two factors. Firstly, distinguishing between
2D and 3D information modeling enables the network to
effectively mitigate the uncertainty associated with mod-
eling across different dimensions during the learning pro-
cess. Secondly, compared to image feature information, the
2D mesh offers superior local details, which allows for a
more precise constraint on the distribution of 3D mesh re-
construction results within the image’s viewing angles.
Impact of Trimap-based Render Loss. The role of
trimap-based render loss in PostureHMR is evaluated in Ta-
ble 3, indicating with (+render). The overall modeling ac-
curacy is further improved, which is mainly due to the op-
timization of condition input in the 3D mesh modeling pro-
cess. A refined 2D mesh that aligns closely with the image
input aids in achieving precise posture changes in the 3D
mesh.

Figure 10. Visualization of the transition from T-pose to the target.

Impact of Diffusion Step k. Consistent with prior research
(e.g., [11]) on diffusion models, the performance improve-
ment tends to be slowed down as the number of iterations
increases. It usually reaches its climax when k=10. Due
to the limited number of diffusion steps and the huge gap
between the initial and final postures, it is difficult to ac-
curately model the correlation between them. As the the
number of diffusion steps increases, additional intermediate
nodes are constructed, so that the gap between the initial
and final poses is narrowed, which enhances the overall ac-
curacy. However, with more diffusion steps, it is easier for
the network to focus more on the changes between local
steps, while ignoring the variations within the entire pro-
cess. The transition from the T-pose to the target posture is
illustrated in Fig. 10, from which we can see how the pos-
ture is transferred toward the target status step by step. The
pose and shape transformations are simultaneously modeled
and constructed throughout the learning process.

5. Conclusion
In this paper, a novel posture transformation framework

called PostureHMR is proposed to model a human 3D
mesh from a single 2D image. It consists of a kinematics-
based forward process and posture reverse process, which
progressively convert the SMPL T-pose model to the tar-
get model at the inference stage. Moreover, a forward
kinematics-based skeletal animation is adopted to capture
the posture change, and a mesh-to-posture (M2P) is de-
signed to learn the transformation at the reverse process.
A trimap-based rendering loss is proposed to provide better
pixel alignment of 2D conditions with input images. Pos-
tureHMR outperforms the state-of-the-art methods on three
widely used benchmark datasets.
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