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Figure 1. Although achieving remarkable 3D human reconstructions, a recent state-of-the-art monocular regression approach [13] may
encounter challenges in aligning the human body model to the image (middle image). To address this, we propose an iterative refinement
approach that utilizes image observations (e.g., 2D keypoint detections) and achieves better image-model alignment (right image).

Abstract

We present Score-Guided Human Mesh Recovery
(ScoreHMR), an approach for solving inverse problems for
3D human pose and shape reconstruction. These inverse
problems involve fitting a human body model to image ob-
servations, traditionally solved through optimization tech-
niques. ScoreHMR mimics model fitting approaches, but
alignment with the image observation is achieved through
score guidance in the latent space of a diffusion model.
The diffusion model is trained to capture the conditional
distribution of the human model parameters given an in-
put image. By guiding its denoising process with a task-
specific score, ScoreHMR effectively solves inverse prob-
lems for various applications without the need for retrain-
ing the task-agnostic diffusion model. We evaluate our ap-
proach on three settings/applications. These are: (i) single-
frame model fitting; (ii) reconstruction from multiple un-
calibrated views; (iii) reconstructing humans in video se-
quences. ScoreHMR consistently outperforms all optimiza-
tion baselines on popular benchmarks across all settings.
We make our code and models available on the project web-
site: https://statho.github.io/ScoreHMR.

1. Introduction
Approaches for recovering the 3D human pose and

shape from 2D evidence (e.g., image, 2D keypoints) typ-

ically predict the parameters of a human body model,
such as SMPL [38], and solve the problem with regres-
sion [12, 13, 20, 25, 62] or optimization [2, 29, 40, 60]. The
traditional approach estimates the model parameters by it-
eratively fitting the model to 2D measurements using hand-
crafted objectives and energy minimization techniques [2].
However, this optimization process contains multiple local
minima, is sensitive to the choice of initialization and typ-
ically slow. To avoid those drawbacks, regression methods
train a neural network to predict the human model parame-
ters directly from images. But no existing feed-forward sys-
tem achieves both accurate 3D reconstruction and image-
model alignment, especially in the monocular setting. A
synergy between the regression and optimization paradigms
has been established [19, 26, 28], where the regression es-
timate is further refined through optimization given addi-
tional observations (e.g., 2D keypoint detections). How-
ever, even in that case the optimization remains challeng-
ing, riddled with multiple local minima, while several prior
terms are necessary to obtain a meaningful solution.

Diffusion models [17, 50] have recently gained a lot of
attention for their ability to capture complex data distribu-
tions [10, 43]. These models learn the implicit prior of the
underlying data distribution x by matching the gradient of
the log density ∇x log p(x) [50], also known as the score
function. This learned prior can be utilized when solv-
ing inverse problems that aim to recover x from the ob-
servations y by incorporating the gradient of the log likeli-
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hood ∇x log p(y|x), a.k.a score guidance term, during sam-
pling/denoising. The denoising process in diffusion models,
characterized by its iterative nature, presents these models
as a data-driven substitute for the iterative minimization em-
ployed in optimization-based techniques. Thus far, diffu-
sion models have primarily been utilized in the generation
of human motions based on text descriptions [41, 52, 61],
rather than being harnessed as a tool for addressing inverse
problems in 3D human recovery applications.

In this paper, we address this gap by leveraging diffu-
sion models to solve inverse problems related to Human
Mesh Recovery (HMR). We introduce Score-Guided Hu-
man Mesh Recovery (ScoreHMR), an approach designed to
refine initial, per-frame 3D estimates obtained from off-the-
shelf-regression networks [13, 20, 25, 26] based on addi-
tional observations. Our approach uses a diffusion model as
a learned prior of a human body model (e.g., SMPL) param-
eters and guides its denoising process with a guidance term
that aligns the human model with the available observation.
The diffusion model, task-agnostic in nature, is trained on
the generic task of capturing the distribution of plausible
SMPL parameters conditioned on an input image. Given an
initial regression estimate, we invert it to the correspond-
ing latent of the diffusion model through DDIM [48] inver-
sion. Then we perform deterministic DDIM sampling with
guidance, where this guidance term acts as the data term
in a standard optimization setting, and the diffusion model
serves as a learned parametric prior. The DDIM inversion –
DDIM guided sampling loop iterates until the body model
aligns with the available observation. ScoreHMR can be
conceptualized as a data-driven iterative fitting approach,
achieving alignment with image observations through score
guidance in the latent space of the diffusion model.

The diffusion model can be used in many downstream
applications without any need for task-specific retraining.
For instance, by incorporating guidance with a keypoint re-
projection term, we align the human body model with 2D
keypoint detections. In scenarios with multiple uncalibrated
views of a person, we employ cross-view consistency guid-
ance to recover a 3D human mesh that maintains consis-
tency across all viewpoints. Furthermore, in the context of
inferring human motion from a video sequence, temporal
consistency guidance, and optionally keypoint reprojection
guidance, refines per-frame regression estimates, resulting
in temporally consistent human motions. A visual summary
of ScoreHMR and its applications is provided in Figure 2.

We contribute ScoreHMR, a novel approach addressing
inverse problems in 3D human recovery. We demonstrate
the effectiveness of ScoreHMR with extensive experiments
on the three inverse problems, refining an initial regression
estimate with monocular images, multi-view images and
video frames as input. Notably, our method surpasses ex-
isting optimization approaches across all datasets and eval-

uation settings without relying on task-specific designs or
training. Beyond achieving superior results, ScoreHMR
stands out as the only approach enhancing the 3D pose
performance of the state-of-the-art monocular feed-forward
system [13] in the single-frame model fitting setting. We
make our code and models available to support future work.
We provide qualitative results on video sequences on the
project page.

2. Related Work
Regression for human mesh recovery. When learning to
recover the 3D shape of articulated objects [51, 56, 59],
most approaches have to simultaneously learn a represen-
tation for the shape. This is not the case for the human cat-
egory, since parametric models [38, 58] of the human body
exist, and most approaches in this paradigm learn to regress
their parameters. HMR [20] uses MLP layers on top of im-
age features from a CNN to regress the SMPL model [38]
parameters and is the canonical example in this category.
Subsequent research [11, 12, 14, 25, 31, 32, 34, 55, 62] has
led to many improvements in the original method. Notably,
PyMAF [62] proposes a more specialized design for the
CNN backbone and incorporates a mesh alignment module
for SMPL parameter regression. PARE [25] learns distinct
features for the pose and shape parameters of SMPL and
introduces a body-part-guided attention mechanism to han-
dle occlusions. Recently, HMR 2.0 [13] proposes a fully
“transformerized” version of HMR and can effectively re-
construct unusual poses that have been difficult for previous
methods. Another line of work [5, 27, 35, 36], makes non-
parametric predictions by directly regressing the vertices of
the SMPL model. The SMPL parameters can be regressed
from non-parametric predictions with an MLP without any
loss in reconstruction performance [27]. In this work, we
assume that an initial estimate in the form of SMPL param-
eters from a regression network is available and our goal is
to improve it with our proposed approach.
Optimization for human mesh recovery. Methods falling
under this category [2, 29, 40, 47, 57, 60] utilize itera-
tive optimization to estimate the parameters of a human
model [38, 40, 58]. The objective is often formulated as an
energy minimization problem by fitting a parametric model
to the available observations, and consists of data and prior
terms. The data terms measure the deviation between the
estimated and detected features, while the prior terms im-
pose constraints on the model parameters. Parametric pri-
ors are important during the optimization in order to obtain
a meaningful solution, and several works have proposed a
variety of them [2, 9, 28, 40, 42, 53].

Nonetheless, optimization suffers from many difficulties,
including sensitivity to parameter initialization, the exis-
tence of multiple local minima and the trade-off between
the data and prior terms. Regression methods often serve
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Figure 2. Score-Guided Human Mesh Recovery and its applications. Top row: Overview of ScoreHMR, which iteratively refines
an initial regression estimate in a DDIM inversion – DDIM guided sampling loop until the human body model aligns with the available
observation. Bottom row: Applications. (a): Body model fitting to 2D keypoints. (b): Multi-view refinement of individual per-frame
predictions with cross-view consistency guidance. (c): Recovering temporally consistent and smooth 3D human motion from a video
sequence given initial per-frame estimates.

as an initial point for an optimization-based method, which
refines the estimated parameters until a convergence crite-
rion is met [19, 26, 28]. This practice not only makes the
optimization converge faster, but also typically results in a
better solution since a lot of local minima are avoided. The
need for multi-stage optimization procedures, as followed
by early systems (e.g., SMPLify [2]), is also alleviated since
the regressed parameters are typically close to a good solu-
tion. We evaluate our proposed approach in this setting,
where our aim is to refine an initial regression estimate.
Solving inverse problems with diffusion models. Diffu-
sion models [17, 46, 50] are used to represent complex dis-
tributions, exhibiting remarkable success in various applica-
tions such as text-to-image generation [43, 45], personaliza-
tion [15, 44], image editing [16] and video inpainting [63].
Their state-of-the-art performance in image generation [10]
has led to their usage as structural priors when solving in-
verse problems in image processing applications, such as
image inpainting [7, 8, 49], super-resolution [49], deblur-
ring [8] and colorization [7] among others. Diffusion mod-
els have not been used to solve inverse problems in the con-
text of 3D human pose and shape estimation, and our work
aims to bridge this gap.

3. Background
Diffusion models. We first offer some background for dif-
fusion models, namely the denoising diffusion probabilis-
tic model (DDPM) [17] formulation. Let x0 ∼ pdata(x)
denote samples from the data distribution. Diffusion mod-
els progressively perturb data to noise – forward process

– via Gaussian kernels for T timesteps, creating latents
{xt}Tt=1. The noise is added with a predefined variance
schedule {ζt}Tt=1, such that we obtain a standard Gaussian
distribution when t = T , i.e. xT ∼ N (0, I). Latents xt

can be directly sampled from a data point x0 as q(xt|x0) =
N (

√
αtx0, (1 − αt)I), where αt :=

∏t
s=1(1 − ζs). A de-

noising model ϵϕ is trained to predict the added noise to a
clean sample via minimization of the following re-weighted
evidence lower bound [17, 23]:

Lsimple(ϕ) = Ex0,t,ϵ||ϵϕ(xt, t)− ϵ||2, (1)

where t is sampled uniformly from {1, .., T}, and noise ϵ is
added to a clean sample x0 ∼ pdata to get a noisy sample
xt. Once the denoising model ϵϕ is learned, we can use it
to generate samples from the diffusion model by sampling
xT ∼ N (0, I) and iteratively refining it with ϵϕ. The pre-
dicted noise for a latent xt at timestep t (noise level) from
the denoising model ϵϕ is related to the score of the model
at that timestep [50]:

ϵϕ(xt, t) = −
√
1− αt∇xt

log p(xt). (2)

Since the sampling process – reverse process – of the
DDPM formulation is known to be slow [17, 48], Song et
al. [48] proposed the denoising diffusion implicit model
(DDIM) formulation for diffusion models, which defines
the diffusion process as a non-Markovian process with the
same forward marginals as DDPM. This enables faster sam-
pling with the sampling steps given by:

xt−1 =
√
αt−1x̂0(xt) +

√
1− αt−1 − σ2

t ϵϕ(xt, t) + σtz, (3)

908



where z ∼ N (0, I), σt is the variance of the noise used
during sampling, and x̂0(xt) denotes the predicted x0 from
xt and is given by:

x̂0(xt) =
1

√
αt

(xt −
√
1− αtϵϕ(xt, t)), (4)

≃ 1
√
αt

(xt + (1− αt)∇xt
log p(xt)).

By setting σt to 0, the sampling process becomes de-
terministic and enables inversion of samples from pdata to
their corresponding latents [48]. The same framework can
be used for modeling conditional distributions, by incorpo-
rating the conditional information in the forward and re-
verse processes [10].

4. Method
Body model. SMPL [38] is a parametric human body
model. It consists of pose θ ∈ R24×3 and shape β ∈ R10

parameters, and defines a mapping M(θ, β) from the hu-
man body parameters to a body mesh M ∈ RN×3, where
N = 6980 is the number of mesh vertices. For a given out-
put mesh M , the 3D body joints J can be computed as a
linear combination of the mesh vertices J = WM , where
W is a pre-trained linear regressor.
Problem statement. Suppose we have observations y ∈
Rn that relate to some unknown signal x0 ∈ Rm through:

y = A(x0) + η, (5)

where A(·) is a forward operator and η is the observation
noise. Our goal is to recover x0 from y, i.e. solve the in-
verse problem. We are interested in recovering the SMPL
parameters x0 = {θ0, β0} from observations y (e.g., 2D
keypoint detections), from which the closed-form map to
x0 is intractable. Solutions to this family of problems are
given through iterative optimization by minimization:

argmin
x0

= Ldata(x0) + Lprior(x0), (6)

where Ldata measures the deviation between the estimated
and detected features and L consists of several prior terms
necessary to obtain a plausible solution.

In our setting, we are given an input image I of a person
and the corresponding SMPL estimate xreg = {θreg, βreg}
from regression. Our goal is to improve xreg in the pres-
ence of additional observations y. In order to achieve this
we propose an approach that injects suitable information in
the denoising process of a diffusion model through the log
likelihood score, as described next.

4.1. Score-Guided Human Mesh Recovery

Our main objective is to explore how we can leverage
diffusion models to solve inverse problems for human mesh

recovery applications. Here, we assume that an initial es-
timate xreg for the SMPL parameters is acquired through
any off-the-shelf regression network such as [13, 20, 26],
while observations y are also automatically detected. Fur-
thermore, we assume that we have access to a trained dif-
fusion model ϵϕ(xt, t, I) that sufficiently captures the con-
ditional distribution of SMPL model parameters given an
input image I . Our goal is to improve xreg with the help of
the diffusion model and detected observations y.

To use the regression estimate xreg as an initial point, we
invert it to the latent xτ at noise level τ with the determin-
istic DDIM inversion process:

xt+1 =
√
αt+1x̂0(xt) +

√
1− αt+1ϵϕ(xt, t, I). (7)

Running the deterministic DDIM sampling starting from
xτ , we would get back the initial estimate xreg. We found
that this reconstruction error is less than 10−3 per dimen-
sion, which suggests that the DDIM inversion – DDIM sam-
pling loop works as intended. However, we are not inter-
ested in getting back the initial regression estimate, but we
wish to improve it based on the available observation y.

Ideally, we would like to use the conditional score
∇xt

log p(xt|I,y) during DDIM sampling instead of the
score ∇xt log p(xt|I) of the data distribution. Using
Bayes rule we can write the score ∇xt log p(xt|I,y) =
∇xt

log p(xt|I) + ∇xt
log p(y|I,xt), where the first term

is the score of the diffusion model ϵϕ(xt, t, I). However,
the issue with this posterior sampling approach is that there
does not exist an analytical formulation for the likelihood
score ∇xt log p(y|I,xt). To resolve this, a recent line of
work estimates the likelihood under some mild assump-
tions [8, 49]. Inspired by [8], by assuming that the observa-
tion noise η in Eq. (5) is Gaussian, we get:

∇xt
log p(y|I,xt) ≃ ∇xt

log p(y|I, x̂0(xt))

= −ρ∇xt ||y −A(x̂0(xt))||22,
(8)

where ρ can be viewed as a tunable step size. Approximat-
ing the likelihood score with Eq. (8), we apply guidance
to the deterministic DDIM sampling process, with the sam-
pling equations seen below:

x̂
′

0(xt) =
1

√
αt

(xt −
√
1− αtϵ

′

ϕ(xt, t, I)), (9)

xt−1 =
√
αt−1x̂

′

0(xt) +
√

1− αt−1ϵ
′

ϕ(xt, t, I).

where ϵ
′

ϕ is the modified noise prediction after guidance:

ϵ
′

ϕ = ϵϕ(xt, t, I)+ρ
√
1− αt∇xt

||y−A(x̂0(xt))||22. (10)

We use DDIM inversion (Eq. (7)) followed by guided
DDIM sampling (Eqs. (9) and (10)) in a loop, aligning the
human body model with the detected observations. The
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loop stops when the relative change of the guidance loss
Lg = ||y − A(x̂0(xt))||22 is below a given threshold λthr.
We provide a pseudo-code implementation of ScoreHMR in
the supplemental.

4.2. Model Design and Training

Without loss of generality, we choose to model only
the pose SMPL parameters with our diffusion model, i.e.
x0 = θ, to maintain a fair comparison with optimization
methods utilizing a learned pose prior (e.g., ProHMR [28]).
We emphasize that the shape parameters β of SMPL can
also be accommodated using the same approach and we
present results from such experiments in the supplemental.
However, we do not notice any performance improvement
by including the SMPL β in ScoreHMR. One plausible ex-
planation is that inferring β from a single image is relatively
more straightforward compared to inferring θ for existing
methods [13, 20, 26].

In our setting, we are given an input image I of a per-
son, which we encode with a CNN backbone g and obtain
a context feature c = g(I). We model the distribution
of plausible poses for that person conditioned on I with
a diffusion model ϵϕ(xt, t, c = g(I)). The backbone g
can be either trained end-to-end with ϵϕ or remain frozen
while training the diffusion model. In the latter case, we
can use the features from the backbone of a regression net-
work [20, 25, 26, 28]. We did not observe any performance
improvement from training g end-to-end with ϵϕ, and there-
fore, we acquire the context feature c from a pretrained re-
gression network in all of our experiments.
Architecture. We follow [64] and use the 6D represen-
tation for 3D rotations, thus x0 is a 144-dimensional vec-
tor. The denoising model ϵϕ is comprised of 3 MLP blocks
that are conditioned on the timestep t and image features c.
The model is given a noisy sample xt for the pose parame-
ters, the timestep t and image features c as input. First, we
use a linear layer to project xt to the features h(1) given as
input to the first MLP block. We condition the input fea-
tures h(i) ∈ R144 of each MLP block on the timestep t,
by applying scaling and shifting to get the features h

(i)
t =

tsh
(i) + tb, where (ts, tb) ∈ R2×144 = MLP (ψ(t)) is

the output of a MLP with a sinusoidal encoding function ψ.
Then, we condition each MLP block on the image features
by concatenating h

(i)
t and c. Additional details are provided

in the supplemental.
Training. Let us assume that we have a collection of images
paired with SMPL pose annotations. Then, we could train
the diffusion model with its standard training loss:

LDM (ϕ) = E(I,x0),t,ϵ||ϵϕ(xt, t, I)− ϵ||2. (11)

Unfortunately, such paired annotations are not generally
available, so we use pseudo ground-truth SMPL pose an-
notations from various datasets (see Sec. 5).

4.3. Applications of ScoreHMR

In this part we show how we can use our approach for
solving HMR-related inverse problems. We highlight that
for all these applications we use the same trained diffusion
model with no per-task training.
Body model fitting. In this setting the detected image ob-
servations are 2D keypoints detections ykp and their con-
fidences yconf . Optimization approaches fit the SMPL
body model to the 2D keypoints by minimizing λJEJ +
λpriorEprior, where EJ penalizes the deviations between
the projected model joints and the detected joints andEprior

include prior energy terms for the pose and shape parame-
ters of SMPL.

Typically the predicted weak-perspective camera from
a regression network is converted to a perspective camera
π = (R, γ) based on the bounding box of a person and is
also included as a variable to be optimized. The camera π
has fixed focal length and intrinsics K. Since the parame-
ters θ already include a global orientation, R ∈ R3×3 is as-
sumed to be identity and only the camera translation γ ∈ R3

is optimized along with the human body model parameters.
In this setting, the forward operator that relates

the body model parameters with the detected joints is
ΠK(WM(x0, β) + γ), where ΠK is the projection matrix
with camera intrinsics K and W is a matrix that regresses
the 3D model joints from the mesh vertices of the model.
This means that the guidance loss in Eq. (10) becomes:

Lrepr = yconf ||ΠK(WM(x̂0(xt), β)+γ)−ykp||22. (12)

The camera translation γ is also optimized with Lrepr as in
standard optimization procedures.
Multi-view refinement. In this setting we have a set
{I(n)}Nn=1 of uncalibrated views of the same person, and
their monocular regression estimate that we want to im-
prove based on information from the other views. For each
frame, we decompose the pose parameters x0

(n) to global
orientation x

(n)
0,gl and body pose parameters x

(n)
0,b . We can

consolidate all single-frame predictions to improve x
(n)
0,b

with a cross-view consistency guidance loss:

LMV =

N∑
n=1

||x̂(n)
0,b (x

(n)
t )− x̄0,b||22, (13)

where x̄0,b = 1
N

∑N
n x

(n)
0,b (x

(n)
t ) and its minimization is

equivalent to minimizing the squared distance between all
pairs of body poses.
Human motion refinement. Although our model has been
trained in the monocular setting, we can use the learned
conditional distribution to obtain temporally consistent and
smooth predictions in a video sequence V = {I(n)}Nn=1.
In this setting, the forward operator is the identity function
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and the observations are the pose predictions of the previ-
ous frame in the sequence. We can enforce temporal con-
sistency with the following guidance loss:

Ltemp =

N∑
n=2

||x̂(n)
0 (xt)− x̂

(n−1)
0 (xt)||22. (14)

Guidance with the previous loss can be considered as
a learnable smoothing operation that makes sure that the
smoothed parameters remain consistent with the image evi-
dence under the image-conditional distribution captured by
the diffusion model. We can optionally use additional guid-
ance with the keypoint reprojection loss in Eq. (12) when
2D keypoint detections are available.

5. Experiments

Training. We use the typical datasets for training, i.e.,
Human3.6M [18], MPI-INF-3DHP [39], COCO [37] and
MPII [1]. The quality of the pseudo ground-truth pose
annotations plays an important role for training the diffu-
sion model. We compare two models trained with pseudo
ground-truth from SPIN [26] and EFT [19] respectively.
To showcase that ScoreHMR can work with image features
from various HMR models, we also train two different ver-
sions of ϵϕ with image features from ProHMR [28] and
PARE [25] respectively. When training with PARE features,
we only use its pose features. Implementation details and
hyper-parameters are provided in the supplemental.
Evaluation datasets. For the body model fitting to 2D key-
points and human motion refinement settings, we conduct
evaluation on the test set of 3DPW [54] and on the split of
EMDB [22] that contains the most challenging sequences
(i.e., EMDB 1). For the multi-view refinement experiment,
we report results on Human3.6M [18] and Mannequin Chal-
lenge [33]. For Mannequin Challenge we use the annota-
tions produced by Leroy et al. [30] and employ the entire
dataset for evaluation.
Evaluation setup. In order to demonstrate the efficacy
of our approach in refining the regression estimates from
various networks and accuracy levels, we use the pre-
dictions from the less accurate ProHMR’s regression net-
work [28] and the highly accurate HMR 2.0 [13] as our
starting points. For experiments with HMR 2.0, we use the
HMR 2.0b model, which trains longer and on more data
than HMR 2.0a, and can reconstruct humans in challenging
and unusual poses.

5.1. Quantitative Evaluation

5.1.1 Body model fitting

We evaluate the accuracy of methods that fit the SMPL body
model to 2D keypoint detections. The keypoints are de-
tected with OpenPose [3].

Features Fits 3DPW (14) EMDB 1 (24)

ProHMR [28] - - 59.8 86.1
+ ScoreHMR ProHMR SPIN 55.7 77.8
+ ScoreHMR ProHMR EFT 55.5 77.4
+ ScoreHMR PARE SPIN 55.6 77.4
+ ScoreHMR PARE EFT 54.7 77.1

HMR 2.0 [13] - - 54.3 78.7
+ ScoreHMR ProHMR SPIN 52.4 76.5
+ ScoreHMR ProHMR EFT 51.3 76.4
+ ScoreHMR PARE SPIN 52.4 76.6
+ ScoreHMR PARE EFT 51.1 76.6

Table 1. Ablation study. ScoreHMR is initialized by the corre-
sponding regression results. All numbers are PA-MPJPE in mm.
Parenthesis denotes the number of body joints used to compute
PA-MPJPE.

3DPW (14) EMDB 1 (24)

LGD [47] 55.9 81.1
LFMM [6] 52.2 -

ProHMR [28] 59.8 86.1
+ SMPLify [2] 60.9 84.6
+ fitting [28] 55.1 79.8
+ ScoreHMR-a 55.7 77.8
+ ScoreHMR-b 54.7 77.1

HMR 2.0 [13] 54.3 78.7
+ SMPLify [2] 60.1 83.5
+ fitting [28] 55.1 80.1
+ ScoreHMR-a 52.4 76.5
+ ScoreHMR-b 51.1 76.6

Table 2. Evaluation of different model fitting methods. The
fitting algorithms are initialized by the corresponding regression
results, except LGD [47] and LFMM [6]. All numbers are PA-
MPJPE in mm. Parenthesis denotes the number of body joints
used to compute PA-MPJPE.

Ablation study. First, we provide an ablation study of the
core components of ScoreHMR. We benchmark ScoreHMR
with diffusion models trained with frozen image features
from ProHMR [28] and PARE [25], and pseudo ground-
truth pose annotations from SPIN [26] and EFT [19]. We
report results of iterative refinement with ScoreHMR using
the keypoint reprojection loss Lrepr in Eq. (12). Follow-
ing the typical protocols of prior work [26, 28] we use the
PA-MPJPE metric for evaluation and present results in Ta-
ble 1. From Table 1 we observe that running ScoreHMR
on top of regression reduces the 3D pose errors in all cases.
We also observe that iterative refinement with ScoreHMR is
robust to the choice of image features and pseudo ground-
truth. The diffusion model, trained with PARE image fea-
tures and fits from EFT, attains the highest performance. We
use ScoreHMR with our worst (ProHMR features & SPIN
fits) and best (PARE features & EFT fits) models for evalu-
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H36M (14) Mannequin (17)

MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

ProHMR [28] 65.1 43.7 165.3 86.8
+ fitting [28] 59.6 34.5 162.6 80.2
+ ScoreHMR-a 55.8 34.1 162.0 81.1
+ ScoreHMR-b 51.9 34.2 157.7 80.2

HMR 2.0 [13] 52.8 35.6 156.0 90.1
+ fitting [28] 52.6 32.9 155.5 79.4
+ ScoreHMR-a 47.9 28.4 151.0 79.3
+ ScoreHMR-b 44.7 29.0 148.3 79.1

Table 3. Evaluation of multi-view refinement. We compare our
proposed approach with the single-view 3D reconstruction and an
optimization-based method [28]. Parenthesis denotes the number
of body joints used to compute MPJPE and PA-MPJPE.

ation in the rest of the paper, denoting them as ScoreHMR-a
and ScoreHMR-b respectively.
Comparison with optimization methods. Next, we com-
pare with model fitting baselines that are trained to optimize
starting from the canonical pose and shape (i.e., LGD [47],
LFMM [6]) as well as with baselines that can use the param-
eters from a regression network as a starting point (i.e., SM-
PLify [2], ProHMR-fitting [28]). We benchmark SMPLify
(single-stage implementation from [26]) and ProHMR-
fitting starting from the predictions of the ProHMR’s regres-
sion network [28] and those of HMR 2.0 [13]. Results are
reported in Table 2. Performing SMPLify on top of regres-
sion increases the 3D pose errors, while ProHMR-fitting
fails to improve the performance of HMR 2.0. Iterative re-
finement with ScoreHMR reduces the 3D pose errors in all
cases, and ScoreHMR-b outperforms all baselines.

5.1.2 Multi-view refinement

Next, we evaluate the capability of ScoreHMR at refining
the per-view regression estimates when several uncalibrated
views of the same person are available. For this task, we
use guidance with the cross-view consistency loss LMV in
Eq. (13). We test our approach on the Human3.6M [18]
and the Mannequin Challenge [33] (some YouTube videos
were missing) datasets, reporting MPJPE and PA-MPJPE
following [28]. We compare with the individual per-view
regression predictions as well as with an optimization-based
method [28]. Results are shown in Table 3. Results from
Table 3 show that both ScoreHMR and ProHMR-fitting im-
prove the per-frame predictions, but our approach consis-
tently leads to lower MPJPE errors. This happens because
refining the body poses at a given noise level also influences
the global orientation in the next noise level of the diffusion
model, as the model captures the joint distribution of SMPL
poses θ. This is not possible with ProHMR-fitting, since
only the body poses are updated during the optimization
process. Notably, the runtime of ScoreHMR is remarkably
swift, requiring only 1.5 minutes for the entire Mannequin
Challenge dataset, which contains 20K frames.

3DPW (14) EMDB 1 (24)

PA-MPJPE ↓ Acc Err ↓ PA-MPJPE ↓ Acc Err↓

Vibe [24] 56.7 31.5 85.7 43.8
Vibe-opt [24] 63.9 42.1 83.6 41.4

ProHMR [28] 59.8 25.0 86.1 37.7
+ fitting [28] 54.5 14.0 77.9 18.4
+ ScoreHMR-a 54.9 11.4 76.5 12.8
+ ScoreHMR-b 53.9 11.2 75.7 12.1

HMR 2.0 [13] 54.3 17.3 78.7 23.7
+ fitting [28] 53.8 14.1 76.2 20.0
+ ScoreHMR-a 51.7 10.7 75.1 11.9
+ ScoreHMR-b 50.5 11.1 75.3 11.9

Table 4. Evaluation of human motion refinement. We compare
different model fitting algorithms and our proposed approach in a
temporal setting. Parenthesis denotes the number of body joints
used to compute PA-MPJPE and Acc Err.

Figure 3. Qualitative evaluation of ScoreHMR Pink: Regres-
sion with ProHMR [28]. White: Regression with HMR 2.0 [13].
Green: Regression + ScoreHMR (ours).

5.1.3 Human motion refinement

In this part, we evaluate ScoreHMR at refining the single-
frame regression estimates in a video sequence with 2D
keypoint detections. In this setting, we use guidance with
Lrepr and Ltemp terms. Following prior work [21] we also
report the acceleration error (mm/s2), computed as the dif-
ference in acceleration between the ground-truth and pre-
dicted 3D joints. We use all SMPL body joints for com-
puting this error in EMDB 1, in contrast to the evaluation
in [22] that uses specific joints for some temporal metrics
(e.g. Jitter).

We compare our approach with the temporal mesh opti-
mization baselines (VIBE-opt [24], ProHMR-fitting [28]).
VIBE-opt is initialized by the temporal mesh regression re-
sult of VIBE [24]. We run ProHMR-fitting [28] with the de-
fault hyperparameters adding a smoothness regularization
term. We report results in Table 4. Our approach consis-
tently outperforms all baselines across all datasets and met-
rics. Notably, ScoreHMR significantly enhances temporal
consistency compared to prior works, resulting in a relative
improvement of 21.3% (3DPW) and 40.5% (EMDB 1) in
acceleration error compared to ProHMR-fitting, when both
methods start from the monocular regression estimate of
HMR 2.0. Finally, ScoreHMR exhibits exceptional runtime
efficiency requiring only 14 minutes for the entire 3DPW
test set, which contains 35K frames.
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Figure 4. Body model fitting results. Pink: Regression (ProHMR [28]). White: Regression (HMR 2.0 [13]). Green: Regression +
ScoreHMR (ours). Blue: Regression + ProHMR-fitting [28]. Grey: Regression + SMPLify [2].

5.2. Qualitative Results

We show qualitative results in body model fitting on
top of ProHMR and HMR 2.0 regression in Figure 3.
ScoreHMR effectively aligns the body model with the de-
tected keypoints even when the initial regression estimate is
inaccurate (e.g., example of first row). Our reconstructions
are valid when seen from a novel view. In addition, we com-
pare our approach with SMPLify and ProHMR-fitting in
Figure 4. Our approach achieves more faithful reconstruc-
tions than the baselines. This is more evident in challeng-
ing poses (e.g., example of last row). SMPLify encounters
challenges with inaccurate keypoint detections (e.g., exam-
ple of second row). ProHMR-fitting faces difficulties when
there is ambiguity in the image evidence (e.g., occlusion in
the example of third row). A potential cause for this issue
may be the mode supervision used during ProHMR training,
which leads to capturing a less diverse pose distribution as
shown in [4].

6. Conclusion

We present ScoreHMR, an approach for solving inverse
problems for 3D human pose and shape reconstruction.
ScoreHMR mirrors model fitting approaches, but alignment
with the image observation is achieved through score guid-
ance in the latent space of a diffusion model. We demon-
strate the effectiveness of our method with empirical results
in several benchmarks and evaluation settings. ScoreHMR
achieves strong performance in challenging datasets and
outperforms optimization-based methods. Our work high-
lights the promising potential of score-guided diffusion pro-
cesses as a better alternative to conventional optimization-
based approaches in addressing 3D human recovery inverse
problems.
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