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Abstract

In this paper, we address the challenge of reconstructing
general articulated 3D objects from a single video. Existing
works employing dynamic neural radiance fields have ad-
vanced the modeling of articulated objects like humans and
animals from videos, but face challenges with piece-wise
rigid general articulated objects due to limitations in their
deformation models. To tackle this, we propose Quasi-Rigid
Blend Skinning, a novel deformation model that enhances
the rigidity of each part while maintaining flexible defor-
mation of the joints. Our primary insight combines three
distinct approaches: 1) an enhanced bone rigging system for
improved component modeling, 2) the use of quasi-sparse
skinning weights to boost part rigidity and reconstruction
fidelity, and 3) the application of geodesic point assignment
for precise motion and seamless deformation. Our method
outperforms previous works in producing higher-fidelity 3D
reconstructions of general articulated objects, as demon-
strated on both real and synthetic datasets. Project page:
https://chaoyuesong.github.io/REACTO.

1. Introduction

We focus on reconstructing general articulated objects from

a casually captured monocular video, a challenging task that

involves creating 3D models from everyday footage and

dealing with the complexity of objects with movable parts.

Understanding and recognizing the structure of general ar-

ticulated objects from videos plays a crucial role in various

fields, such as robotics, animation, 3D generation [4, 5, 60]

virtual reality, and augmented reality.

Recently, NASAM [59] introduced a method to learn cat-

egories of articulated objects from multi-view images across

various articulations. However, this approach necessitates

training on several objects within the same category. Another

method, PARIS [27], was proposed to learn articulation in a

self-supervised manner but relies on multi-view images to

provide complete views of the object at different articula-
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Figure 1. Given a single casual video capturing a piece-wise rigid

general articulated object, REACTO can model the 3D shape, tex-

ture, and motion. The second row presents shape reconstruction

results from reference views, the third row showcases the recon-

structed texture, and the fourth row displays the shapes from another

view.

tions. Consequently, both of these methods face limitations

when applied to casually captured everyday videos.

Previous research [11, 14, 15, 61] on reconstructing artic-

ulated objects from monocular videos has primarily focused

on humans and quadrupeds, utilizing readily available para-

metric models like SMPL [29] and SMAL [80], while ne-

glecting the diverse range of everyday objects we commonly

encounter and use. Non-parametric methods, like BANMo

[70], MoDA [52], and PPR[73], utilizing dynamic volu-

metric neural radiance fields to model deformable objects.

These methods are predominantly optimized for non-rigid,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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deformable subjects such as humans and animals, whose

movable parts such as arms and legs are distinctly separated.

However, the rigid movable components of general objects

often sit adjacent to each other in their usual poses. For in-

stance, consider the blades of a pair of scissors, which come

into close proximity during use. This presents a considerable

challenge to the previously mentioned methods with blend

skinning techniques used for motion modeling, often leading

to incorrect motions and artifacts.

Specifically, BANMo [70] utilizes neural Linear Blend

Skinning (LBS) as the deformation model, while LBS is

efficient and straightforward, it can sometimes lead to unreal-

istic deformations, resulting in substantial defects like candy

wrapper artifacts and volume loss. MoDA [52] proposes to

use Neural Dual Quaternion Blend Skinning (NeuDBS) to

relieve these issues. Although NeuDBS offers improvements

in handling rotations and preserving volume, it can still lead

to the generation of unsmooth, less refined surfaces. PPR

[73] incorporates Dual Quaternion Blend Skinning (DBS)

along with novel skin losses and a more stable eikonal loss

[10] to enhance the overall surface smoothness. However,

it is observed that surfaces of one moving part tend to tear

and get drawn towards another, with visible seam artifacts.

Furthermore, the joints appear over-smoothed, leading to a

loss of geometric precision. These defects likely arise from

inaccurately assigned skinning weights.

In this work, we present REACTO to REconstruct gen-

eral ArtiCulaTed Objects from a single casually captured

monocular video. Methods with conventional blend skinning

techniques, like SMPL [29], define their rig on the joints,

note that some methods like BANMo [70] refer to joints

as bones. In this case, it has been observed that the recon-

structed shape of each rigid component can be bent by two

joints, sometimes leading to seam artifacts. To address this,

we define the rig on the bones. As depicted in Figure 2, our

method optimizes the placement of bones to be near the cen-

troid of each component, effectively enhancing the rigidity

and motion integrity of these components.

As discussed previously, the defects also stem from in-

accurately assigned skinning weights. For each rigid com-

ponent, these problems can be addressed by implementing

Rigid Skinning (RS), where each vertex is exclusively linked

to a single bone. However, RS fails in modeling deforma-

tions near joints and can also lead to unwanted disconti-

nuities. To overcome this, we propose Quasi-Rigid Blend

Skinning, which merges the rigidity of RS with the flexibil-

ity of DBS. Specifically, we optimize the skinning weights

on rigid components to be quasi-sparse, minimizing the in-

fluence from other bones and ensuring a strong association

with their corresponding bone, thus displaying character-

istics of rigid skinning. Concurrently, points near joints

retain the adaptability inherent in DBS. The accuracy of

the commonly used Mahalanobis distance [68, 70] is often

Input frame PPR Ours
Figure 2. Rig on joints vs. rig on bones. A straightforward

approach to control the motion of general articulated objects is to

adopt methods [73] used for modeling humans or animals, which

typically define the rig based on joints. This design can lead to

bending shapes and corrupted motion. In contrast, we propose a

novel approach by defining the rig based on bones, enhancing the

rigidity and motion integrity of each component.

compromised because its calculation relies on the precision

of bone properties, including center, orientation, and scale,

all of which are optimized during training. Consequently,

we utilize geodesic distance as a more effective measure

to jointly ascertain the appropriate corresponding bone for

each point or to determine if the point is part of a joint. We

demonstrate through experiments that REACTO consistently

produces 3D shapes with higher-fidelity details compared to

previous state-of-the-art approaches [52, 70, 73].

We summarize our contributions as:

• We present REACTO, a novel approach for modeling gen-

eral articulated 3D objects from single casual videos, with-

out complete views of the objects and any 3D supervision.

REACTO demonstrates superior performance over current

methods on both real and synthetic datasets.

• We redefine the rigging structure in our approach by plac-

ing rigs on the bones instead of joints, enhancing the rigid-

ity and motion integrity of each component in general

articulated objects.

• We propose Quasi-Rigid Blend Skinning (QRBS), a hybrid

technique that harmonizes the rigidity of Rigid Skinning

with the flexibility of Dual Quaternion Blend Skinning, em-

powered by quasi-sparse skinning weights, and geodesic

point assignment for precise motion reconstruction of gen-

eral articulated objects.

2. Related Work
Modeling articulated objects. In the field of computer

vision, previous research on articulated deformations has

predominantly concentrated on human and animal subjects

[6, 18, 29, 32, 37, 48, 51, 53, 65, 66, 80], with less atten-

tion given to the modeling of general articulated objects that

exhibit piece-wise rigidity. Building on the advancements

in implicit representations like DeepSDF [41], A-SDF [36]

models category-level articulation by introducing distinct

shape and articulation codes. It integrates joint angles into

the shape code, thereby learning to map these angles to their

corresponding deformed shapes. ANCSH [25] introduces

normalized articulated object coordinate space to model the

canonical representations of articulated objects at the cat-

egory level. CAPTRA [62] presents a unified framework

for online pose tracking of both rigid and articulated ob-
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jects from point cloud sequences. Ditto [17] predicts motion

and geometry across object categories using two 3D point

clouds, but it struggles with generalizing to new categories

and detailed appearance reconstruction. StrobeNet [79] ex-

tends the previous works to reconstruct articulated objects

from multi-view images. However, these methods require

ground-truth 3D data for processing or training. CARTO

[13] and NASAM [59] can model articulated objects with-

out 3D ground truth but require category-specific training

data with multiple objects. PARIS [27], designed for self-

supervised learning of articulation, can generalize to new

objects but relies on complete multi-view images, limiting

its applicability to casually captured videos.

Shape reconstruction from images or videos. Various

methods have been developed to learn 3D reconstruction

from images or videos, guided by annotations like 3D

key points [19, 23], optical flow [63], and semantic mask

[9, 24, 77]. However, the models suffer in generalization

since they heavily rely on prior shape templates. Neural im-

plicit surface representations [39, 49, 50, 58, 75] have found

extensive use in reconstructing images or videos. Works

like [12, 38] have focused on reconstructing rigid objects

from videos, however, they fall short in modeling articu-

lated and deformable objects. Recent advancements, in-

cluding LASR [68] and ViSER [69], have made strides in

optimizing a single 3D deformable model from a monocular

video guided by mask and optical flow, yet the reconstructed

motion often presents unrealistic artifacts. Several studies

[3, 16, 21, 22, 28, 37, 45, 55, 56, 78] have explored recon-

structing shape and appearance from images or videos relied

on neural radiance fields (NeRF) [33]. In this study, we

model general articulated objects from a single video, em-

ploying a canonical Neural Radiance Field (NeRF) for shape

and appearance, coupled with a deformation model that facil-

itates the transformation of 3D points between observation

and canonical spaces.

Neural representations for dynamic scenes. Several re-

cent studies have focused on developing deformation models

that characterize dynamic scenes by transforming 3D points

between the observation space and the canonical space. NR-

NeRF [57] depicts deformations on non-rigid objects by

learning a rigidity network. D-NeRF [46] is designed to

transform points to the canonical space by learning a dis-

placement, while NSFF [26] displaces 3D points utilizing

scaled scene flow. Additionally, Nerfies [42] and HyperN-

eRF [43] define deformation by employing a learned dense

SE(3) field. These approaches, however, tend to struggle

with large motions between foreground objects and their

backgrounds. To address these challenges, several works

[16, 37, 44, 61] employ the parametric 3D human models,

such as SMPL [29], while other methods [28, 44, 45] uti-

lize synchronized multi-view video inputs. BANMo [70],

MoDA [52], RAC [72], Total-Recon [54] and PPR[73] can

reconstruct 3D shapes from casual videos without relying on

human or animal models, by adopting linear blend skinning

or dual quaternion blend skinning to learn the deformation

model. However, these methods often result in notable arti-

facts when applied to general articulated objects. To solve

this problem, we propose quasi-rigid blend skinning (QRBS)

to model the motion of general articulated objects.

3. Method
The overview of our approach is illustrated in Figure 3. In

this work, we undertake the task of modeling a 3D artic-

ulated object from a single video, employing a canonical

Neural Radiance Field (NeRF) as the basis for our shape and

appearance model (Section 3.1). Additionally, our approach

includes a deformation model (Section 3.2) that transforms

3D points between observation and canonical spaces. Tra-

ditional methods like linear blend skinning or dual quater-

nion blend skinning, typically used for human or animal

motion modeling, are inadequate for capturing motion in

general articulated objects with multiple rigid components.

To overcome this, we introduce Quasi-Rigid Blend Skinning

(QRBS) as our deformation model, providing a more apt so-

lution for modeling the motion of such objects. The models

are then optimized using volume rendering (Section 3.3).

3.1. Canonical NeRF for shape and appearance

We first define the canonical NeRF [33] to model the shape

and appearance of an articulated object. As in BANMo [70],

we learn the color and density of a 3D point X∗ ∈ R
3 in the

canonical space,

ct = MLPcolor(X
∗,Dt,ψt

a), (1)

σ = Φβ(MLPSDF(X
∗)), (2)

where MLPcolor and MLPSDF are multi-layer perceptron

(MLP) networks, Dt = (φt, θt) is the time-varying view

direction and ψt
a is a 64-dimensional latent appearance code,

serving to encode variations in appearance [31]. To per-

form volume rendering as [33], we follow [58, 76] to use

the Cumulative Distribution Function Φβ(·) of the Laplace

distribution with zero mean and β scale to convert signed

distances into density. Here, β is a learnable parameter that

controls the solidness of the object.

3.2. Quasi-rigid blend skinning for deformation

With the 3D point X∗ in the canonical space and Xt in the

observation space, we achieve 3D deformation between them

via the deformation model. The canonical-to-observation

and observation-to-canonical deformation at time t are de-

noted as Dt,c−→o and Dt,o−→c respectively.

Motion representation. For the motion of articulated ob-

jects, it encompasses global-level transformations Tglobal ∈
SE(3) and object-level articulation Tobj ∈ R

8 represented
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Figure 3. The overview of REACTO. We model an articulated 3D object from a single video using a shape and appearance model based on

a canonical Neural Radiance Field (NeRF) and a deformation model for transforming 3D points between the observation space and the

canonical space. Instead of linear blend skinning or dual quaternion blend skinning designed for human or animal motion modeling, we

propose Quasi-Rigid Blend Skinning (QRBS) as our deformation model, with the learned quasi-sparse skinning weights, to accurately

transform Xt from the observation space to X∗ in the canonical space. We visualize the 3 bones for glasses in the canonical space. The

colors in skinning weights signify the assigned bone for each point.

by a unit dual quaternion. Given the 3D point X∗ in the

canonical space and Xt in the observation space, we can

deform one to the other via

Xt = Dt,c−→o(X∗) = Tt
globalT

t,c−→o
obj X∗, (3)

X∗ = Dt,o−→c(Xt) = Tt,o−→c
obj (Tt

global)
−1Xt, (4)

where Tglobal comprises camera pose transformations Tcam

and root body transformations Troot, both modeled as per-

frame SE(3) transformations represented by MLP networks.

A detailed introduction to the object-level articulation of

general articulated objects will be provided in the following.

Bone definition. When modeling the object-level motion

of general articulated objects, such as a stapler in Figure 2, a

straightforward design is to follow the previous methods that

model the motion of humans and animals from videos. In

this design, the motion of a stapler is considered analogous

to the arm of a human, and the rig is defined on three joints

to control the stapler’s motion. The joints will be optimized

to align with the positions at the ends of the object’s parts

to minimize energy as illustrated in the middle of Figure 2

(PPR).

Applying PPR [73] in such a design results in noticeable

artifacts like bending shapes and corrupted motion, which

is unacceptable for objects characterized by multiple rigid

components. To address this limitation, we propose to define

the rig on the bones, ideally the part centroids as illustrated

in Figure 2 (Ours). Consequently, each rigid part is strongly

associated with one bone, effectively defining the motion of

the articulated objects. The number of bones, denoted as B,

depends on the number of rigid components in an articulated

object.

Skinning weights. We define the skinning weights as

W = {w0, ..., wB−1} ∈ R
B . Given a 3D point X, we

compute the Gaussian skinning weights [52, 70] based on

the Mahalanobis distance dM (X) between 3D points and

the Gaussian bones,

dM (X) = (X−O)TVTΛ0V(X−O), (5)

where O ∈ R
B×3 are bone centers, V ∈ R

B×3×3 are bone

orientations and Λ0 ∈ R
B×3×3 are diagonal scale matrices.

Each Gaussian bone has three parameters for center, orienta-

tion, and scale respectively, which are all optimized during

training. To further refine the Gaussian skinning weights, we

incorporate delta skinning weights learned by an MLP,

W = softmax(dM (X) +WΔ), (6)

where WΔ = MLPskin(Xbone) is the delta skinning

weights. Xbone ∈ R
B×3 denotes the relative positions of

point X in the bone coordinates.

However, given that general articulated objects are typi-

cally piece-wise rigid, the refined Gaussian skinning weights

W may introduce redundant associations to multiple bones

for each point, thus hampering the rigidity of the parts.

Therefore, we aim to make the skinning weights quasi-sparse

to minimize the influence of other bones and ensure a strong

association with their corresponding bone for 3D points. We

first introduce a temperature factor γ to the calculation of

W to stimulate the sparsity,

Ws = softmax(
dM (X) +WΔ

γ
). (7)

Geodesic point assignment. We further propose a

geodesic point assignment process to help correctly assign

each point to the corresponding bone or joint, hence pre-

venting surface tearing and corrupted motion. We can fur-

ther enhance the sparsity of the skinning weights for the

points in the rigid parts while keeping the weights unchanged
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Algorithm 1 Geodesic point assignment

Input: Point assignment M = 0 ∈ R
B , Mahalanobis dis-

tance diM and djM , geodesic distance diG and djG, bone

index i and j, hyperparameters η, ζ.

Output: Updated assignment M
1: if diM/djM < 1− η then
2: M[i] ← 1

3: else if |di
G−dj

G|
min(di

G,dj
G)

< ζ then
4: M[i],M[j] ← 1 	 Assigning to joints

5: else
6: M[argmin(dG)] ← 1
7: end if

for points in the joints based on the assignment, therefore,

achieving quasi-rigid blend skinning.

The accuracy of Mahalanobis distance calculation de-

pends on the precision of bone properties, including center,

orientation, and scale. However, since these properties are

all optimized during training, uncertainties are introduced

into the calculation process. This can lead to inaccurate

point assignments, as observed in our experiments. For in-

stance, a point near the surface of one component may have

a shorter Mahalanobis distance to a bone belonging to a

different component.

Additionally, in cases where a point exhibits similar Ma-

halanobis distances to multiple bones, determining whether

the point is associated with joints or rigid components re-

mains challenging. To address these issues, we employ

geodesic distance as depicted in Figure 4, which provides

a measure of the shortest path between two points along a

mesh surface.

To elaborate, for a point X, we initially set up a point

assignment vector M = 0 ∈ R
B , representing the assign-

ment of the point to its corresponding bone. We proceed by

identifying the nearest bone bi and the second nearest bone

bj to X, based on their Mahalanobis distances diM and djM .

Given that geodesic distance calculations require a mesh

surface, we first extract a canonical mesh using the marching

cubes algorithm [30]. Following this, we employ the KNN

algorithm to locate the nearest vertices X̂, b̂i, and b̂j relative

to the point X and the centers of bones bi and bj . Finally,

we compute the geodesic distances diG and djG from X̂ to b̂i
and b̂j , respectively, utilizing the exact geodesic algorithm

as described in [34].

As illustrated in Algorithm 1, if the ratio of Mahalanobis

distances diM/djM is less than 1− η, which means the point

is obviously closer to bi, we assign a value of 1 to the ith

element of M. If the point is close to both bones, we check

if
|di

G−dj
G|

min(di
G,dj

G)
< ζ, which means the geodesic distances are

close. If the Mahalanobis distance and geodesic distance

Figure 4. Geodesic distances between 3D point and bones.
Geodesic distance can correctly associate the 3D point (black)

with the top bone (blue) rather than the bottom bone (yellow) by

following the shortest path on the mesh surface. Shorter distances

indicate stronger associations.

from the points to the bone i and j are both similar, we assign

the value 1 to the ith and the jth elements of M, as assigning

the point to joints. If neither of the previous conditions is

satisfied, we assign the point to the bone with the shortest

geodesic distance. The distances are all passed through a

softmax layer before being input into Algorithm 1.

As the mesh evolves during training, we refrain from ap-

plying the point assignment directly to the skinning weights

as a mask. Instead, we impose penalties on the weights as-

sociated with bones not corresponding to the targeted point

with a sparse skinning loss,

Lsparse =

∑∥∥Ws � M̄
∥∥2

∑
M̄

, (8)

where � denotes Hadamard product and M̄ = 1−M, since

M indicates the correct assignment and we want to penalize

the weights everywhere else. For points that have been

assigned to joints, the skinning weights are not penalized.

Quasi-rigid blend skinning. With the learned quasi-

sparse skinning weights, the articulated motion of 3D points

under pose ψp can be obtained using our quasi-rigid blend

skinning (QRBS):

X(ψp) = TobjX = (

B−1∑

b=0

wS
b Tb)X, (9)

where {T0, ...,TB−1} = MLPpose(ψp) and are rep-

resented by dual quaternions. This articulated motion is

invertible by inverting Tb in Equation (9) and recomputing

the skinning weights in Equation (7). We utilize a 3D cycle

loss [26, 70] to supervise this invertible process.

3.3. Volume rendering and optimization
Volume rendering. We use the volume rendering in NeRF

[33] to synthesize images. With the pixel location xt ∈ R
2,

the n-th sampled point along the ray that originates from xt

is Xt
n. The color and opacity are given by:

c(xt) =

N∑

n=1

τnc
t
n, o(xt) =

N∑

n=1

τn, (10)
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where τn = αn

∏n−1
m=1(1− αm), αn = 1 − exp(−σnδn),

N is the number of sampled points, δn is the distance be-

tween the n-th point and the next, and σn is the density in

Equation (2).

Optimization. Except for the sparse skinning loss in Equa-

tion (8), we optimize our models with multiple reconstruc-

tion losses (color, object mask, optical flow, pixel features)

that are similar to existing methods [52, 70, 73]. These losses

are employed to minimize the difference between the pre-

dicted results and the observed ones, alongside regularization

terms.

L = Lrgb +Lmask +Lflow +Lfeature +Lsparse +Lreg.
(11)

The predicted mask, optical flow, and pixel features are

obtained from off-the-shelf methods [40, 67, 74]. Please

refer to the supplementary materials for the regularization

terms.

4. Experiments
4.1. Dataset, metrics, and implementation details
Real-world videos. To demonstrate the effectiveness of

REACTO, we conducted evaluations on real-world videos

with only partial views of different articulated objects such

as laptops, staplers, scissors, faucets, nail clippers, glasses,

and more. These videos were captured using a phone camera

with no control over camera movements. For detailed infor-

mation about the videos, please refer to the supplementary

materials. In the preprocessing stage, we employed method-

ologies outlined in Lab4D [71]. Specifically, we utilized

Track Anything [74] for predicting object silhouettes, VCN-

robust [67] for optical flow estimation, and DINOv2 [40]

for extracting pixel features. Additionally, we also anno-

tate sparse camera poses (approximately 4 annotations per

video) for camera estimation. These annotations serve as ini-

tialization and will be further optimized during the training

process. To distinguish from synthetic data, we prepend real-
to articulated objects (e.g., real-laptop).

Synthetic video. To evaluate our method quantitatively,

we render videos using PartNet-Mobility dataset [2, 35, 64]

that provide ground truth meshes. We chose 3 categories

for evaluation in this paper, namely USB, stapler, and

scissors. For more results from other categories, please refer

to the supplementary material. For each articulated object,

we render 100 frames with the camera moving through a

120-degree azimuthal angle and a 30-degree polar angle

using Blender [1]. The sequence consists of 50 frames

corresponding to 50 consecutive articulations, followed by

another 50 frames in reverse order. We train the synthetic

dataset with ground truth object silhouettes. Similar to

the process for real-world videos, we utilize VCN-robust

[67] and DINOv2 [40] for predicting optical flow and pixel

features, respectively. The initial camera poses are obtained

in the same manner as those for real-world videos.

Metrics. To quantitatively evaluate various methods, we

employ Chamfer distance (CD) [8] and F-scores as our met-

rics. For CD, lower values indicate better performance. F-

scores are compared across different methods at distance

thresholds d = 10% and d = 5%. A higher F-score is better.

As the ground truth meshes from PartNet-Mobility dataset

[64] exhibit limited vertices and uneven distribution, we uni-

formly sample 10, 000 points using PyTorch3D [47] from

both predicted and ground truth meshes to compute Chamfer

Distance (CD) and F-scores, which ensures a fair and robust

evaluation.

Implementation details. We employ the AdamW opti-

mizer to optimize the model for 4,000 iterations. For all

objects, we start with the same shape of a unit sphere as PPR

[73]. The reconstructed meshes are extracted using marching

cubes on a 1283 grid. For additional implementation details,

please refer to the supplementary materials.

4.2. Comparison with state-of-art methods

Baselines. We compare our method with BANMo [70],

MoDA [52] and PPR [73]. These methods were originally

designed for modeling humans or animals from videos. For

the deformation model, BANMo employs linear blend skin-

ning, while MoDA and PPR utilize dual quaternion blend

skinning (note that the learning of dual quaternion differs

between MoDA and PPR).

To ensure fair comparisons, we report the results of

BANMo, MoDA, and PPR with rigging on bones in this

section. Each method utilizes 64 sampled points per ray to

ensure consistent evaluation conditions. We supply BANMo,

MoDA, and PPR with the same initial camera poses.

Results. The qualitative and quantitative results are pre-

sented in Figure 5 and Table 1, respectively. In Figure 5,

both BANMo and MoDA struggle to reconstruct the com-

plete shape of articulated objects. This is evident in instances

such as both methods facing difficulties with real-faucet and

BANMo also encountering challenges with real-scissors.

These two methods often yield non-smooth surfaces, as ob-

served with BANMo on real-stapler, MoDA on real-scissors,

and both methods on real-laptop. Although PPR generates

smoother surfaces compared to BANMo and MoDA, it still

encounters challenges in accurately modeling the motion of

articulated objects. Notably, it introduces surface tearing

artifacts in cases such as real-stapler and real-scissors. Also,

we observe over-smoothed joints in real-faucet, real-stapler,

and real-laptop. Furthermore, when applied to real-faucet
and real-laptop, PPR demonstrates inaccuracies in modeling

motions, such as the rotation of the handle in real-faucet and

the folding motion of real-laptop. In contrast, our REACTO
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Input frames PPR OursMoDABANMo
Figure 5. Qualitative comparison of our method with BANMo [70], MoDA [52] and PPR [73]. BANMo and MoDA struggle with

complete shape reconstruction (real-faucet, real-scissors). Non-smooth surfaces (BANMo on real-stapler, MoDA on real-scissors, BANMo

and MoDA on real-laptop) are also observed. The results of PPR are smoother but with surface tearing (real-stapler, real-scissors),

over-smoothed joints (real-faucet, real-laptop, real-stapler), and inaccuracies in motion modeling (real-faucet, real-laptop). In contrast,

REACTO outperforms these methods, excelling in the shape and deformation reconstruction of articulated objects. Please find the video

results in the supplementary material.

consistently outperforms these methods, with superior ca-

pabilities in modeling the shape and deformation of various

articulated objects.

Our quantitative results support qualitative observations,

demonstrating that REACTO outperforms all baselines

across all metrics on the synthetic data.

4.3. Ablation study on deformation models
In this section, we compare our quasi-rigid blend skinning

with other deformation models employed for articulated

object motion, such as displacement field in NASAM [59]

and invertible Real-NVP [7] in CaDeX [20].

The qualitative and quantitative results are presented in

Figure 6 and Table 2, respectively. For the synthetic USB,

both displacement field and Real-NVP struggle to accurately

distinguish the motion of the two rigid parts. In contrast, our

method successfully models the motion with the optimized

rigging system. For real-nail clipper, the displacement field

still fails to separate the two rigid parts. Real-NVP intro-

duces non-smoothness during motion, while our method

maintains a consistently smooth mesh surface. The quan-

titative results on synthetic data further confirm that our

quasi-rigid blend skinning offers a more reasonable approach

than other deformation models for modeling the motion of

general articulated objects.
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Table 1. Quantitative comparison between different methods. Our method has better performance than BANMo [70], MoDA [52], and

PPR [73] across all metrics.

Method
USB stapler scissors

CD(↓) F(10%, ↑) F(5%, ↑) CD(↓) F(10%, ↑) F(5%, ↑) CD(↓) F(10%, ↑) F(5%, ↑)

BANMo 20.3 65.1 45.0 19.1 57.8 32.8 19.9 66.8 41.4

MoDA 17.1 74.9 49.5 18.8 64.2 40.3 14.8 77.7 42.3

PPR 20.7 65.7 38.9 16.8 67.5 40.0 16.1 71.4 39.9

Ours 15.3 78.6 51.5 14.3 75.5 42.7 14.0 78.2 43.9

Table 2. Quantitative ablation studies on deformation models. Our method outperforms the displacement field, Real-NVP, and rigid

skinning across various data.

Method
USB stapler scissors

CD(↓) F(10%, ↑) F(5%, ↑) CD(↓) F(10%, ↑) F(5%, ↑) CD(↓) F(10%, ↑) F(5%, ↑)

Displacement 19.7 59.5 28.2 17.9 63.8 30.8 19.1 58.6 30.9

Real-NVP 17.6 70.7 47.2 16.0 70.4 32.6 19.6 63.6 32.7

Rigid 16.3 73.5 49.3 15.1 72.8 41.1 14.8 76.4 43.7

Ours 15.3 78.6 51.5 14.3 75.5 42.7 14.0 78.2 43.9

Input frames Displacement OursReal-NVP
Figure 6. Ablation study on deformation models. We compare

displacement field [59] and Real-NVP [7, 20] with our QRBS

on synthetic USB and real-nail clipper. The displacement field

struggles to accurately separate the motion of the two rigid parts

in both USB and real-nail clipper. Real-NVP also fails to separate

the two rigid parts of USB and produces non-smoothness when

modeling the motion of real-nail clipper. In contrast, our QRBS

consistently outperforms both methods in both cases.

Besides, we also propose a straightforward design for

rigid skinning. For the skinning weights wb, b ∈ [0, B − 1]
(wb ∈ [0, 1],

∑
b wb = 1), we binaryize them by setting the

largest wb to 1 and all others to 0. As illustrated in Table 2,

rigid skinning exhibits comparable performance with our

method when evaluated on synthetic data. However, it may

lead to seam artifacts, as exemplified in Figure 7, particularly

noticeable in the leg of the glasses.

5. Conclusion
In this paper, we introduce REACTO, a groundbreaking

method for reconstructing general articulated 3D objects

from single casual videos, achieving enhanced modeling and

precision by redefining rigging structures and employing

Quasi-Rigid Blend Skinning. QRBS ensures the rigidity

Input frames Rigid Ours
Figure 7. Rigid skinning vs. Quasi-rigid blend skinning. For

rigid skinning, we binaryize skinning weights by setting the largest

wb to 1 and all others to 0, which fails to model the articulation

while causing seam artifacts on the leg of real-glasses (in the red

circle).

of each component while retaining smooth deformation on

the joints by utilizing quasi-sparse skinning weights and

geodesic point assignment. Extensive experiments show that

REACTO outperforms existing methods in fidelity and detail

on both real and synthetic datasets.

Limitations: As casual videos typically offer only partial

views of objects, the quality of surface reconstruction may

suffer on the unseen side. The limitations of this approach

will be further detailed in the supplementary materials.
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