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Abstract

Learning to optimize (L2O) is an emerging technique to
solve mathematical optimization problems with learning-
based methods. Although with great success in many real-
world scenarios such as wireless communications, com-
puter networks, and electronic design, existing L2O works
lack theoretical demonstration of their performance and ro-
bustness in out-of-distribution (OOD) scenarios. We ad-
dress this gap by providing comprehensive proofs. First, we
prove a sufficient condition for a robust L2O model with ho-
mogeneous convergence rates over all In-Distribution (InD)
instances. We assume an L2O model achieves robustness
for an InD scenario. Based on our proposed methodology of
aligning OOD problems to InD problems, we also demon-
strate that the L2O model’s convergence rate in OOD sce-
narios will deteriorate by an equation of the L2O model’s
input features. Moreover, we propose an L2O model with
a concise gradient-only feature construction and a novel
gradient-based history modeling method. Numerical sim-
ulation demonstrates that our proposed model outperforms
the state-of-the-art baseline in both InD and OOD scenar-
ios and achieves up to 10× convergence speedup. The code
of our method can be found from https://github.
com/NetX-lab/GoMathL2O-Official.

1. Introduction

Learning to Optimize (L2O) is a promising new approach
in applying learning-based methods to tackle optimization
problems. In particular, L2O concentrates on problems with
well-defined objective functions and constraints [7]. Thus,
black-box optimization strategies, such as Bayesian Opti-
mization [24], typically fall outside its scope. L2O has
shown benefits in problems from various domains, includ-
ing LASSO regression in sparse coding using multilayer
perceptrons [8], and utility maximization in resource allo-
cation wherein neural networks (NN) serve to approximate
the expensive matrix inversion [11].

L2O can be categorized into three main types: black-box
[6, 22, 26, 31], algorithm-unrolling [11, 21, 33], and math-
inspired [9, 14]. Black-box L2O approaches the optimiza-

tion problem as a traditional pattern recognition task, ap-
proximating a mapping function from manually constructed
features to the solutions [26]. Algorithm-unrolling L2O
leverages well-defined algorithms, such as gradient descent
[19], to approximate the solutions of complex calculations.
Besides, much research has gone into explainable and trust-
worthy L2O. For example, Heaton et al. [9] employ an ex-
isting algorithm to prevent the L2O model from entering ir-
recoverable areas. Liu et al. [14] introduce a mathematics-
driven L2O (Math-L2O) framework for convex optimiza-
tion, offering a general workflow for formulating an L2O
model. Despite empirical results, a theoretical analysis
on the robustness of L2O models under out-of-distribution
(OOD) conditions is still missing in [14].

OOD generalization for L2O has emerged as a vital is-
sue, often considered more critical in L2O than in other
deep learning applications [23]. For L2O, OOD’s chal-
lenge involves resolving previously unseen problems, po-
tentially involving novel optimization problems with unique
objectives [30]. Guaranteeing convergence in OOD scenar-
ios remains elusive. For instance, a model’s output in an
OOD scenario could potentially veer into unpredictable ar-
eas when the domain changes significantly to an InD sce-
nario.

Numerous efforts have been made to enhance the robust-
ness of L2O models in training. Lv et al. [16] employ data
augmentation to prevent L2O models from overfitting to
specific tasks. Almeida et al. [2] transform the L2O model
into a hyperparameter tuner for existing optimization algo-
rithms. Wichrowska et al. [29] focus on minimizing pa-
rameters in NNs and assembling heterogeneous optimiza-
tion tasks. Liu et al. [14] try to regularize L2O models with
inspirations from existing algorithms. However, these stud-
ies predominantly aim to mitigate the limitations inherent
in existing L2O methods, with no comprehensive analysis
conducted on the impact of OOD on the deterioration of
convergence. This gap in the literature motivates us to quan-
tify this deterioration with rigorous analysis.

The central thesis of this paper is to propose a general
and robust L2O model for both InD and OOD scenarios.
Chiefly, we first investigate L2O’s convergence behavior in
InD contexts and derive the criteria for a uniformly robust
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model applicable to all InD instances. Then, we character-
ize L2O’s degradation of convergence under OOD condi-
tions, presenting our findings as a series of corollaries. The
main contributions of this paper are as follows.

1. We propose a methodology to link the L2O model’s
performances in InD and OOD situations based on the
Math-L2O approach from Liu et al. [14]. First, we con-
struct a virtual feature by subtracting the L2O model’s
input feature in InD from that in OOD. We then com-
pute the corresponding difference in the model’s outputs
by applying this virtual feature. To depict a comprehen-
sive deviation of OOD from InD, we align the variable
sequence from an OOD situation with that from InD and
construct a trajectory of virtual features. We use this tra-
jectory to illustrate OOD’s divergence from InD and then
conduct theoretical analyses.

2. We establish the criteria for a robust L2O model in an
InD setting and examine its response to OOD. First, we
present a sufficient condition to guarantee a homoge-
neous convergence improvement in each iteration, con-
firming robustness in InD scenarios. Then, we derive the
equations describing convergence gain in a single iter-
ation and the overall convergence rate of the entire se-
quence relative to our proposed virtual feature. A col-
lection of theorems and observations underscore that the
magnitude of virtual features inherently exacerbates the
deterioration of convergence in OOD situations.

3. Based on our theoretical insights, we propose a robust
L2O model, GO-Math-L2O, that exclusively employs
gradients as input features. This gradient-only approach
enables a more concise virtual feature in OOD settings.
We introduce a new gradient-only history modeling tech-
nique to model the optimization process’s historical se-
quence. This method employs gradient (and subgradi-
ent) values as status indicators to modulate updates pro-
vided by the L2O model. We propose to recover the his-
torical subgradient from an inversible model definition,
thus eliminating the ambiguity of subgradient selection.

4. Through numerical experiments, we show that GO-
Math-L2O outperforms state-of-the-art (SOTA) L2O
models on convergence and optimality across both InD
and OOD scenarios. Following training with a synthetic
dataset, we deploy various OOD test cases with identi-
cal optimal values. Our proposed model’s convergence
speed is up to 10× faster than SOTA L2O models in
OOD scenarios.

The rest of this paper is organized as follows. In Sec. 2,
we define OOD problems for L2O. In Sec. 3, we propose a
method to quantify the solutions given by an L2O model in
OOD scenarios. Then, in Sec. 4, we derive the convergence
rate of an L2O model in OOD scenarios. Based on this,
we propose our robust GO-Math-L2O model in Sec. 5. We
empirically verify the proposed model with simulations in

Sec. 6, and conclude the work in Sec. 7.
Notations: A smooth convex function and a non-smooth

convex function are denoted by f and r, respectively. NNs’
input vectors are denoted by z and z′. Variables of an op-
timization problem are denoted by x and x′. The optimal
solution is denoted by x∗. An iteration and stopping itera-
tion are denoted by k and K, respectively. A smooth gra-
dient at xk and a set of subgradients at xk are denoted by
∇f(xk) and ∂r(xk), respectively. A subgradient value of
∂r(xk) is denoted by gk. Frobenius norm for a matrix and
L2-norm for a vector is denoted by ‖ · ‖F and ‖ · ‖ respec-
tively. Transpose is defined by >. The maximum length of
history modeling is denoted by T . The Jacobian matrix of
a vector-to-vector function is denoted by J. An L2O model
is denoted by d. A NN is denoted by operator N.

2. Definitions
In this section, we first introduce the objective of the L2O
problem. We then introduce the Math-L2O model in [14],
whose iterative updates are defined by NNs. Last, we define
the domains for both InD and OOD scenarios, which leads
to the definitions of InD L2O and OOD L2O problems.

2.1. Optimizee (Optimization Objective)

Consider function F (x) = f(x) + r(x). Here, f(x) is a L-
smooth function, and r(x) is a non-smooth function. They
are defined within the following function spaces:

FL (Rn) ={f : Rn → R|f is convex, differentiable, and
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x, y ∈ Rn},

F (Rn) = {r : Rn → R|r is proper, closed, and convex} .

We assume r(x) is sub-differentiable, with its subgradient
set at any point x defined below:

∂r(x) = {g ∈ Rn | r(y)−r(x) ≥ g>(y−x),∀x, y ∈ Rn}.

We note here that the above optimization objective applies
to both the InD and the OOD scenarios.

2.2. Optimizor (L2O Model)

Denote the L2O model as d(z), where the input vector space
is designated as Z such that z ∈ Z ⊆ Rm. We define d(z)
as a function mapping within the given function space [14]:

DC(Z) = {d : Z → Rn | d is differentiable,

‖Jd(z)‖F ≤ C, ∀z ∈ Z, C ∈ R+}.
(1)

We choose features from x and F (x) to define z, offer-
ing a wide range of feasible options. For instance, z could
be defined with the optimization variable and its gradient
as
[
x>,∇f(x)>

]>
in [14]. Different from [14], we pro-

pose to define z solely as ∇f(x) to improve convergence
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in OOD scenarios. From our experimental results, our ap-
proach achieves near-optimal solutions in some OOD cases
and more robust performance than SOTA baselines in all
OOD scenarios. Moreover, Corollaries 2 and 3 theoretically
demonstrate the outperformance over the method in [14].
d(z) iteratively updates the optimization variable. At

each iteration k, given the previous variable xk−1 ∈ Rn and
the input vector zk−1 for the L2O model, d(zk−1) updates
xk as follows:

xk = xk−1 − d(zk−1). (2)

2.3. InD and OOD Problems

The InD and OOD problems share the same space of opti-
mization objective defined in Sec. 2.1 but with different op-
timization objectives or variable domains. Consider a con-
vex and compact set, SP ⊆ Rn. The complementary set of
SP is denoted as SO, such that SO := Rn\SP . We also sup-
pose the existence of two function sets: FL,P ⊆ FL (Rn)
and FP ⊆ F (Rn). We define InD optimization problems
as follows:

min
x
F (x), (P)

where x ∈ SP , F (x) = f(x) + r(x), f ∈ FL,P , and
r ∈ FP . The dataset employed for training an L2O model
is derived from a specific domain of x, f , and r. Consider an
L2O model d(z) that has undergone training with a domain
of x, f , and r, sampled from Problem P. We then define
the InD L2O Problem as: Given any initial point x0 ∈ SP ,
using d(z) to iteratively update x0 in order to find a solution
for any arbitrary InD problem as depicted in Problem P.

Note that instances outside this domain potentially yield
more erroneous d(z) outputs. Furthermore, non-learning
algorithms, such as gradient descent, have demonstrated ro-
bustness across all domains [19]. One of the main goals
of this paper is to propose an L2O model that is robust to
OOD.

We characterize OOD in the context of L2O in the op-
timization objective’s domain. We define the OOD L2O
Problem as: Consider an L2O model d(z) that has under-
gone training with a domain of x, f , and r, sampled from
Problem P, using d(z) to iteratively update x′0 ∈ SO in or-
der to a solution for any following problem:

min
x′

F ′(x′). (O)

where F ′(x′) = f ′(x′) + r′(x′), f ′ /∈ FL,P , and r′ /∈ FP .
We delineate the InD and OOD input vector spaces of

d(z). We denote the input vector spaces for an L2O model
in the context of InD L2O Problem and OOD L2O Problem
as ZP and ZO, respectively. Then, we choose features of
the variables and the objective functions to construct the in-
put feature of d(z). Specifically, we define ZP and ZO as

the ensuing sets:

ZP =
{[
x-feature>, f(x)-feature>, r(x)-feature>, . . .

]>
| ∀x ∈ SP ,∀f ′ ∈ FL,P ,∀r′ ∈ FP

}
,

ZO =
{[
x′-feature>, f ′(x′)-feature>, r′(x′)-feature>, . . .

]>
| ∃x′ ∈ SO or ∃f ′ /∈ FL,P or ∃r′ /∈ FP

}
,

where “. . . ” represents other feasible features such as the
history of x. Some feasible feature constructions for x,
f(x), and r(x) include x itself, ∇f(x), and ∂r(x). Later
in Sec. 5, we show how to contruct the input features of the
L2O model d(z) based only on ∇f(x) and ∂r(x).

3. Virtual Feature and Trajectory
In this section, we introduce a virtual feature methodology
to correlate any arbitrary variable yielded by the L2O model
in the OOD scenario (x′k) to a corresponding variable xk in
the InD scenario. The virtual features are generated as a lin-
ear combination of the OOD and InD features and serve as
a bridge to connect each L2O model’s OOD outcome to its
InD outcome. We then leverage the virtual-feature method
to connect OOD and InD variable trajectories generated by
the L2O model. Since the convergence of InD trajectories
is deterministic, such a method facilitates the convergence
and robustness analysis for OOD scenarios in Sec. 4.

3.1. Virtual Feature

Consider an arbitrary OOD variable x′ ∈ SO and a InD
variable x ∈ SP yielded by the L2O model. Let s ∈ Rn
such that s = x′ − x. In that case, we define the difference
s′ between the L2O model’s features in the OOD scenario
z′ and the features in the InD scenario z. From the Mean
Value Theorem [20], there exists a virtual Jacobian matrix
Jd, ‖Jd‖ ≤ C

√
n such that the following inequality holds:

d(z′) = d(z) + Jd(z
′ − z) = d(z) + Jds

′. (3)

The demonstrations are in Sec. 8.1. From equation 3,
we can relate any variable of the L2O model in the OOD
scenario to the InD scenario. Although the virtual Jacobian
matrix Jd is non-deterministic, it is upper bounded from the
definition of d(z) in equation 1. This suffices for a quantita-
tive analysis of the impact of the ”shift” s′ on convergence.
For instance, our proposed Theorem 1 in Sec. 4 provides an
upper bound on the convergence gain for a single iteration.

3.2. Trajectory

For the OOD Problem O, denote the initial variable as x′0 ∈
SO. In the optimization process, we have two trajectories
for the variable x′ and the features of the L2O model z′:

{x′0, x′1, x′2, . . . , x′K}, {z′0, z′1, z′2, . . . , z′K}.
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where x′k ∈ SO, z′k ∈ ZO, k = 0, 1, 2, . . . ,K. Similarly,
for the InD Problem P, denote the initial variable as x0 ∈
SP . We have also have two trajectories for the variables x
and the features of the L2O model z:

{x0, x1, x2, . . . , xK}, {z0, z1, z2, . . . , zK},

where xk ∈ SP , zk ∈ ZP , k = 0, 1, 2, . . . ,K. Utilizing the
definitions in Sec. 3.1, we compute the differences between
the variables and the features of the OOD trajectories and
the InD trajectories as follows:

{s0, s1, s2, . . . , sK}, {s′0, s′1, s′2, . . . , s′K},

where sk := x′k−xk and s′k := z′k−zk. Thus, we can repre-
sent the OOD trajectory by {xk + sk} and {zk + s′k}. Fur-
thermore, utilizing the virtual-feature method in Sec. 3.1,
we have:

d(z′k−1) = d(zk−1) + J′d,k−1, (4)

where Jd,k−1 is a virtual Jacobian matrix of d(z̃k−1). Due
to equation 2 in Sec. 2.2, x′k is updated by x′k−1 − d(z′k−1)
and xk is updated by xk−1−d(zk−1). Based on equation 4,
we have:

sk = sk−1 − Jd,k−1s
′
k−1. (5)

4. White-Box OOD Generalization Analysis
In this section, we rigorously demonstrate that the robust-
ness of the L2O model is limited by its input features of
NNs. We prove that increased features adversely impact the
L2O model’s generalization ability in OOD scenarios.

4.1. The Smooth Case

Building upon the state-of-the-art Math-L2O [14], we sys-
tematically detail our conclusions through a series of theo-
rems and lemmas.

We analyze the convergence rate of the OOD scenario
when the objective function F (x) is smooth, i.e., r(x) = 0
and F (x) = f(x). Leveraging Theorem 1 from [14], the
update of the variable at the k-th iteration can be expressed
as xk = xk−1 − Pk−1∇f(xk−1) − bk−1, where Pk−1 ∈
Rn×n and bk−1 ∈ Rn are parameters learned by NNs.

Let Pk−1 and bk−1 be N1(Z) ∈ DC1
(Z) and N2(Z) ∈

DC2
(Z) respectively, for some positive constants C1, C2 ∈

R+. As suggested in [14], we assign Pk as a diagonal ma-
trix. Without loss of generality, for any given variable xk−1,
where xk−1 ∈ Rn, and any given function f ∈ FL(Rn),
we define zk−1 = [x>k−1,∇f(xk−1)

>
]> [14]. The update

of variable xk at each iteration k can then be expressed as:

xk = xk−1−diag(N1(zk−1))∇f(xk−1)−N2(zk−1). (6)

The OOD shift applied to the variable and its gradient yields
the definition of virtual feature (Sec. 3):

s′k−1 := [s>k−1, (∇f ′(x′k−1)−∇f(xk−1))>]>. (7)

We present the following lemma for N1(z) and N2(z)
to yield a variable xk that is no worse than the previous
variable xk−1 at each iteration k.

Lemma 1. Denote the angle between N2(zk−1) and cor-
responding∇f(xk−1) as θk−1. For ∀zk−1 ∈ ZP ,∀xk−1 ∈
SP , if N1(zk−1) and N2(zk−1) are respectively bounded
by following compact sets:

N1(zk−1) := λk−11, λk−1 ∈
[
0,

1

L

]
,

N2(zk−1) ∈
[
0,
‖∇f(xk−1)‖ cos(θk−1)

L
1

]
, θ ∈

[
0,
π

2

]
,

then, for xk generated by L2O model in equation 6, we
have:

F (xk)− F (xk−1) ≤ 0.

Proof. See Sec. 8.2 in Appendix.

As stated in Lemma 1, to maintain homogeneous im-
provement on the convergence, it is sufficient to set N1(z)
as an input-invariant constant, and limit N2(z) according
to the gradient ∇F (xk−1). Moreover, we can utilize some
bounded activation functions in training an L2O model to
fulfill the conditions to ensure convergence, such as Sig-
moid [17] and Tanh [12].

The proof for Lemma 1 establishes that improvement
is characterized by a quadratic relation to each element in
N1(zk−1) and ‖N2(zk−1)‖. We can identify the optimal
upper bound for convergence improvement in the InD L2O
model by optimizing this quadratic relation, leading us to
Corollary 1.

Corollary 1. For any zk−1 ∈ ZP , we let:

N1(zk−1) :=
1

2L
1,N2(zk−1) :=

∇f(xk−1)

2L
,

the Math-L2O model in equation 6 is exactly gradient de-
scent update with convergence rate:

F (xK)− F (x∗) ≤ L

2K
‖x0 − x∗‖2.

Proof. See Sec. 8.3 in Appendix.

Corollary 1 implies that the L2O model can achieve gra-
dient descent’s convergence rate by particular settings. The
N1(zk−1) is set to be a homogeneous constant across all el-
ements. The N2(zk−1) is set to in correspondence with the
gradient ∇f(xk−1). Moreover, Corollary 1 also provides
the most robust L2O model with an identical per iteration
convergence gain among all InD instances.
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Per-Iteration Convergence Gain

To ascertain the convergence rate of OOD, following Corol-
lary 1, we suppose that after training, the following assump-
tion holds for the InD L2O Problem (not for the OOD L2O
Problem) to ensure best robustness for the InD scenario:

Assumption 1. After training, ∀xk−1 ∈ SP ,∀zk−1 ∈ ZP ,
N1(zk−1) := 1

2L1 and N2(zk−1) := ∇f(xk−1)
2L .

Based on the Lemma 1 and Corollary 1, Assumption 1
leads to an L2O model with best robustness on all InD in-
stances. In the following theorem, we quantify the diminu-
tion in convergence rate instigated by the virtual feature s′

defined in Sec. 3.

Theorem 1. Under Assumption 1, there exists virtual Jaco-
bian matrices J1,k−1,J2,k−1, k = 1, 2, . . . ,K that the per
iteration convergence improvement in the OOD scenario is
upper bounded by:

F ′(xk + sk)− F ′(xk−1 + sk−1)

≤− ‖∇f
′(xk−1 + sk−1)‖2

2L

+ L‖diag(J1,k−1s
′)∇f ′(xk−1 + sk−1)‖2

+ L‖∇f
′(xk−1 + sk−1)−∇f(xk−1)

2L
− J2,k−1s

′‖2.

Proof. See Sec. 8.4 in Appendix.

Theorem 1 discloses that for a single iteration, the con-
vergence improvement of OOD is bounded by the gradient
descent with a step size of 1/L, resulting in −|∇f |2/2L
convergence improvement. Hence, when Math-L2O is ad-
equately trained, any OOD will dampen convergence. Ad-
ditionally, given that the expression on the right-hand side
is not strictly non-positive, we cannot unequivocally affirm
that convergence will transpire within a single iteration.
Further investigation also intimates that, even in the con-
text of convex optimization problems, scenarios may arise
where the value of the objective function deteriorates.

While the existence of virtual Jacobian matrices in The-
orem 1 is assured, their specific values remain unknown.
Given that boundedness is a defined characteristic of these
matrices, we relax this constraint in Theorem 1 and intro-
duce Corollary 2.

Corollary 2. Under Assumption 1, the per iteration con-
vergence improvement in the OOD scenario can be upper
bounded w.r.t. ‖s′k−1‖ by:

F ′(xk + sk)− F ′(xk−1 + sk−1)

≤− ‖∇f
′(xk−1 + sk−1)‖2

2L

+
‖∇f ′(xk−1 + sk−1)−∇f(x)‖2

2L

+
(
LC2

1n‖∇f ′(xk−1 + sk−1)‖2 + 2LC2
2n
)
‖s′‖2.

Proof. See Sec. 8.5 in Appendix.

Corollary 2 further elucidates that the decline in the con-
vergence improvement of OOD is determined by the mag-
nitude of the input (virtual) feature s′ of the L2O model, as
outlined in equation 7. This magnitude is intrinsically re-
lated to the vector’s dimensionality, which relies on the fea-
ture construction of the L2O model. For example, to reduce
its magnitude, we can eliminate sk−1 in equation 7. We
achieve this feature shrinking and propose a novel gradient-
only L2O model in Sec. 5.

Multi-Iteration Convergence Rate

Building upon Theorem 1, we extrapolate the convergence
rate across numerous iterations, as delineated in Theorem 2.

Theorem 2. Under Assumption 1, the K iterations’ con-
vergence rate in the OOD scenario is upper bounded by:

min
k=1,...,K

F ′(xk + sk)− F ′(x∗ + s∗)

≤L
2
‖x0 − x∗ + s0 − s∗‖2 −

L

2
‖xK − x∗ + sK − s∗‖2

+
L

K

K∑
k=1

(xk + sk − x∗ − s∗)>

(
xk + sk −

(
xk−1 + sk−1 −

∇f ′(xk−1 + sk−1)

L

))
.

Proof. See Sec. 8.6 in Appendix.

The first two terms on the right-hand side of the above
inequality represent the gradient descent convergence rate
characterized by a step size of 1/L. However, the third
term is unbounded and could be either non-positive or pos-
itive. This suggests that there is no guaranteed global con-
vergence in OOD situations, even with homogeneous ro-
bustness in InD scenarios.

The inequation above offers a direct approach to ana-
lyzing distinct cases of convergence. Included in the con-
cluding line of Theorem 1 is a gradient descent equation,
xk−1 + sk−1 −∇f ′(xk−1 + sk−1)/L. Moreover, xk + sk
represents the updated solution by the L2O model. The sub-
traction of the two terms reveals the discrepancy between
the updates made by L2O and gradient descent on the ob-
jective variable xk−1 + sk−1, thereby creating a vector di-
rected towards xk + sk. Similarly, xk + sk −x∗− s∗ signi-
fies the relative position to the optimal solution, generating
another vector directed towards xk + sk. The resulting in-
ner product will be non-positive if the angle between these
two vectors is π/2 or more. Moreover, if the trajectory of
xk + sk−x∗− s∗ can be extrapolated from domain knowl-
edge, a “trust region” surrounding xk + sk can be estab-
lished to augment the efficacy of gradient descent.

From Theorem 1, we develop a stringent formulation to
illustrate the potential uncertainty of convergence in OOD
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scenarios. If we know the relative position of the optimal
solution, we can fine-tune an L2O model to outperform gra-
dient descent. Based on Theorem 1, we establish an upper
bound w.r.t. s′. This mirrors the approach in Corollary 2.

Corollary 3. Under Assumption 1, L2O model d(z)’s OOD
convergence rate is upper bounded w.r.t. ‖s′k−1‖ by:

min
k=1,...,K

F ′(xk + sk)− F ′(x∗ + s∗)

≤L
2
‖x0 + s0 − x∗ − s∗‖2 −

L

2
‖xK + sK − x∗ − s∗‖2

+
1

2K

K∑
k=1

(
∇f ′(xk−1 + sk−1)−∇f(xk−1)

)>
(xk + sk − x∗ − s∗)

+
L

K

K∑
k=1

(
C1

√
n‖∇f ′(xk−1 + sk−1)‖

+ C2

√
n‖xk + sk − x∗ − s∗‖

)
‖s′k−1‖.

Proof. See Sec. 8.7 in Appendix.

Corollary 3 posits that the overall convergence rate is
consistently upper bounded by the magnitude of s′. Based
on Corollaries 2 and 3, we endeavor to reduce the magni-
tude of s′ by eliminating variable, leading to the approach
of a gradient-only Math-L2O framework in the next section.

4.2. Other Three Cases

We have developed several additional theorems and lemmas
for non-smooth, incremental historical modeling, and in-
tegrated smooth-non-smooth cases.. Our approach mirrors
that employed in the smooth case demonstration. The back-
bone algorithms of math-inspired L2O fundamentally limit
their convergences. For example, the Gradient Descent [19]
and Proximal Point [18] algorithms in the smooth case and
the non-smooth case, respectively.

We extend the theorems and lemmas in the smooth case
to derive formulas for convergence improvement of a sin-
gle iteration and convergence rate across a sequence. These
demonstrate the diminishing effect of OOD on convergence.
Our findings conclude that constructing fewer features can
mitigate this negative impact. More extensive demonstra-
tions and complete proofs can be found in Appendix.

5. Gradient-Only L2O Model
Informed by the theorems and lemmas posited in Sec. 4,
we introduce a gradient-only L2O model, GO-Math-L2O,
which aims to enhance robustness in OOD scenarios by
eliminate variable-related input features for the L2O model.

To derive the formulation of GO-Math-L2O, we employ
the workflow delineated in [14]. Let T denote the history

length. At the k-th iteration, suppose there exists an oper-
ator dk ∈ DC(R3n), we formulate the input of our GO-
Math-L2O as follows:

xk = xk−1 − dk(∇f(xk−1), gk, vk−1), (8)

where gk denotes the implicit subgradient vector of xk to
invoke the proximal gradient method [14]. Moreover, we
eliminate all variable-related features and define vk as the
result of historical modeling [14]. Different from the vari-
able approach in [14], we propose to utilize gradient (and
subgradient) to model the historical information of the opti-
mization process since gradient sufficiently and necessarily
indicates optimality in convex optimization scenarios. Such
an approach reduces the magnitude of L2O’s input feature
(defined in Sec. 3) by 1/3, which facilitates convergence
based on our proposed corollaries in Sec. 4.

Suppose there exists an operator uk ∈ DC(RTn), we
define the following model to generate vk from the gradient
and subgradient of T historical iterations:

vk = dk(∇f(xk−1)+gk−1, . . . ,∇f(xk−T )+gk−T ). (9)

where each g represents a subgradient vector. For subgradi-
ent selection, we should carefully choose an instance from
the subgradient set of each non-smooth point since an arbi-
trary selection may lead to poor convergence [25].

We achieve a lightweight subgradient selection based on
the gradient map method [28] and our following model con-
structions. From the objective definition in Sec. 2.1, the
non-smooth objective r is trivially solvable by arg min.
Thus, at k-th iteration, we can recover an implicit subgra-
dient vector gk of arg min by k-th solution xk and k−1-th
solution xk−1 if the L2O operator dk in equation 8 is in-
versible. Next, we achieve an inversible dk based on the
workflow proposed in [14].

With the above feature and component constructions, we
start to define the structures and learnable parameters of our
L2O operator dk in equation 8. We formulate dk as the nec-
essary condition of convergence [14], which means the for-
mulation that dk should follow if convergence is achieved.
First, denote a candidate optimal solution as x∗, we con-
struct two sufficient conditions (Asymptotic Fixed Point
and Global Convergence) of convergence for our L2O op-
erator dk in equation 8:

lim
k→∞

dk(∇f(x∗),−∇f(x∗), 0) = 0, (FP)
lim
k→∞

xk = x∗. (GC)

As discussed in [14], such two conditions are essential for
optimization algorithms.

Then, we present the following Theorem 3 to construct
dk’s parameters. Theorem 3 shows that if dk converges, it
should be in the form of equation 10. Then, if we add a
further assumption on some of the parameters, the solution
on each iteration can be uniquely obtained by equation 11.
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Theorem 3. Suppose T = 2, given f ∈ FL(Rn) and r ∈
F(Rn), we pick an operators fromDC(R3n) andDC(R2n).
If Condition FP and Condition GC hold, there exist Rk �
0,Qk,Bk ∈ Rn×n and b1,k, b2,k ∈ Rn and satisfying:

xk =xk−1 −Rk∇f(xk−1)−Rkgk −Qkvk−1 − b1,k,
vk =(I−Bk)Gk + BkGk−1 − b2,k,
Gk :=R−1

k (xk−1 − xk −Qkvk−1 − b1,k),
(10)

where for k = 0, 1, 2, . . . , gk+1 ∈ ∂r(xk+1) represents
implicit subgradient vector, Rk, Qk, and Bk are bounded
parameter matrices and b1,k → 0, b2,k → 0 as k → ∞.
Since Rk is symmetric positive definite, xk+1 is uniquely
determined through:

arg min
x∈Rn

r(x) +
1

2
‖x−Rk∇f(xk)−Qkvk − b1,k‖2R−1

k

,

(11)

where ‖ · ‖R−1
k

is defined as ‖x‖R−1
k

=
√
x>R−1

k x.

Proof. See Sec. 8.8 in Appendix.

As a necessary condition for convergence, Theorem 3
suggests that our gradient-only L2O model should construct
parameters R, Q, B, b1, and b2. It is worth noting that this
model does not guarantee satisfaction of conditions FP and
GC. The convergence is promoted by training.

We learn to construct the parameters in Theorem 3. First,
the proof elucidates that the bias terms approach zero upon
convergence. Thus, we set b1, b2 := 0 and learn to con-
struct R, Q, and B. We take the construction in [14] to im-
plement our GO-Math-L2O model with a two-layer LSTM
cell. Then, we utilize three one-layer linear neural network
models with Sigmoid activation function [17] to generate
R, Q, and B at each iteration, respectively, which ensures
that all the matrices are bounded.

6. Experiments

We perform experiments with Python 3.9 and PyTorch 1.12
on an Ubuntu 18.04 system equipped with 128GB of mem-
ory, an Intel Xeon Gold 5320 CPU, and a pair of NVIDIA
RTX 3090 GPUs. We strictly follow the experimental setup
presented in [14] for constructing InD evaluations. Due to
the page limit, the implementation details are in Sec. 12.

We use the Adam optimizer [13] to train our proposed
model and learning-based baselines on datasets of 32,000
optimization problems with randomly sampled parame-
ters and optimal solutions. We generate a test dataset of
1,000 iterations’ objective values, averaging over 1,024 pre-
generated optimization problems. We evaluate different
training configurations and loss functions to select the best
setting. Details are in Sec. 12.5, Appendix.

Baselines. We compare our GD-Math-L2O (Section 5)
against both learning-based methods and non-learning algo-
rithms. Our main competater is the state-of-the-art (SOTA)
math-inspired L2O model in [14]. Specifically, we se-
lect the best variant from this study, L2O-PA. Consistent
with the outlined methodology, we also compare our ap-
proach with several hand-crafted algorithms: ISTA, FISTA
[5], Adam [13], and AdamHD [4], which is Adam com-
plemented by an adaptive learning rate. Moreover, we as-
sess our model against two black-box L2O models, namely
L2O-DM[3] and L2O-RNNprop [15], and one Ada-LISTA
[1] that unrolls the gradient descent algorithm with learning.

Optimization Objective. We choose the two regression
problems in [14]: LASSO Regression and Logistic Regres-
sion, defined as follows:

min
x∈Rn

F (x) =
1

2
‖Ax− b‖2 + λ‖x‖1,

min
x∈Rn

F (x) =− 1

m

m∑
i=1

[
bi log(h(a>i x))

+ (1− bi) log(1− h(a>i x))
]

+ λ‖x‖1,

where m := 1000. A ∈ R250×500 and b ∈ R500,
{(ai, bi) ∈ R50×{0, 1}}mi=1 are given parameters. h(x) :=
1/(1 + e−x) is sigmoid function. We utilize the standard
normal distribution to generate samples and set λ := 0.1
for both scenarios [14].

We implement the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [5], executing 5,000 iterations to gener-
ate labels (optimal objective values) [14]. Due to page limit,
we confine our presentation to LASSO Regression. The re-
sults of Logistic Regression are in Sec. 12.8, Appendix.

OOD Scenarios. We aim to quantify the effect of OOD
on convergence rates. We specifically formulate two types
of OOD trajectories triggered by different actions. It is cru-
cial to note that both OOD and InD scenarios maintain an
identical optimality on both objective and solution.
1) s0 6= 0, s0 ∈ Rn. x0 is altered by an adjustment factor

s0 that x′0 falls within the OOD set SO. Assuming the
objective remains consistent, we expect x′ to move from
the OOD SO to the InD SP .

2) F ′(x) = F (x + t), t ∈ Rn. The OOD perturbation in-
troduces a translation t along the axes of the objective
variable to the objective function. Thus, the optimal so-
lution x′∗ diverges from that obtained under the origi-
nal InD domain, even though the optimal value remains.
This illustrates a scenario where the domain translates in
inference. If the starting point is unchanged, x′ is ex-
pected to move from InD domain to OOD domain.
We derive the non-smooth function’s proximal operator

for the OOD scenario, specifically for the `1-norm. We de-
fine r(x) as λ|x|1, and define the OOD translation as t on
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Figure 1. LASSO Regression: InD.
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Figure 2. LASSO Regression: Real-World OOD.

variable. The OOD proximal operator with t is given by:
( proxr,pk(x̄))i

:= −t+ sign(x̄i) max(0, |x̄i| − λ(pk)i + sign(x̄i)t).

6.1. InD Comparison

The trajectories of solving the LASSO Regression problems
are shown in Figure 1, where the vertical axis represents
the normed objective value at a given iteration (indicated
on the horizontal axis) with a label generated by FISTA [5].
Our proposed method (red line) surpasses all other methods,
demonstrating better optimality and quicker convergence.

Furthermore, we utilize several ablation studies on
model configuration, such as gradient map recovery strate-
gies in Sec. 12.4 and hyperparameter settings for learned pa-
rameter matrices in Sec. 12.6, to determine the best model
configuration. The details are in the Appendix.

6.2. OOD Comparison

The real-world results in Firgure 2 show that our GO-Math-
L2O (converges at 400 iterations) outperforms all other
baselines (1,000 iterations). Considering the lackluster per-
formances of other baselines in Figures 1 and 2, we primar-
ily compare our GO-Math-L2O model against SOTA L2O-
PA [14]. We construct two synthetic OOD scenarios with
the two trigger settings, where the optimal objectives align
with those in Figure 1.

Figure 3 portrays the scenario wherein the initial point
shifts such that s0 6= 0, with the legends denoting sixteen
cases. Our GO-Math-L2O model (represented by dashed
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Figure 3. LASSO Regression: OOD by Trigger 1.
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Figure 4. LASSO Regression: OOD by Trigger 2.

lines) outshines L2O-PA (solid lines) in all instances, as-
serting its superior robustness.

The observations in Figure 4 for the OOD scenario in-
volve function shifting that F ′(x) = F (x + t). The opti-
mal values achieved by both methods deteriorate from 10−7

(as seen in Figure 3) to 100. However, our GO-Math-L2O
still outperforms L2O-PA in all cases. For example, when
t = ±10, our model converges at around 20 steps, but L2O-
PA fails to converge.

7. Conclusion
This paper aims to improve the robustness of L2O in OOD
scenarios. We derive a general condition to ensure robust-
ness in InD scenarios. We propose virtual features to con-
nect the OOD L2O’s outputs with InD L2O’s outputs of
a whole trajectory. Based on such connections, we prove
formulations to demonstrate the convergence performances
in OOD scenarios. Based on the observations, we estab-
lish that the magnitude of the L2O model’s input features
intrinsically limits the OOD’s convergence. Furthermore,
we propose a robust L2O model with concise gradient-only
features and modeling historical features with gradient and
subgradient. Experiments show our model significantly out-
performs SOTA baselines.
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