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Figure 1. Visualizations of the input curve cloud (left) and CurveCloudNet’s segmentation prediction (right) for each of our five evaluation
datasets. Each evaluation dataset exhibits distinct size, structure, and laser scanning pattern, as shown in Tab. 1

Abstract

Modern depth sensors such as LiDAR operate by sweep-
ing laser-beams across the scene, resulting in a point cloud
with notable 1D curve-like structures. In this work, we
introduce a new point cloud processing scheme and back-
bone, called CurveCloudNet, which takes advantage of the
curve-like structure inherent to these sensors. While exist-
ing backbones discard the rich 1D traversal patterns and
rely on generic 3D operations, CurveCloudNet parameter-
izes the point cloud as a collection of polylines (dubbed a
“curve cloud”), establishing a local surface-aware order-
ing on the points. By reasoning along curves, CurveCloud-
Net captures lightweight curve-aware priors to efficiently
and accurately reason in several diverse 3D environments.
We evaluate CurveCloudNet on multiple synthetic and real
datasets that exhibit distinct 3D size and structure. We
demonstrate that CurveCloudNet outperforms both point-
based and sparse-voxel backbones in various segmentation
settings, notably scaling to large scenes better than point-
based alternatives while exhibiting improved single-object
performance over sparse-voxel alternatives. In all, Curve-
CloudNet is an efficient and accurate backbone that can
handle a larger variety of 3D environments than past works.

1. Introduction

The computer vision community has proposed many back-
bones for processing 3D point clouds for fundamental tasks
such as semantic segmentation [21, 41, 42, 48, 53] and
object detection [52, 56, 57, 60, 71]. Existing 3D back-
bones can be generally characterized as point-based or
discretization-based. Backbones that directly operate on 3D
points [14, 22, 42, 46, 48, 51, 58, 67] typically exchange
and aggregate point features in Euclidean space, and have
shown success for individual objects or relatively small in-
door scenes. These methods, however, do not scale well
to large scenes (e.g. in outdoor settings) due to inefficien-
cies in processing large unstructured point sets. On the
other hand, popular discretization approaches such as sparse
voxel methods [12, 18, 21, 34, 46, 55, 75, 81] rely on effi-
cient sparse data structures that scale better to large scenes.
However, for small or irregularly-distributed point sets, they
often incur discretization errors.

In recent years, this trade off between point and voxel
backbones has been less explored due to the distinct envi-
ronments in most 3D applications - autonomous vehicles
do not leave roads, manufacturing robots do not leave ware-
houses, and quality-assurance systems do not look beyond
a tabletop. However, as the community moves to dynamic
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Method / mIOU (↑) Type AVG KortX ShapeNet A2D2 nuScenes Kitti

PointNet++ [42] Point 62.2 71.0 80.1 46.5 51.1 –
CurveNet [61] 52.9 71.5 82.8 4.4 – –
PointMLP [36] 62.3 75.4 80.9 47.6 67.9 39.5
PointNext [43] 66.6 73.7 82.8 45.0 65.0 –
MinkowskiNet [12] Voxel 67.6 60.1 81.1 53.8 76.2 66.8
Cylinder3D [81] 67.6 63.5 79.6 53.0 76.1 65.9
SphereFormer [26] 70.6 69.7 79.5 55.1 79.5 69.0
CurveCloudNet (ours) Curve 72.7 78.9 83.1 54.1 78.0 69.5

Dataset Statistic ShapeNet KortX A2D2 nuScenes Kitti

location Synthetic Indoor Outdoor Outdoor Outdoor
scale ± 1 ± 2m + 70m ± 50m ± 50m
laser pattern ALL Random Grid Parallel Parallel
# points 2048 2048 ∼ 8K ∼ 35K ∼ 100K
# train 12K 6K 18K 28K 19K
train/val gap ✗ ✓ ✗ ✗ ✗

Table 1. Dataset and Performance Overview (Left) CurveCloudNet achieves the best mIOU on average and is best or second-best for every
dataset. Empty entries indicate excessive training time that exceeds 20 days. Validation splits are reported because not all baselines were
submitted to test servers. (Right) We evaluate on five segmentation benchmarks that exhibit diverse size, structure, and training settings.
Refer to Fig. 1 for illustrations of the parallel, random, and grid laser patterns.

and unregulated settings such as open-world robotics (e.g.
embodied agents), it is essential to have architectures that
consistently perform well in diverse settings.

To this end, we present a novel point cloud process-
ing scheme that achieves both performance and flexibility
across diverse 3D environments. We achieve this by tailor-
ing our approach to the popular family of laser-scanning 3D
sensors (such as LiDARs), which gather 3D measurements
by sweeping laser-beams across the scene. While previous
works ignore the innate curve-like structures of the scanner
outputs, we parameterize the point cloud as a collection of
polylines, which we refer to as a “curve cloud”. Our formu-
lation establishes a local structure on the points, allowing
for efficient and cache-local communication between points
along a curve. This enables scaling to large scenes without
incurring discretization errors and/or computational over-
head. Furthermore, we hypothesize that the local curve or-
dering injects a lightweight and flexible surface-aware prior
into the network (see Sec. 3.1).

We propose a new backbone, CurveCloudNet, that ap-
plies 1D operations along curves and combines curve oper-
ations with state-of-the-art point-based operations [36, 42,
43, 53]. CurveCloudNet uses curve operations at higher
resolutions when there is clearer curve structure and uses
point operations at downsampled resolutions. Put together,
CurveCloudNet is an efficient, scalable, and accurate back-
bone that can outperform segmentation and classification
pipelines in a variety of settings (see Tab. 1a).

We evaluate CurveCloudNet on a variety of object-
level and outdoor scene-level datasets that exhibit dis-
tinct 3D size, structure, and unique laser scanning patterns
(see Tab. 1b and Fig. 1): this includes indoor, outdoor,
object-centric, scene-centric, sparsely scanned, and densely
scanned scenes. We evaluate CurveCloudNet on the object
part segmentation task using the ShapeNet [8, 74] dataset
along with a new real-world object-level dataset captured
with the Kortx scanning system [1]. For the outdoor seman-
tic segmentation task, we use the nuScenes [6], Audi Au-
tonomous Driving (A2D2) [17], and Semantic Kitti [4, 16]
datasets. Supplementary experiments on object classifica-

tion demonstrate flexibility to other perception tasks. Our
evaluations demonstrate that using curve structures leads to
improved or competitive performance on all experiments,
with the best performance on average (see Tab. 1a).

In summary, we make the following contributions: (1)
we propose operating on laser-scanned point cloud data us-
ing a curve cloud representation, (2) we design efficient op-
erations that run on polyline curves, (3) we design a novel
backbone, CurveCloudNet, that strategically combines both
curve and point operations, and (4) we show accurate and
efficient segmentation results on real-world data captured
for both objects and large-scale scenes in multiple environ-
ments and with various scanning patterns.

2. Related Work
Existing point cloud methods can be roughly characterized
as point-based and discretization-based approaches. As our
work addresses trade-offs between them, we discuss related
works from each category.
Point-Based Networks. One popular approach to point-
based reasoning is to aggregate local neighborhood infor-
mation in a hierarchical manner and at multiple geometric
scales [21, 30, 36, 41–43, 73, 78, 79]. Recently, Ma et al.
[36] introduced a modern MLP-based architecture along
these lines, while Quian et al. [43] modernized the semi-
nal PointNet++ [42] – both showed compelling results on
object-level and indoor scenes. Nevertheless, most hierar-
chical and MLP point networks are inefficient in large-scale
settings, and although several backbones [21, 73, 78] have
addressed this, they trade off scalability with task-specific
frameworks or lower accuracy. In contrast, CurveCloudNet
scales to large scenes by using the explicit curve structure
of laser scanners.

Another line of research makes use of point convolutions
for learning per-point local features. Point convolutions are
usually defined using kernels [14, 22, 24, 27, 29, 37, 46,
48, 51, 54, 58, 67] or graphs [9, 13, 31, 47]. Kernels have
been defined using a family of polynomial functions [67],
using MLPs [33, 51], or directly using local 3D point coor-
dinates [3, 5, 48, 58, 66]. In contrast, graph methods usually
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Figure 2. Overview of Curve Cloud Reasoning. Starting from laser-scanned input data, we 1⃝ link points into polylines to 2⃝ parameterize
the point cloud as a curve cloud (see Sec. 3.1). We develop operations for learned architectures to specifically exploit the curve structure,
including 3⃝ 1D farthest-point-sampling along a curve, 4⃝ curve grouping, and 5⃝ symmetric curve convolutions (see Sec. 3.2).

construct a K-Nearest-Neighbors graph in Euclidean space
[45, 50] or feature space [53], and apply graph-convolutions
on the resulting edges and vertices. More recently, Cur-
veNet [61] applied guided random walks on uniformly-
sampled input point clouds to construct graph neighbor-
hoods that go beyond K-Nearest-Neighbors and that ex-
hibit 1D “curve” structure; then, CurveNet pooled features
over the traversed curves. Aside from defining “curves”,
CurveNet and CurveCloudNet have little in common: Cur-
veNet’s guided random walks are not related to physical
laser traversals and do not scale to large scenes. In contrast,
CurveCloudNet efficiently recovers explicit curves from a
scanner’s physical laser traversals, and then applies a vari-
ety of operations, e.g., subsampling, aggregation, and con-
volution, along each curve.

Many works [15, 32, 39, 59, 62, 72, 76, 79] have shown
success with attention-based aggregation using transformer
architectures with self-attention [49]. However, we found
CurveCloudNet’s reasoning over local 1D “curve” neigh-
borhoods to be sufficiently expressive without attention.

Discretization-Based Networks. Although point-based
backbones can successfully process individual objects or
small indoor scenes, they struggle to scale to large point
clouds due to inefficiency in processing large unstructured
point sets. To address this, several works [12, 18, 20, 28,
34, 35, 46, 64, 70, 75, 77, 81] proposed to convert a point
cloud into a 3D voxel grid and use this volumetric repre-
sentation. Early works converted a point cloud into a dense
voxel grid and applied dense 3D convolutions [38, 40], how-
ever the cubic size of the dense grid proved to be com-
putationally prohibitive. To scale to large scenes, several
works [11, 12, 20, 28, 35, 64, 65, 68, 69, 81] employed the
sparse-voxel data structure from [18]. MinkowskiNet [12]
was a seminal work in showing that sparse voxel convolu-
tions can be highly efficient and expressive. PVNAS [35]
incorporated a network architecture search, demonstrating
the importance of the architecture channels, network depth,
kernel sizes, and training schedule. More recent works have
supplemented sparse-voxel backbones with attention oper-

ations [11], range-view and point information [65], image
information [69], and knowledge distillation [20].

Other methods seek a better discretization of point
clouds captured with LiDAR scans. For example, Po-
larNet [77] proposed to partition input points using grid
cells defined in a polar coordinate system, while Cylin-
der3D [81] employed a cylindrical partitioning scheme
based on a cylindrical coordinate system. Sphereformer
[26] combined polar grid cells with modern attention op-
erations. In an alternative line of research, many methods
[2, 10, 19, 25, 55, 58, 63, 80] employ spherical or bird’s-eye
view projections to represent point clouds as images that are
passed to a 2D convolutional or transformer network.

Unlike discretization methods, CurveCloudNet directly
operates on points and curves, scaling to larger scenes with-
out discretizing. Additionally, our curve operations are ap-
plied locally and do not assume global patterns such as po-
lar, cylindrical, or planar structure.

3. Method: Learning on Curve Clouds

Our method takes as input a 3D point cloud, parses it into a
curve cloud representation, and then processes the resulting
curves by leveraging specialized curve operations, as shown
in Fig. 2. We focus on object part segmentation, semantic
scene segmentation, and object classification, although in
principle, our method is suitable for more perception tasks.

3.1. Constructing Curve Clouds

Problem Formulation. The input to our model is the out-
put of a laser-based 3D sensor represented as a point cloud
P = {p1, p2, ..., pN}, where pi = [xi, yi, zi] is the 3D co-
ordinates of the i-th point. For each point, we are also given
an associated acquisition timestamp ti and an integer laser
beam ID bi ∈ [1, B], which are readily available from sen-
sors like LiDAR. For a scanner with B unique laser beams,
bi indicates which beam captured the point while ti gives
the ordering in which points were captured. Timestamps
differ only by microseconds and indicate point ordering for
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Figure 3. CurveCloudNet Architecture. The network employs a mix of curve and point layers to process a curve cloud through progressive
down-sampling followed by up-sampling with skip connections. Curve layers operate on higher resolutions to efficiently capture the 1D
structure, while at lower resolutions point layers propagate information across curves. Feature dimensions are listed above each block.

constructing the curve cloud; otherwise, the point cloud is
treated as an instantaneous capture of the scene.

We assume that each laser beam in the scanner captures
3D points sequentially and at a high sampling rate as it
sweeps the scene. Concretely, if points p1, p2, and p3 are
recorded consecutively by beam b, then their timestamps are
ordered t1<t2<t3. Moreover, if two consecutive points are
spatially farther apart than some small threshold δ, we as-
sume there is a surface discontinuity and the points lie on
different surfaces in the scene.

Curve Clouds. A curve cj = [p1, ..., pNj
] is defined

as a sequence of Nj points where consecutive point pairs
are connected by a line segment, i.e., a polyline. The
curve is bi-directional and is equivalently defined as cj =
[pNj , pNj−1, ..., p1]. A curve cloud C = {c1, ..., cM} is an
unordered set of M curves where each curve may contain a
different number of points. In practice, we can store a curve
cloud C as an N×3 tensor of points, with an additional
ptr tensor of length M that specifies the indices where
one curve ends and the next begins. Converting the input
point cloud P to a corresponding curve cloud is straight-
forward and extremely efficient: points from each beam bi
are ordered by timestamp and split into curves based on dis-
tances between consecutive points. If the distance between
two consecutive points is more than a set threshold δ while
traversing the points in time order, then the current curve
ends and a new curve begins, i.e., a surface discontinuity
has occurred. In practice, we parallelize this process across
all points and laser beams on the GPU. More details regard-
ing the conversion process are provided in the supplement.

Why Use Curves? Curve clouds inherit the benefits as-
sociated with the 3D point cloud representation including
lightweight data structures and no need to discretize the
space. But operating on curve clouds also has several ad-

vantages over point clouds. Point clouds are highly un-
structured, making operations like nearest neighbor queries
and convolutions expensive. Curve clouds add structure
through point ordering along the polylines, allowing curves
to be treated as 1D grids that permit greater cache-locality,
constant-time neighborhood queries, and efficient convolu-
tions. This structure is flexible to any laser scanning pattern
unlike, e.g., cylindrical voxel grids and polar range-view
projections. In principle, the curve structure should also
bring out the geometric properties of the surface it repre-
sents, such as curvature, tangents, and boundaries.

3.2. Operating on Curves

We now discuss the fundamental operations for curves. We
first introduce the network layers for curves followed by the
details of curve operations used in these layers.

3.2.1 Curve Layers

Curve Set Abstraction (Curve SA). Inspired by set ab-
straction layers from prior point-based work [42], this layer
adopts a curve-centric procedure to downsample the num-
ber of points on the curves. For each curve, Curve SA (1)
samples a subset of “centroid” points along the curve using
our 1D farthest point sampling algorithm, (2) groups points
around these centroids in local neighborhoods using curve
grouping, (3) translates points into the local frame of their
centroid and processes them with a shared MLP, and (4)
pools over each local neighborhood to get a downsampled
curve with associated point features.

Curve Feature Propagation (Curve FP). Similar to point-
based feature propagation [42], Curve FP is a curve-centric
upsampling layer. For each curve cj , this layer propa-
gates features from the low-res polyline [q1, ..., qLj

] with Lj

points to a higher-res polyline [p1, ..., pHj
] with Hj points
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where Lj<Hj . This is achieved using curve feature inter-
polation as described in Sec. 3.2.2. Afterwards, the high-res
interpolated features are concatenated with skip-linked fea-
tures from a corresponding curve set abstraction layer and
processed by a shared MLP.

Curve Convolution. The curve convolution layer allows
for efficient communication and feature extraction along a
curve. This module consists of three sequential symmet-
ric curve convolutions, each followed by batch normaliza-
tion [23] and a leaky ReLU activation.

3.2.2 Curve Operations

To enable our layers to expressively and efficiently learn on
curve clouds, we formulate operations for sampling, group-
ing, feature interpolation, and convolutions along curves.

1D Farthest Point Sampling (FPS). FPS is frequently a
bottleneck in point cloud architectures and can be costly for
large point clouds [21] due to pair-wise distance computa-
tions. For curves, we alleviate this cost with an approxima-
tion of FPS along each curve independently in a 1D man-
ner. This amounts to sampling a subset of points on each
curve that are evenly-spaced along the length of that curve
(i.e., geodesically). For a curve cj with Nj points, we sub-
sample points [q1, ..., qLj ] with Lj<Nj such that all pairs
of contiguous points are about ϵ apart, where ϵ is a fixed
target spacing shared across all curves. In other words,
d(qi, qi−1) ≈ ϵ for i = 2, . . . , Lj where d measures the
geodesic distance between two points along the same curve.
Notably, this algorithm has only O(N) complexity and can
be parallelized across each curve independently.

Grouping Along Curves. After sampling, we must group
points into local neighborhoods around the subsampled
points on each curve. We adapt a ball query [42], which
groups together all points within a specified radius from a
centroid, to operate along each curve. For a centroid point
pi belonging to curve cj , we define the local neighborhood
of pi as Ni = {pk ∈ cj | d(pi, pk) < r} where r is a
fixed neighborhood radius. In addition to being computa-
tionally faster than a standard 3D ball query grouping, using
1D curve groupings ensures that all neighborhoods lie on a
continuous section of scanned surfaces.

Curve Feature Interpolation. To upsample on curves,
we must interpolate features [g1, ..., gLj

] from a lower-
resolution polyline to features [f1, ..., fHj

] for a higher-
resolution one. Let ph be the hth point on the high-res
curve, which falls between subsampled low-res points qi
and qi−1 with associated features gi and gi−1. The interpo-
lated high-res feature fh is simply the distance-weighted in-
terpolation of the two low-res point features (based on their
spatial coordinates).

Symmetric Curve Convolution. To process points along
curves, we take advantage of expressive convolutions.

However, it is computationally burdensome to compute
neighborhoods on the fly and run convolutions on unordered
data [35]. Instead, we treat each curve as a discrete grid of
features that can be convolved similar to a 1D sequence.
To account for the bi-directionality of curves, we employ a
symmetric convolution and thus produce equivalent results
when applied “forward” or “backward” along the curve.

In particular, for a curve cj = [p1, p2, ..., pNj
] with as-

sociated point features Fj = [f1, f2, ..., fNj
], we start by

extracting additional features using the the L1 norm of fea-
ture gradients along the curve [54], denoted as ∇Fj =[
|∇f1|, |∇f2|, ..., |∇fNj |

]
. Note the norm is necessary to

remove directional information. Concatenating these fea-
tures together as [Fj ,∇Fj ] ∈ RNj×D gives a grid on which
to perform 1D convolutions. To respect bi-directionality,
symmetric kernels are used for the convolution: for a ker-
nel W ∈ RS×D with size S and D channels, we ensure
Wi = WS−i+1 for i = 1, . . . , S where Wi ∈ RD.

3.3. Curve Cloud Backbone: CurveCloudNet

In Fig. 3, we illustrate CurveCloudNet as designed for seg-
mentation tasks where the output is a semantic class for
each point in the input point cloud. Hence, it follows the
U-Net [44] structure, consisting of a series of downsam-
pling layers followed by upsampling with skip connections.
Although our experiments (Sec. 4) focus on segmentation,
CurveCloudNet can be adapted to other point cloud percep-
tion tasks (see supplement for a classification example).

Our architecture is a mix of curve and point-based lay-
ers. At higher resolutions, curve modules are employed
since they are efficient and can capture geometric details
when curve sampling is most dense across surfaces in the
scene. At lower resolutions, point modules are used to prop-
agate information across curves when 1D structure is less
apparent. For point operations, we adopt the set abstraction
and feature propagation operations from [42] as well as the
graph convolution from [53], and we further improve these
point operations following the reportings of recent works
[21, 36, 43] (see supplementary for further details). By
combining curve and point operations, CurveCloudNet is
an expressive network that maintains the benefits of point
cloud backbones while injecting structure and efficiency
previously only possible with voxel-based approaches.

4. Experiments
We evaluate CurveCloudNet and a set of competitive base-
lines on five datasets – the ShapeNet Part Segmentation
dataset [8], the KortX Part Segmentation dataset, the Audi
Autonomous Driving Dataset (A2D2) [17], the nuScenes
dataset [6], and the Semantic KITTI dataset [4, 16]. Each
dataset exhibits a unique structure and training setup (see
Tab. 1b). Put together, our evaluation consists of indoor,
outdoor, object-centric, scene-centric, sparsely scanned,
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PointNet++ [42] 80.1 81.8 ± 0.1 80.1 ± 0.04 78.3 ± 0.7 66.9 ± 1.2 71.0 ± 2.5 69.3 65.9 83.1 70.4 71.7 65.5 109 1.95 1.53
DGCNN [53] 80.2 81.2 ± 0.2 80.9 ± 0.02 78.6 ± 0.3 64.6 ± 0.8 73.3 ± 0.9 73.0 76.6 81.1 79.6 58.3 71.2 143 1.45 2.18
CurveNet [61] 82.8 84.0 ± 0.2 83.8 ± 0.4 80.6 ± 0.2 68.4 ± 0.7 71.5 ± 0.4 80.9 89.7 63.6 63.0 68.0 64.0 227 1.16 5.33
PointMLP [36] 80.9 82.2 ± 0.3 81.3 ± 0.3 79.3 ± 0.3 72.1 ± 0.4 75.4 ± 1.3 77.2 75.3 78.8 83.1 64.6 73.6 58 0.83 16.76
PointNext [43] 82.8 83.8 ± 0.1 83.1 ± 0.3 81.5 ± 0.2 69.8 ± 0.6 73.7 ± 0.5 82.2 75.9 80.9 68.3 70.8 63.9 81 1.69 13.8
MinkowskiNet [12] 81.1 82.6 ± 0.3 82.0 ± 0.5 80.1 ± 0.5 62.9 ± 1.7 60.1 ± 1.4 67.5 53.2 74.3 56.4 73.6 27.5 42 0.21 36.62
Cylinder3D [81] 79.6 81.2 ± 0.1 80.1 ± 0.0 77.6 ± 0.1 58.6 ± 0.5 63.5 ± 0.2 64.8 56.9 80.8 55.1 64.8 58.7 96 5.76 56.03
SphereFormer [26] 79.5 80.3 ± 0.3 79.9 ± 0.4 78.3 ± 0.4 67.6 ± 0.9 69.7 ± 1.3 71.5 65.1 86.0 59.6 67.2 79.5 38 0.25 32.3
CurveCloudNet 83.1 83.7 ± 0.2 83.6 ± 0.5 81.9 ± 0.3 73.0 ± 0.9 78.9 ± 1.1 69.1 87.3 86.7 87.0 74.7 67.8 77 1.01 8.74

Table 2. Object Segmentation Results. Class-average mIOU is reported for synthetic ShapeNet dataset (left) and real-world Kortx data
(Right). CurveCloudNet achieves the highest accuracy compared to baselines. Performance is on Nvidia RTX 3090 GPU (batch size 16).

Figure 4. Qualitative Results on Kortx. CurveCloudNet success-
fully segments fine-grained parts by leveraging curve structures.

and densely scanned scenes. Furthermore, each of the five
datasets display different point sampling patterns, which
we roughly characterize as following “parallel”, “grid”, or
“random” laser motions (see Fig. 1).

CurveCloudNet achieves the best or second best per-
formance on all datasets, and on average outperforms all
previous methods (see Tab. 1a). Furthermore, every other
method substantially underperforms CurveCloudNet on at
least one dataset. Notably, CurveCloudNet outperforms
point-based backbones on object-level tasks and is compet-
itive with or better than voxel-based backbones on larger
scenes. In Sec. 4.1 we evaluate our model on the task of
object-level part segmentation on simulated ShapeNet [8]
objects and on a new dataset collected with the Kortx vision
system [1]. In Sec. 4.2, Sec. 4.3, and Sec. 4.4, we evalu-
ate semantic segmentation on larger outdoor scenes using
the Audi Autonomous Driving Dataset (A2D2) [17], the
nuScenes dataset [6], and the Semantic KITTI dataset [4,
16]. Sec. 4.5 ablates the key components of CurveCloud-
Net. In the supplementary, we report additional qualitative
results and an experiment on object classification.

4.1. Object Part Segmentation

ShapeNet Dataset. The ShapeNet Part Segmentation
Benchmark [7, 74] contains 16,881 synthetic shape mod-
els across 16 different categories and 50 object parts. To
evaluate performance on the laser-based scans that we are
interested in, we simulate laser capture using the ShapeNet
meshes. Using a fixed front-facing sensor pose, we ray-
cast a set of linear laser traversals and then sample points
on the mesh along each traversal. We consider three types
of synthetic laser traversals - parallel, grid, and random -
which are depicted on the left side of Fig. 1 and are further
described in the supplementary. We generate one synthetic
scan for each ShapeNet mesh, which yields 12139 training
point clouds and 1872 validation point clouds.

ShapeNet Results. ShapeNet results are summarized on
the left side of Tab. 2. All methods are trained over three
random seeds, and we report the mean and standard de-
viation of the class-averaged mean intersection-over-union
(mIOU) over the runs. All models are trained for 120
epochs using the same hyperparameters, and the best val-
idation mIOU throughout training is reported. On average,
CurveCloudNet outperforms all baselines and is best on the
“random” laser traversals. In contrast, SphereFormer ex-
hibits the lowest accuracy of all methods, suggesting that its
radial window attention is poorly suited for individual ob-
jects. CurveNet and PointNext are the runner ups, showing
strong performance on segmenting objects when the scans
are captured from the front-facing sensor pose.

Kortx Dataset. Kortx is a perception software system de-
veloped by Summer Robotics [1] that generates and oper-
ates on 3D curves sampled from a triangulated system of
event sensors and laser scanners. Kortx software supports
arbitrary continuous scan patterns, and in practice we scan
objects with a randomly shifted Lissajous trajectory per
laser beam. Using Kortx, we scan 7 real-world objects (cap,
chair, earphone, knife, mug-1, mug-2, and rocket) multiple
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PointNet++ [42] Point 46.5 53 0.19 1.52 62.4 9.3 55.7 3.6 90.3 58.0 12.7 79.3 82.1 19.2 36.6 48.7
RandLANet [21] 43.4 16 0.05 1.24 60.2 4.8 46.7 7.5 91.3 57.2 14.9 78.9 80.0 16.6 27.7 34.3
CurveNet* [61] 4.4 385 1.77 5.52 0.0 0.0 0.0 0.0 25.4 0.0 0.0 0.0 26.9 0.0 0.0 0.0
PointMLP [36] 47.6 63 0.86 16.8 65.8 9.8 54.2 15.8 92.5 63.5 14.8 81.7 82.9 18.8 34.6 36.9
PointNext [43] 45.0 34 0.33 41.6 62.6 2.6 63.1 1.0 91.1 58.7 12.8 80.1 81.8 12.5 33.8 39.3
MinkowskiNet [12] Voxel 53.8 37 0.19 36.6 70.3 13.7 77.6 26.8 92.8 67.5 18.0 80.8 81.9 18.0 40.5 58.1
Cylinder3D [81] 53.0 61 1.18 55.8 71.1 11.6 74.8 22.1 92.5 66.1 18.3 82.6 84.2 19.1 41.6 52.0
SphereFormer [26] 55.1 54 0.37 32.3 76.3 11.5 68.9 26.0 93.8 70.1 19.6 84.0 86.6 19.8 46.2 58.9
CurveCloudNet Curve 54.1 75 0.27 10.2 71.9 12.9 78.6 22.3 93.2 68.5 19.8 83.3 85.6 17.4 44.3 51.4

Table 3. A2D2 Segmentation Results. On grid-like LiDAR scans, CurveCloudNet outperforms all point-based backbones in mIoU and is
competitive with SphereFormer. Performance is on an Nvidia RTX 3090 GPU (batch size 1).

times in different poses, collecting 195 point clouds in total.
We will release this dataset upon publication. We train on
scans that are simulated from ShapeNet meshes and evalu-
ate on the Kortx scans as well as the ShapeNet validation
split. To best mimic the Kortx data, we simulate random
laser traversals on each ShapeNet mesh and only train on the
six object categories present in the Kortx dataset: cap, chair,
earphone, knife, mug. We generate five training scans per
ShapeNet object, each scanned from a unique random sen-
sor pose. This yields a training set of 31,991 point clouds.
KortX Results. KortX results are summarized on the right
side of Tab. 2. The experimental setup is identical to
ShapeNet, except we train over four random seeds and for
60 epochs. CurveCloudNet again outperforms all baselines,
showing effective generalization to out-of-domain Kortx
test scans. Voxel-based methods continue to underperform
their point-based counterparts, suggesting that discretizing
the input has a negative effect when point clouds are small.
In contrast to the previous ShapeNet evaluation, PointMLP
is the second-best method when scans are captured from
random sensor poses. Fig. 4 shows that CurveCloudNet bet-
ter distinguishes fine-grained structures, such as the back of
a chair, a mug handle, and an earphone headpiece.

4.2. A2D2 LiDAR Segmentation

A2D2 Dataset. The Audi Autonomous Driving Dataset
(A2D2) [17] contains 41,280 frames of outdoor driving
scenes captured from 5 overlapping LiDAR sensors, cre-
ating a unique grid-like scanning pattern (see Fig. 2). We
evaluate on 12 LiDAR categories: car, bicycle, truck, per-
son, road, sidewalk, obstacle, building, nature, pole, sign,
and traffic signal. Evaluation is performed on annotated Li-
DAR points in the field of view of the front-facing camera.
Results. We train CurveCloudNet and baselines on the of-
ficial A2D2 training split [17]. For fair comparison, all
models are trained for 140 epochs using the same hyperpa-
rameters, and the best validation mIOU throughout training

is reported. Results are summarized in Tab. 3, and Fig. 1
provides a qualitative example. CurveCloudNet scales to
outdoor scenes better than point-based backbones, with the
runner-up PointMLP showing a 6% drop in mIOU. Curve-
CloudNet also outperforms most voxel-based backbones
and achieves similar accuracy to state-of-the-art Sphere-
Former [26], even though SphereFormer’s radial window
attention is tailored for outdoor LiDAR scans.

4.3. nuScenes LiDAR Segmentation

nuScenes Dataset. The nuScenes dataset [6] contains 1000
sequences of driving data, each 20 seconds long. Each se-
quence contains 32-beam LiDAR data with segmentations
annotated at 2Hz. We follow the official nuScenes bench-
mark protocol with 16 semantic categories.
Results. We train CurveCloudNet and baselines on the offi-
cial nuScenes training split. To ensure fair comparison, we
train all models for 100 epochs. Results on the nuScenes
validation split are shown in Tab. 4, and Fig. 1 includes a
qualitative example. CurveCloudNet significantly improves
upon other point-based networks: PointMLP and PointNext
show more than a 10% drop in mIOU and ∼ 2× increase
in latency. We also note that CurveNet exceeds 48GB of
GPU memory for a batch size of 1, showcasing its inability
to scale to larger scenes. CurveCloudNet also outperforms
all voxel-based methods except the recent SphereFormer.

4.4. KITTI LiDAR Segmentation

The Semantic KITTI dataset is made up of 22 sequences of
driving data consisting of 23,201 LiDAR scans for training
and 20,351 for testing. Each scan is obtained with a dense
64-beam Velodyne LiDAR. We follow the official KITTI
protocol in training and validation. To ensure fair compari-
son, we train all models for 100 epochs. Results on the val-
idation sequence are reported in Tab. 5, and Fig. 1 shows a
qualitative example. CurveCloudNet outperforms all point-
based and voxel-based methods. Note that we cannot re-
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PointNet++ [42] Point 51.1 274 0.60 1.5 60.1 6.5 58.4 66.3 16.4 20.0 50.8 12.6 31.5 42.0 94.0 60.8 63.8 69.2 82.4 82.3
RandLANet [21] 62.9 21 0.18 1.2 72.5 12.6 36.6 81.8 38.7 72.3 68.5 37.3 44.7 59.7 95.3 87.0 69.7 71.1 73.2 85.9
CurveNet [61] – – >48 5.5 – – – – – – – – – – – – – – – –
PointMLP [36] 67.9 164 4.94 16.8 72.3 27.8 88.2 86.3 37.2 51.0 60.7 50.6 56.4 71.1 95.7 70.6 70.9 72.0 88.8 87.2
PointNext [43] 65.0 155 0.62 41.5 68.7 1.2 86.9 87.5 41.8 57.4 54.3 34.9 55.3 75.1 95.7 68.9 70.2 71.5 86.5 84.0
MinkowskiNet [12] Voxel 76.2 44 0.29 36.6 75.4 43.9 91.9 93.0 49.0 84.3 78.3 64.6 65.9 85.7 96.1 71.5 67.5 74.8 86.5 84.9
PolarNet* [77] 71.0 - - - 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Cylinder3D* [81] 76.1 80 1.57 55.9 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
SphereFormer* [26] 79.5 59 0.81 32.3 78.7 46.7 95.2 93.7 54.0 88.9 81.1 68.0 74.2 86.2 97.2 74.3 76.3 75.8 91.4 89.7
CurveCloudNet Curve 78.0 87 1.14 28.8 77.3 45.7 92.4 91.9 59.4 84.5 78.5 64.1 69.6 85.0 96.9 72.7 75.6 75.2 90.5 89.0

Table 4. nuScenes Segmentation Results. On typical sweeping LiDAR scans, CurveCloudNet scales significantly better than other point-
based backbones and is competitive with recent work SphereFormer. Performance is on an Nvidia RTX 3090 GPU (batch size 1). *
indicates that results are copied from the referenced papers.

Performance (↓)
Method Type mIoU (↑) Time (ms) GPU (GB) Param (M)

PointNet++ [42] Point – 2690 11.1 1.6
CurveNet [61] – – >48 5.5
PointMLP [36] 39.5 293 5.24 16.8
PointNext [43] – 1303 1.83 41.6
MinkowskiNet [12] Voxel 66.8 111 0.53 36.6
Cylinder3D* [81] 68.9 233 1.62 55.9
SphereFormer* [26] 69.0 144 3.46 32.3
CurveCloudNet Curve 69.5 155 2.75 28.8

Table 5. Quantitative results on the KITTI validation split. Perfor-
mance is on an Nvidia RTX 3090 GPU (batch size 1). * indicates
results are copied from the referenced papers.

Curve Operations Performance (↓)
Grouping FPS 1D Conv. mIoU (↑) Time (ms) GPU (GB) Param (M)

✓ ✓ ✓ 54.1 75 0.27 10.3
✗ ✓ ✓ 53.3 99 1.03 10.3
✓ ✗ ✓ 52.4 105 0.26 10.3
✓ ✓ ✗ 52.0 61 0.20 9.9
✗ ✗ ✗ 52.6 122 0.92 10.3

Table 6. Ablation Study on A2D2. Curve operations are ablated
and replaced with the standard point-based counterparts.

port results for many point-based methods due to excessive
training times on the larger KITTI scans (> 20 days).

4.5. Ablation Study

Tab. 6 shows an ablation analysis of CurveCloudNet on the
A2D2 dataset; the table shows that each of our proposed
curve operations is essential to achieve high accuracy and
efficiency. We ablate grouping along curves by instead us-
ing the regular radial groupings from PointNet++ [42]. This
ignores the curve structure and results in decreased accu-
racy, increased latency, and a significant increase in GPU
memory usage. Instead of curve farthest point sampling, we
also try regular FPS, which causes a decreased accuracy and

increased latency. Finally, without 1D curve convolutions,
we observe a notable decline in accuracy with a marginal
improvement in latency and GPU memory. Taken together,
our curve operations increase accuracy with roughly half
the latency and one third the GPU memory requirements.

5. Discussion and Limitations

We have described a point cloud processing scheme and
backbone, CurveCloudNet, which introduces curve-level
operations to achieve accurate, efficient, and flexible perfor-
mance on point cloud segmentation. CurveCloudNet out-
performs or is competitive with previous methods on the
ShapeNet, Kortx, A2D2, nuScenes, and KITTI datasets,
and on average achieves the best performance. Put together,
CurveCloudNet is a unified solution to both small and large-
scale scenes with various scanning patterns. Nevertheless,
CurveCloudNet is only designed for laser-scanned data, i.e.
point clouds with explicit curve structure due to 1D laser
traversals – we further discuss this limitation in the sup-
plement. We believe a promising future direction is to in-
vestigate virtual curves that can extend CurveCloudNet to
uniformly sampled point clouds. Another exciting future
direction will be to investigate additional curve operations
such as explicit curve-to-curve communication, curve self-
attention and cross-attention, and curve intersections.
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