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Abstract

Vision-language models (VLMs) have made significant
strides in cross-modal understanding through large-scale
paired datasets. However, in fashion domain, datasets of-
ten exhibit a disparity between the information conveyed
in image and text. This issue stems from datasets contain-
ing multiple images of a single fashion item all paired with
one text, leading to cases where some textual details are
not visible in individual images. This mismatch, particularly
when non-co-occurring elements are masked, undermines
the training of conventional VLM objectives like Masked
Language Modeling and Masked Image Modeling, thereby
hindering the model’s ability to accurately align fine-grained
visual and textual features. Addressing this problem, we pro-
pose Synchronized attentional Masking (SyncMask), which
generate masks that pinpoint the image patches and word
tokens where the information co-occur in both image and
text. This synchronization is accomplished by harnessing
cross-attentional features obtained from a momentum model,
ensuring a precise alignment between the two modalities.
Additionally, we enhance grouped batch sampling with semi-
hard negatives, effectively mitigating false negative issues in
Image-Text Matching and Image-Text Contrastive learning
objectives within fashion datasets. Our experiments demon-
strate the effectiveness of the proposed approach, outper-
forming existing methods in three downstream tasks.

1. Introduction

Recently, there has been rapid progress in developing

Vision-Language Pretraining (VLP) [32, 38, 6, 39, 19, 18,

42, 23, 36, 20, 27, 3], paving the way to bridge the gap

between visual and textual features. These VLP methods,

trained on extensive image-text datasets, have enabled a

deeper understanding of semantic alignment across differ-

ent modalities. By fine-tuning these pretrained models for

specific tasks, particularly in data-scarce areas like image-
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Figure 1. Example of misaligned masks in the MLM task.

text retrieval, notable performance improvements have been

observed. In the pretraining phase, various factors such as

model architecture, training objectives, and batch sampling

techniques play a crucial role in effectively harnessing the

joint representation of multi-modal data.

However, there are some issues in applying conventional

generic VLP approaches to task-specific domains such as

fashion. Fashion VLP models [10, 45, 13, 14, 15] typi-

cally employ objectives such as Masked Language Modeling

(MLM) and Masked Image Modeling (MIM). These methods

mask elements like text words or image patches, leveraging

surrounding context for prediction or reconstruction. They

boost cross-modality by making models infer masked text

tokens or image patches from aligned features. However,

existing MLM and MIM often suffer from inherent misalign-

ment limitations because the masks are generated randomly,

often leading to unmatched elements being masked.

To illustrate these limitations, consider Figure 1 (a) shows

a single description associated with four images from the

FashionGen [37] dataset. In Figure 1 (b), a random mask-

ing scenario is shown where the blue [MASK] might lead

the model to predict the masked word using only the text

context, thereby not incorporating the image information.

Similarly, the two red [MASK] tokens in (b) lack relevance

to the accompanying image, thus hindering the model’s abil-

ity to connecting between visual and textual features. Fur-
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thermore, in the MIM task, random masking may inadver-

tently cover parts of the image that contain fashion items

not described in the text, leading to mismatches during the

training of the alignment of cross-modal features. To solve

these problem, we propose SyncMask, selecting masks that

represent synchronously co-occurring features utilizing the

vision-language cross-attention map.

In addition, compared to general domains, the fashion

domain often suffers from smaller dataset sizes and less

variance in data distribution. This suggests that using stan-

dard VLP methods may not adequately distinguish the fine-

grained features vital for fashion-related tasks. Thus, we

pay attention to a grouped batch sampling technique [3] that

similar samples are gradually collected within the batch as

the training progresses, impacting the pretraining objectives

of Image-Text Contrastive Learning (ITC) and Image-Text

Matching (ITM). When similar samples exist within the

same batch, it becomes more challenging to differentiate

positives and negatives during the training of ITC and ITM

compared to using random samples. This encourages the

model to more intensely focus on learning fine-grained dif-

ferences, even with less training.

The existing grouped batch sampling method uses the

output features of two uni-modal encoders to find the most

similar sample. However, as shown in Figure 1, there are

many data that have the same caption for multiple images as

for the fashion domain. Therefore, a false negative problem

that causes actual positive samples in the same batch to be

wrongly labelled as negative when learning ITC and ITM

arises if the existing methods are used without changes. To

overcome this limitation, we propose a semi-hard negative

sampling technique with lower similarities between samples

that constitute the batch while removing the false negative.

In summary, the main contributions of this study are:

1. Synchronized Attentional Masking: We introduce

SyncMask, which replaces random mask in MLM and

MIM with targeted mask of co-occurring segments

in image-text pairs. By utilizing cross-attention fea-

tures from a momentum model to generate these masks,

this method effectively addresses the problem of mis-

matched image-text inputs, thereby enhancing fine-

grained alignment of cross-modal features.

2. Refined Grouped Batch Sampling: Our method in-

corporates semi-hard negative sampling to tackle data

scarcity and distribution disparities in domain-specific

datasets, thereby reducing false negatives.

2. Related Works
Vision and Language (VL) Model Recently, VLMs have

focused on enhancing model architecture and designing ob-

jectives to integrate visual and textual features effectively.

Early studies [32, 38, 39, 6] have used object detectors for

extracting visual features as an input for a multi-modal trans-

METHOD MM MLM MIM ATM AVM ONUP

DMAE [1] �
MaskDistill [34] � � �
AttMask [21] � � �
ALBEF [27] � �
MaskVLM [24] � � �
MAMO [44] � � �
FashionBERT [10] � � �
Kaleido-BERT [45] � � � � �
FashionViL [13] � � �
FashionSAP [15] � �
Ours � � � � � �

Table 1. Related works vs. Ours on Masked Modeling. MM:Multi-

Modal. MLM:Masked Language Modeling. MIM:Masked Image Mod-

eling. ATM:Attentional Textual Mask. AVM:Attentional Visual Mask.

OnUp:Online Update for Attentional Masking

former along with textual features. The objective for training

models extends vanilla BERT [7] to use MLM, MIM, and

ITM losses; however, the object detection module incurs a

high computational cost for training and inference. There-

fore, there have been attempts to replace it with CNN [19, 18]

or linear projection [23]. These studies commonly train mod-

els with MLM and ITM, tailoring MIM to their specific

architectures. Concurrently, CLIP [36], ALIGN [20] propose

models comprising only two unimodal encoders, demonstrat-

ing the outstanding representation embedding capabilities of

contrastive learning. ALBEF [27] add a contrastive learning

objective to the previous multi-modal transformer structure

for aligning the two modalities before fusion. Based on this

model, GRIT-VLP [3] demonstrate improved learning effi-

ciency when configuring batches with hard negative samples.

FashionVL Model In recent years, various studies [10, 45,

13, 14, 15] attempted to capture the finer details of images,

building upon established models and pre-training objec-

tives from the general VL task. FashionBERT [10] integrates

patch-based image features and BERT-based text represen-

tations for addressing the limitations of region of interests

(RoIs) in capturing fine-grained details. Kaleido-BERT [45]

improves fine-grained fashion cross-modality representa-

tions through alignment guided masking compared to ran-

dom masking. FashionViL [13] employs a versatile VLP

framework, leveraging two pre-training tasks for capturing

the rich fine-grained information of fashion data. Fashion-

SAP [15] employs abstract fashion symbols and an attributes

prompt technique for effectively modeling multi-modal fash-

ion attributes. We clarify the importance of the attentional

masking technique that employs alignment between MIM

and MLM building upon preceding methods. In addition, we

underscore a previously unaddressed need for grouped batch

sampling within the fashion domain.
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Figure 2. Overview of masking strategies using a teacher-student distillation framework. 1) Uni-modal models: (a) random masking, (b) teacher-guided

attentional masking. 2) Multi-modal models: (c) random text masking, (d) random image/text masking, (e) teacher-guided cross-attentional masking (Ours).

Attention-guided Masked Modeling MIM and MLM

leverage unmasked contextual clues to predict masked visual

and textual elements, respectively. As shown in the upper

section of Table 1 and Figure 2 (a, b), in the MIM task, prior

studies have evolved from random masking [16, 2, 41, 1]

to attention-guided masking [29, 34, 21], demonstrating

that targeting highly-attended patches with teacher-student

distillation framework improves masked modeling out-

comes. Masked modeling also has been pivotal in advancing

cross-modal alignment within VLMs, spanning both gen-

eral [38, 32, 27, 24, 44] and fashion-specific [10, 45, 13, 15]

domains. This is briefly illustrated in Figure 2 (c, d) and de-

lineated in the middle and lower sections of Table 1. These

enhance the model’s proficiency aligning co-occurring vi-

sual and textual representations. However, challenges emerge

when masking non-co-occurring elements, which hinders

the accurate pairing of visual and textual features. Kaleido-

BERT [45] improve fine-grained cross-modality representa-

tions through text-image alignment-guided masking. This

requires additional components for an attention-based align-

ment generator, increasing computational demands and po-

tential model overfitting on fixed text-image mask pairs. Our

approach overcomes these limitations by progressively tai-

loring masks during end-to-end training.

3. Methods
We provide an overview of the preliminary aspects, which

includes the model architecture and two well-established

training objectives for VLP. Subsequently, we present a de-

tailed explanation of the proposed methods, which are syn-

chronized attentional masked modeling and grouped batch

sampling with semi-hard negatives.

3.1. Preliminaries

For an image-text pair, we refer input sequences as

follows: tokenized text embeddings are denoted as T =
[t[CLS], t1, . . . , tN ] ∈ R

(N+1)×D and visual patch em-

beddings represented as V = [v[CLS],v1, . . . ,vN ′ ] ∈
R

(N ′+1)×D. Here, D, N , and N ′ refer to the transformer

dimension, the number of text tokens, and the number of

image patches, respectively. Additionally, t[CLS] and v[CLS]
specifically reference the [CLS] embeddings.

The model consists of two components: a teacher model,

referred to as the momentum model, and a student model.

The student model, denoted as fθ, is parameterized by θ,

which includes a textual encoder fT
θ (T ) ∈ R

(N+1)×D, vi-

sual encoder f I
θ (V ) ∈ R

(N
′
+1)×D, and multi-modal en-

coder fM
θ (fT

θ (T ), f I
θ (V )) ∈ R

(N+1)×D. For the momen-

tum model fθ′ , the training parameters are updated by the

exponential moving average method, θ
′ ← βθ

′
+ (1− β)θ,

where β represents a hyperparameter.

Image-Text Contrastive Learning (ITC) At the front

of the multi-modal encoder, ITC pre-aligns the joint latent

space of the textual encoder and visual encoder. This ob-

jective have proved its effectiveness in VLMs [36, 27, 26,

3, 13, 15]. We also adopt the ITC loss framework proposed

by [27, 26, 15], which incorporates a momentum encoder

for utilizing soft labels as ITC training targets, thereby ad-

dressing potential positive instances within negative pairs.

Image-Text Matching (ITM) For the ITM loss, the model

classifies image-text pairs as either matched (positive) or

not matched (negative) using a joint representation obtained

from the [CLS] token output embedding of the multi-modal

encoder. This vector is passed through an FC layer and soft-

max for binary prediction. Like ALBEF [27], we exploit

hard negatives in the ITM task, identifying pairs that share

similar semantics but differ in fine-grained details, using

in-batch contrastive similarity from ITC.

3.2. Synchronized Attentional Masked Modeling

We extend the use of momentum model, a self-supervised

tool for momentum distillation outlined in MoCo [17] and

ALBEF [27], beyond its conventional role of generating

pseudo-labels. We employ its multi-modal encoder, which

calculate the cross-attention map to identify patches and to-

kens where image and text features strongly correlate. These

elements, indicated by heightened attention weights, are then
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Figure 3. A schematic overview of the SyncMask process: Leveraging cross-attention features from the teacher (momentum) model to generate informative

masks for both MIM and MLM tasks. It is important to note that the input for MLM consists of unmasked image paired with masked text.

selectively masked. This attentional masking, targeting syn-
chronously co-occurring features, enhances cross-modality

over traditional random masking methods in the MLM and

MIM phases. Moreover, the momentum model’s output fea-

tures provide enhanced labels for these masked regions, of-

fering a depth of information beyond conventional discrete

labels. We will explore this method further to understand its

full potential in capturing intricate multi-modal interactions.

Vision-Language Synchronized Attentionl Masking
MLM and MIM elevate the alignment of visual and textual

representations in models. However, when non-co-occurring

elements are masked, these techniques face limitations that

restrict the model’s ability to accurately match multi-modal

features. To address this issue, we propose a Synchronized

attentional Masking (SyncMask) strategy into masked multi-

modal modeling objectives. As depicted in Figure 3, we

extracted two sets of synchronized attention weights from

the cross-attention module of the multi-modal encoder’s

last layer in the momentum model. The module enables

the model to fuse image-text features using a cross-attention

mechanism that processes a query (QT ), key (KI ), and value

(V I ), as represented by the following equation:

Attention(QT
i ,K

I
i , V

I
i ) = α(QT

i ,K
I
i )� V I

i (1)

where 1 ≤ i ≤ H , with H denoting the number of heads

in the MHA, and � representing the Hadamard product. In

this context, α refers the cross-attention function, which can

be expressed as:

α(QT
i ,K

I
i ) = softmax(

QT
i (K

I
i )

�
√
d

) ∈ R
(N ′+1)×(N+1)

(2)

The function α(QT
i ,K

I
i ) computes the attention weights

for the image from the perspective of the text. Similarly, by

altering the query (Q) and key (K), we calculate the text

attention weight from the image perspective, as represented

by the following equation:

α(QI
i ,K

T
i ) = softmax(

QI
i (K

T
i )

�
√
d

) ∈ R
(N+1)×(N ′+1)

(3)

Utilizing Equation 2 and Equation 3, we derive two

synchronized textual-visual cross-attention weights. These

weights, oT ∈ R
N ,oI ∈ R

N ′
, are obtained by averaging the

patch tokens of the last layer, excluding the [CLS] token.

This process allows us to map each word in the sentence

sequence to its corresponding attention in oT . Further, oI

can be reshaped to R
P×P , which aligns with the image

patches.

IdxT = shuffle(sortdesc(oT )[≥ L])[≥ K] (4)

IdxI = shuffle(sortdesc(oI)[≥ L′])[≥ K ′] (5)

In Equation 4 and Equation 5, we first sort the atten-

tion weights oT and oI in descending order (sortdesc), and

then extract their indices (Idx). Equation 4 focuses on in-

dices corresponding to the top L values of oT , where L is a

threshold greater than the actual mask size K. These indices

are randomly shuffled (shuffle) to introduce randomness,

and ultimately, only those indices that satisfy the condition

K ≤ L are retained. A similar approach is applied to K ′

and L′ in Equation 5. The parameters K,K ′, L, and L′ are

defined based on a mask ratio r ∈ [0, 1].
The final attention masks for textual and visual compo-

nents are represented by the vectors mT and mI , respec-

tively. The computation of these masks utilizes the indices
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Figure 4. Selection phase of the SyncMask

IdxT for text and IdxI for images, as formulated in the

equation below:

mT [IdxT ] ← 1, mI [IdxI ] ← 1 (6)

Initially, the vectors mT and mI are zero-initialized with

dimensions N (for text) and N ′ (for images). They are then

updated to binary attention masks, which are integral in

capturing the synchronized interaction between textual and

visual elements, as illustrated in Figure 4. Subsequently,

these masks are employed in the masked modeling processes

for text and images (detailed in Equation 7 and Equation 8).

Building upon this foundation, the text mask vector mT

consists of elements [mt
1, . . . ,m

t
N ] ∈ {0, 1}N , while the

image mask vector mI is composed of [mi
1, . . . ,m

i
N ′ ] ∈

{0, 1}N ′
. For each tokenized text vector, the masked version

t̃i is determined by:

t̃j = (1−mt
j) · tj +mt

j · tmask (7)

In this equation, 1 ≤ j ≤ N , and tmask denotes the special

token used for textual masking. In the context of Masked

Image Modeling (MIM), each image patch is processed with

a learnable mask, resulting in the masked image vector ṽk:

ṽk = (1−mi
k) · vk +mi

k · vmask (8)

Here, 1 ≤ k ≤ N ′, and vmask represents the learn-

able mask embedding [4]. The masked tokenized inputs

are thus represented as T̃ = [tcls; t̃1; . . . ; t̃N ] for text and

Ṽ = [vcls; ṽ1; . . . ; ṽN ′ ] for image. These masked inputs are

processed using the proposed SyncMask mT and mI .

Synchronized Attentional Masked Language Modeling
MLM predicts masked words based on the surrounding con-

textual text and image. Many existing VLMs applied the

MLM method proposed in BERT [7], randomly masking

words with a probability of 15%. However, this approach

may not be suitable for vision-language datasets with short

caption lengths, especially for nonstandard datasets such as

fashion, demanding a thorough understanding of fine-grained

attributes. We leverage previous works that addressed these

issues by increasing masking probabilities [3] and employ-

ing attribute prompts [15]. Building upon these methods, we

employ masks generated by SyncMask which is contextually

attuned to the corresponding image.

Let h(V, T̃ ) denote the model’s predicted probability for

a masked token. ỹ denote a one-hot vocabulary distribution

in which the ground-truth token is assigned a probability of

1. MLM minimize cross-entropy loss, described as follows:

LMLM = E(V,T̃ )∼D[CE(ỹ,h(V, T̃ )], (9)

where CE(·, ·) refers the cross-entropy between two vectors.

Synchronized Attentional Masked Image Modeling In

the distillation-based MIM [21, 29, 34], a teacher encoder

sees the full image, whereas the student encoder, seeing

the masked image, tackles the reconstruction objective. Our

method adopts a similar objective framework, but with a

key difference: our masks, generated through SyncMask, are

designed to reflect text-informed elements in masked image.

To calculate the MIM loss, the following approach is used:

DIST(f I
θ′(V ), f I

θ (Ṽ ))

=
1

Ω(mI)

N ′∑
k=1

mI
k · �Smooth

1 (f I
θ′(V )k,f

I
θ (Ṽ )k) (10)

where f I
θ′(·)k and f I

θ (·)k represent the output feature of

teacher and student model for the k-th image patch, respec-

tively. Ω(·) means the number of elements with a value of 1

in a vector.

�Smooth
1 (a, b) =

{
0.5(a− b)2 if |a− b| < γ

|a− b| − 0.5 otherwise,
(11)

where �Smooth
1 [11] represents a robust L1 loss less sen-

sitive to outliers than the L2 loss and γ is a hyperparameter

set to 1. Conclusively, the training objective of MIM can be

formulated as:

LMIM = E(V,Ṽ )∼D[DIST(f I
θ′(V ), f I

θ (Ṽ ))] (12)

The final loss (L) is given as:

L = LMIM + LMLM + LITC + LITM (13)

where LITC and LITM denote ITC and ITM, respectively.

Due to space constraints, detailed formulations of these two

losses are elaborated in the Appendix.
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METHODS
I2T� T2I�

MEAN� I2T T2I
MEAN

R@1 R@1 R@1 R@1

VSE++ [9] 4.59 4.60 4.60 – – –

VL-BERT [38] 19.26 22.63 20.95 – – –

ViLBERT [32] 20.97 21.12 21.05 – – –

Image-BERT [35] 22.76 24.78 23.77 – – –

OSCAR [28] 23.39 25.10 24.25 – – –

FashionBERT [10] 23.96 26.75 25.36 – – –

Kaleido-BERT [45] 27.99 33.88 30.94 – – –

CommerceMM [43] 41.60 39.60 62.75 – – –

EI-CLIP [33] 38.70 40.06 39.38 25.70 28.40 27.05

ALBEF [27] 63.97 60.52 62.20 41.68 50.95 46.32

FashionViL [13] 65.54 61.88 63.71 42.88 51.34 47.11

FashionSAP [15] 73.14 70.12 71.63 54.43 62.82 58.63

Ours 75.00 71.00 73.00 55.39 64.06 59.73

Table 2. Cross-modal retrieval result on FashionGen [37] in the sub/full set of evaluation following previous work. �:sub set.

3.3. Grouped Batch with Semi-hard Negatives

In the generic domain, [3] proposed the GRIT strategy for

enhancing training effectiveness by forming mini-batches

with similar examples. In this strategy, the grouping based
on similarity phase plays a crucial role. During this phase,

similarity calculations are performed in both directions, uti-

lizing the [CLS] outputs from the unimodal encoders. For

each example, the algorithm iteratively identifies the index

with the highest similarity, alternating between the image-

to-text and text-to-image directions in a sequential manner.

These highly similar indices are grouped together within

the mini-batch, ensuring that each mini-batch consists of

examples exhibiting the highest possible similarity.

However, in fashion datasets, this strategy leads to a false-

negative problem in ITM and ITC, where true positives are

mislabeled as negatives within mini-batches. To address this

problem, we opt to group semi-hard negatives with relatively

lower similarity (the sth highest pairwise similarity) instead

of the highest (1st) during the grouping based on similarity
phase, where s represents a predefined hyperparameter that is

greater than 1. In addition, we prevent true positive samples

from grouping by considering the item indices of the samples.

Through this approach, the model is trained with negatives

that are similar but exhibit meaningful differences, thereby

enabling the effective learning of fine-grained distinctions

with a limited dataset. More details are in the Appendix.

4. Experiments

4.1. Implementation Details

The foundational architecture of the proposed model is

aligned with prior works for demonstrating the effectiveness

of the proposed approach [27, 3, 15]. The image encoder

adopts the architecture of ViT-B16 [8], whereas the text en-

coder comprises the first six blocks of the BERT-bas3 [7].

The multi-modal encoder extends the self-attention layers

of the last six blocks of BERT with the cross-attention lay-

ers. The proposed model is initialized with pre-trained AL-

BEF [27] same as the Fashion-SAP to ensure a fair compari-

son [15]. In addition, we employ the same data augmentation

and prompt input strategies as FashionSAP [15]. During pre-

training, we conduct experiments using 8 RTX 3090 GPUs

each with a batch size of 8 for 30 epochs. We adopt a mo-

mentum queue size of 48,000 to facilitate grouped batch

sampling, which is consistent with GRIT-VLP [3]. The input

image size is set to 256 × 256. We apply the AdamW [31]

optimizer with a learning rate of 6e-5.

4.2. Datasets

FashionGen [37] FashionGen comprises 320K text-image

pairs and 40K unique fashion items, each represented by

multiple images from different angles. For pre-training, we

employ the FashionGen train set, which contains approxi-

mately 260.5K text-image pairs. In addition, FashionGen

supports various downstream tasks, including text-to-image

retrieval, image-to-text retrieval, category recognition, and

subcategory recognition.

FashionIQ [40] FashionIQ encompasses 77K unique fash-

ion items and includes 18K training triplets (i.e., query im-

age, modified text, target image) and 6K validation datasets

for a text-guided image retrieval task. It contains three dif-

ferent categories: Dress, Toptee, and Shirt.

4.3. Downstream Tasks

Cross-modal Retrieval We evaluate a cross-modal re-

trieval task that includes image-text retrieval (ITR) and text-
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Figure 5. The top-10 TGIR results of the SyncMask model on the FashionIQ dataset. On the left, the reference images paired with their guided descriptions

are shown, while the right side presents the model’s predicted images ranked by descending scores. Ground truth images are distinctly outlined with a green

bounding box. It is worth mentioning that the set of predictions includes other images that also qualify as suitable matches.

METHODS
DRESS TOPTEE SHIRT MEAN

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

CIRR [30] 17.45 40.41 21.64 45.38 17.53 38.81 18.87 41.53

VAL [5] 22.53 44.00 27.53 51.68 22.38 44.15 24.15 46.61

CosMo [25] 25.64 50.30 29.21 57.46 24.90 49.18 26.58 52.31

DCNet [22] 28.95 56.7 30.44 58.29 23.95 47.3 27.78 54.10

FashionVLP [12] 32.42 60.29 38.51 68.79 31.89 58.44 34.27 62.51

FashionViL [13] 33.47 59.94 34.98 60.79 25.17 50.39 31.21 57.04

FashionSAP [15] 33.71 60.43 41.91 70.93 33.17 61.33 36.26 64.23

Ours 33.76 61.23 44.82 72.06 35.82 62.12 38.13 65.14
Table 3. Text-guided image retrieval performance in FashionIQ [40]

image retrieval (TIR). Further, ITR focuses on finding rele-

vant textual descriptions for a given image query. TIR, the in-

verse task, retrieves pertinent images based on a textual query.

These tasks assess the effectiveness of the model in capturing

cross-modal relationships between text and images within re-

trieval scenarios. Following the previous works [13, 15], we

evaluate cross-modal retrieval not only on the subset with 1K

retrievals but also on the full dataset of FashionGen [37]. The

results, including R@1 scores for both subset and the full set,

are presented in Table Table 2, demonstrating an improved

performance compared to that of the previous results.

Text-guided Image Retrieval This task aims to retrieve

target images by considering query pairs that reference im-

age and modified descriptions; this is more challenging than

traditional retrievals. Therefore, we need to select the tar-

get image for identifying minor differences in the changes

in description while maintaining the characteristics of the

reference image. For a fair comparison, we adopt a similar

fine-tuning as outlined in the FashionSAP [15]. In the actual

dataset, there are many images that match with the query

pairs in addition to the target image referred to as the real

correct answer, as shown in Figure 5. Thus, a qualitative

METHODS
CR SCR

Acc Macro-F Acc Macro-F

F-BERT [10] 91.25 70.50 85.27 62.00
K-BERT [45] 95.07 71.40 88.07 63.60

F-ViL [13] 97.48 88.60 92.23 83.02
FashionSAP [15] 98.34 89.84 94.33 87.67

Ours 98.41 90.31 94.21 87.83

Table 4. CR and SCR results on FashionGen [37].

evaluation can be conducted in that the model finds simi-

lar images well in addition to the actual correct answer. As

shown in Table 3, the proposed model surpasses previous

models and demonstrates state-of-the-art performance.

Category / Subcategory Recognition In this downstream

task, the objective is to classify the category and subcategory

of fashion items using the textual and visual information pro-

vided. In line with earlier studies [10, 45, 13, 15], we simply

attach a linear layer to the [CLS] token, which serves as the

fusion feature, for task label prediction. As indicated in Ta-

ble 4, our proposed model exhibits competitive performance

compared to existing models.
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Figure 6. Examples of random masking (b) and SyncMask (c) for MIM and

MLM. The latter applies masks to pertinent features in both the input image

and text (a), offering a more context-sensitive selection than the former.

4.4. Ablation Study

Random vs. Attentional Masking We ablate the Sync-

Mask with other non-synchronized masking methods. Ta-

ble 5 lists the comparison results for the combination of

random and attentional masking. In this experiment, we

evaluated five experiments for I2T (R@1), T2I (R@1), CR

(Macro-F), SCR (Macro-F), and TMIR (R@10), which were

evaluated in the previous experiments. In these experiments,

the results of the three experiments with at least one atten-

tional masking were higher than those with no attentional

masking (all random). This can be considered an indication

of the efficacy of attentional masking. Further, the synergis-

tic performance of the proposed synchronized textual-visual

attentional masking (+2.14) is greater than that of only one at-

tentional masking (+0.4, +0.66), which shows the superiority

of the SyncMask approach. Figure 6 displays the distinction

between applying random masks (b) and SyncMask (c) to

unmasked image-text pairs (a) from the FashionGen [37].

SyncMask strategically places masks on image patches that

correlate with the text and applies masks to the text informed

by the image details, unlike random masking.

Random vs. Hardest vs. Semi-hard Negative Sampling
Table 6 compare the effectiveness of various grouped mini-

batch sampling strategies across five downstream tasks. The

methods evaluated encompassed four scenarios: random

grouping, hardest grouping (+1.90), hardest grouping with

exclusion of false negatives (+1.98), and semi-hard grouping

RT RV AT AV MEAN GAIN
I2T T2I CR SCR TMIR

R@1 R@1 Macro-F Macro-F R@10

� � 70.31 73.30 69.80 86.21 86.16 36.08
� � 70.71 +0.40 74.80 70.10 86.49 86.31 35.84

� � 70.97 +0.66 74.30 70.80 85.12 86.78 37.87
� � 72.45 +2.14 75.00 71.00 90.31 87.83 38.13

Table 5. Ablation study results for Random vs. Attention Masked Modeling

on five downstream tasks. Rt:Random Textual masking. Rv:Random Visual

masking. At:Attentional Textual masking. Av:Attentional Visual masking.

GROUP EFN MEAN GAIN
I2T T2I CR SCR TMIR

R@1 R@1 Macro-F Macro-F R@10

Random 69.99 72.30 69.00 86.21 85.40 37.06
Hardest 71.89 +1.90 74.70 70.50 90.20 86.64 37.40
Hardest � 71.97 +1.98 74.30 71.00 90.10 87.15 37.28

Semi-hard � 72.45 +2.46 75.00 71.00 90.31 87.83 38.13

Table 6. Ablation study results comparing the Grouped Batch Sampling
Strategy across five downstream tasks. GROUP: Strategy for grouping phase

of GRIT. EFN: Exclude False Negative in a grouping phase using index.

also excluding false negatives (+2.46). These findings sug-

gest that grouping similar samples in a mini-batch is more

beneficial for learning than composing batches with random

samples. However, given that the fashion dataset often has

multiple captions per image or vice versa, performance gains

were observed when systematically preventing the grouping

of false negatives by using indexing. Nevertheless, due to

the prevalence of inherently similar samples that cannot be

systematically excluded, we opted for grouping semi-hard

negatives instead of the hardest ones, which resulted in a sig-

nificant performance boost. This highlights the importance

of further research from a data perspective, not just in terms

of model architecture or loss functions.

5. Conclusion
We introduced Synchronized attentional Masking for en-

hanced masked modeling in fashion-centric VLMs. Lever-

aging cross-attention features of a momentum model, our

method tailors the random mask into a targeted mask for

synchronously co-occurring segments in image-text pairs

in MLM and MIM objectives. This approach effectively re-

solves misaligned image-text input issues and improving

fine-grained cross-modal representation. Additionally, we

addressed data scarcity and distribution challenges in fashion

datasets, refining grouped batch sampling with semi-hard

negatives for ITM and ITC losses. The experimental results

showed our methods outperformed established benchmarks

in multiple downstream tasks.
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