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Abstract

Adapters provide an efficient and lightweight mechanism
for adapting trained transformer models to a variety of dif-
ferent tasks. However, they have often been found to be
outperformed by other adaptation mechanisms including
low-rank adaptation. In this paper, we provide an in-depth
study of adapters, their internal structure, as well as vari-
ous implementation choices. We uncover pitfalls for using
adapters and suggest a concrete, improved adapter architec-
ture, called Adapter+, that not only outperforms previous
adapter implementations but surpasses a number of other,
more complex adaptation mechanisms in several challenging
settings. Despite this, our suggested adapter is highly robust
and, unlike previous work, requires little to no manual inter-
vention when addressing a novel scenario. Adapter+ reaches
state-of-the-art average accuracy on the VTAB benchmark,
even without a per-task hyperparameter optimization.†

1. Introduction
Transfer learning from an off-the-shelf model, pre-trained
on a large dataset like ImageNet [53] to a downstream task
by fully fine-tuning the model’s parameters is a common
paradigm. A typical CNN architecture, like a ResNet [23],
has several tens of millions of parameters. However, since
the introduction of transformers [56] into the realm of com-
puter vision [4, 5, 12, 49, 50, 60], model sizes have grown
exponentially from around a hundred million parameters
for a vision transformer (ViT) [12] to more than a billion
parameters [9, 45]. This leads to huge storage requirements
when fine-tuning on multiple downstream tasks because a
complete set of the model’s parameters needs to be saved
per task. Additionally, large models require correspondingly
large datasets [e.g., 54] to be trained to their full potential,
yet tend to overfit easily if the target dataset in transfer learn-
ing is too small. One solution is linear probing [11], where
only the linear classifier is trained, but this usually yields
inferior results compared to full fine-tuning.

As a consequence, there is a growing interest in parameter-
efficient tuning methods. The main idea is to freeze the

†Code is available at https://github.com/visinf/adapter_plus.
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Figure 1. Parameter-accuracy characteristics of adaptation
methods on the VTAB [62] test sets. We report original results
and re-evaluations (⟳) after a complete training schedule with
suitable data normalization. Our Adapter+ has clearly the best
parameter-accuracy trade-off. The vertical, dashed line shows the
possible minimal number of tunable parameters when only the
classifiers are trained, i.e., using linear probing (61% accuracy).

parameters of the pre-trained model and add a compara-
tively small amount of parameters to the model, which are
then tuned together with the classifier to adapt the model
to the downstream task at hand. Representative methods
with different underlying concepts include VPT [30], which
prepends the sequence of image tokens in the attention with
trainable tokens to learn a prompt tuning, LoRA [28], where
the attention weights are updated with learnable low-rank
decomposition matrices, and Adapters [27], which are small
bottleneck modules that are added to every transformer layer
of the network. Adapters were first proposed for CNNs by
Rebuffi et al. [51] and various formulations [21, 27, 47] exist
for the now common ViT architecture.

Recent work on parameter-efficient transfer learning [e.g.,
19, 20, 30, 31, 38, 63] presents adapters as a baseline method
for the adaptation to downstream tasks in computer vision.
However, we identified various common issues in their imple-
mentations, which we find to have a negative influence on the
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Figure 2. Average accuracy for VTAB subgroups on the test sets. For methods marked with ⟳, we report results of our re-evaluation after
a complete training schedule with suitable data normalization to ensure a fair comparison. Adapter+ is evaluated with rank r∈ [1..32].

adaptation performance. For further details, refer to the sup-
plemental material. Additionally, while adapters have been
well studied in natural language processing (NLP), there is
no study that broadly examines the different adapter config-
urations for vision transformers. As a result, adapters have
seemed to underperform in comparison to recent parameter-
efficient adaptation methods, e.g., reported accuracies of
adapters on VTAB of 73.9% in [63] and 60.8% in [30].

In this work, we therefore revisit the idea of adapters
and investigate how they can perform at their best in con-
nection with ViTs. Our contribution hereby is threefold:
(1) We show the first in-depth and systematic study on the
effects of the adapter position in the transformer and of the
adapter’s inner structure with ViTs, as well as evaluate differ-
ent variants of parameter initialization. (2) We further pro-
pose a learnable, channel-wise scaling as extension to plain
adapters, which proves to be beneficial for computer vision
tasks. (3) Finally, we present Adapter+, an adapter configu-
ration with an excellent parameter-accuracy trade-off com-
pared to other work, as shown in Fig. 1. Adapter+ reaches
a state-of-the-art average accuracy of 77.6% on VTAB [62]
without any hyperparameter optimization per task and 3.7
percentage points (pp) over previous adapter baselines. We
also reach a state-of-the-art accuracy of 90.7% on FGVC
[30] with the lowest number of parameters compared to
other methods. Finally, Adapter+ shows the best robustness
in terms of accuracy across the VTAB subgroups, see Fig. 2.

2. Related work
One possibility to adapt a pre-trained network to a novel task,
apart from full fine-tuning, is to only selectively tune some of
the parameters, e.g., only training the classifier [11]. Cai et al.
[3] proposed to tune only the biases of an otherwise frozen
network to adapt it to a downstream task. BitFit [61] then
showed the efficacy of this method for NLP transformers.
Modular adaptation. The concept of adding small, train-
able modules with only a few parameters to an otherwise
frozen network was first proposed for adapting CNNs by
Rebuffi et al. [51] and called adapters. Other approaches
replaced all convolutions in the network with depth-wise

separable convolutions and only tuned their spatial parts
[18], learned binary masks to prune a pre-trained network
per target task [40], or created a student network by aug-
menting the original network with adapter-like modules and
skip connections, which then mimicked a teacher network
by disabling parts of its pre-trained and added modules [42].

Following the rise of transformers in NLP [10, 48, 56],
Houlsby et al. [27] proposed adapter modules in the form
of bottlenecks for transformer layers. Pfeiffer et al. [47]
conducted an architecture search on NLP tasks to find a
more parameter-efficient configuration of adapter modules
that only acts on the transformer’s feed-forward network
(FFN), thus saving roughly half of the parameters over [27].

Prompt tuning. Inspired by changing the output of a net-
work for NLP with hand-crafted textual prompts, which
modifies the attention over the original input tokens, Lester
et al. [36] proposed prompt tuning: A set of learnable to-
kens is added to the input sequence and trained with back-
propagation to prompt a frozen language model to perform
downstream tasks. Li and Liang [37] extended on prompt
tuning by adding learnable tokens at every transformer layer
of the model, which they termed prefix tuning. Jia et al. [30]
applied prompt tuning to vision transformers, then called
visual prompt tuning (VPT), by preprending the sequence of
image patch embeddings with such trainable tokens (VPT-
Shallow). They also showed a variant resembling prefix
tuning with stronger adaptation capabilities that adds tokens
at every layer of the network (VPT-Deep).

Low-rank approaches. Also focusing on the attention part
of the transformer layers, Hu et al. [28] proposed low-rank
adaptation (LoRA) where the attention weights are updated
with low-rank decomposition matrices. The matrices can
be merged with the attention weights for inference. The
structure of LoRA is very similar to an adapter, which can be
seen as a superset of LoRA acting on the transformer’s FFN.
He et al. [21] proposed a formalism to unify LoRA, adapters,
and prefix tuning [37]. It allowed them to combine the
beneficial aspects of all three methods into a scaled parallel
adapter (Scaled PA) for NLP tasks. AdaptFormer [6] then
applied the concept of Scaled PA to vision transformers.
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Other related work. Newer approaches for vision trans-
formers proposed different techniques to further enhance the
parameter-accuracy trade-off in adaptation. NOAH [63] per-
forms an architecture search for a combination of adapters,
LoRA, and VPT for each task. SSF [38] scales and shifts the
features in the network after every operation, i.e., attention,
FFN, layer normalization, with task-specific, trainable mod-
ules. Jie and Deng [31] aggregate the weights of a ViT into a
single 3D tensor. Task-specific weight updates of this tensor
are learned as a matrix decomposed into parameter-efficient
factors, hence they termed their method factor-tuning (FacT).
SPT [20] measures the importance of the weights of a pre-
trained network for a downstream task. Based on a desired
parameter budget, the most important parameters are chosen
for tuning and adapters or LoRA are used for weight matrices
that contain enough parameters of importance. Consolidator
[19] adapts weights in multiple orderings of channel-wise
groups. The updates for all groups are merged for efficient
storage and inference.

Despite these new developments, we show that the sim-
ple concept of adapters exhibits an even better parameter-
accuracy trade-off in combination with vision transformers –
if done right and with the addition of a channel-wise scaling.

3. Adapters for vision transformers
3.1. Vision transformer basics

In this work, we concentrate on the parameter-efficient
adaptation of vision transformers (ViT) [12]. The ViT is
closely modeled after the transformer model for natural lan-
guage processing (NLP) proposed by Vaswani et al. [56]. A
learned linear projection embeds non-overlapping and flat-
tened patches of the input image into a sequence of n tokens
x ∈ Rn×d, where d is called the hidden dimension of the
transformer. A positional encoding is added to the embed-
dings and the sequence is prepended with a trainable [CLS]
token. The sequence length and the dimension of the tokens
stay fixed throughout the architecture. The sequence is sent
through consecutive transformer layers that each consist of a
multi-head self-attention and a feed-forward network (FFN).
For the self-attention, the tokens are projected to queries,
keys, and values (Q, K, and V ) and the output of each of
the M attention heads is calculated as

Attention(x) = Softmax
(
Q(x)K(x)T√

d′

)
V (x), (1)

with d′ = d/M being the inner dimension of the head. The
FFN consists of a multilayer perceptron with two linear
layers (with weights Wi and biases bi) and a GELU [25]
non-linearity as activation in between:

FFN(x) = GELU(xW1 + b1)W2 + b2. (2)

Both attention and FFN are employed with a preceding layer
normalization (LN) [1] and a skip connection and, therefore,

transform an input sequence x sequentially as

x 7→ Attention(LN(x)) + x (3a)
x 7→ FFN(LN(x)) + x . (3b)

To keep the notation concise, we will omit the LNs of atten-
tion and FFN in the following; each attention and FFN is
assumed to be always preceded by an LN.

3.2. Adapters and their inner structure

Adapters [27] are small modules that are added to the trans-
former layers. They allow to tailor a network to a new task
or domain, where instead of tuning the parameters of the
whole network, only the adapter parameters and the classi-
fier are trained. Adapters take the form of bottlenecks with
an inner dimension of r ≪ d. We call r the rank of the
adapter. In detail, a down-projection to dimension r with
weights Wdown ∈ Rd×r and biases bdown ∈ Rr is followed
by a non-linear activation function σ(·), typically a GELU
[25] as used throughout the ViT, and an up-projection with
weights Wup ∈ Rr×d and biases bup ∈ Rd back to the hid-
den dimension d of the transformer layer. This yields a base
adapter module

Adapterbase(x) = σ(xWdown + bdown)Wup + bup . (4)

The base adapter module can be further enhanced with a
normalization layer, e.g., a layer normalization (LN) [1].
Additionally, the output of the bottleneck can be scaled by s
as

Adapter(x) = s · Adapterbase

(
LN(x)

)
. (5)

For layer-wise scaling, the factor s is taken to be a scalar,
i.e. s ∈ R, and can be either fixed as a hyperparameter or
learned during training. Layer-wise scaling was proposed
by He et al. [21] and Hu et al. [28] but deemed not effective
compared to a fixed scaling for tasks in NLP. Here, we
additionally propose to use a channel-wise, learned scaling
where s ∈ Rd. We investigate its capabilities in Sec. 4.3. In
most cases, the adapter is used with a skip connection, hence
the complete feature transformation becomes

x 7→ Adapter(x) + x . (6)

The complete inner structure of an adapter including its skip
connection is visualized in Fig. 3a.

3.3. Adapter positions

Although the architecture of bottleneck adapters for trans-
formers is rather simple, there are various ways to plug them
into the transformer layer. Previous work has not yet in-
vestigated what the optimum position is for the use with a
ViT [12]. Here, we evaluate four possible adapter positions,
shown in Figs. 3b to 3e. We postulate that it is easier for an
adapter to learn to modify features previously transformed
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Figure 3. Illustrations of (a) the inner structure of an adapter with feed-forward layers (FF), activation layer (Act), and optional layer
normalization (LN) and scaling, (b)–(d) different possible adapter positions to connect the adapter to the FFN section of the transformer
layer. Modules with trainable parameters are shown in red and frozen modules in blue.

by a frozen module in the network rather than to anticipate
what changes to the features are needed in adapting for a
frozen module that follows the adapter. Putting it differently,
we argue that the adapter should follow a frozen module.
Pre-Adapter. The first adapter position we analyze ap-
plies the adapter to the output x of the attention section
of the transformer layer before it is passed into the FFN,
but with the skip connection of the attention already added
(Fig. 3b). The feature transformation of the FFN section
with the adapter attached, therefore, becomes

x 7→ FFN
(
Adapter(x) + x

)
+
(
Adapter(x) + x

)
. (7)

Note that the two occurrences of Adapter(x) in Eq. (7) refer
to the same instantiation. In this configuration, the adapter
has the full information from the feature transformation hap-
pening in the attention but needs to estimate the transforma-
tion that will be happening in the FFN that follows. As a
result, especially the last FFN before the linear classifier will
be hard to adapt. To the best of our knowledge, this adapter
position has not been considered in the literature.
Post-Adapter. In this case, the adapter is positioned at the
very end of the transformer layer on the output of the FFN
with its skip connection added as

x 7→ Adapter
(
FFN(x) + x

)
+
(
FFN(x) + x

)
, (8)

where the FFNs refer to the same intantiation (Fig. 3c). That
way, the adapter has access to the feature transformation
happening in the FFN and the unmodified features via the
skip connection. This position has been proposed by Pfeiffer
et al. [47] as the result of an architecture search, but only for
adapting transformers for NLP tasks and not for a ViT.
Parallel-Adapter. Next, we consider a parallel setting as
proposed by [21], where the adapter is located parallel to the
FFN and both share a skip connection (Fig. 3d):

x 7→ FFN(x) + Adapter(x) + x . (9)

Therefore, both adapter and FFN work on the output of the
attention section of the transformer layer and the adapter
needs to learn the necessary residual transformation to the
one produced by the frozen FFN.
Intermediate-Adapter. Finally, we consider the original
adapter position as proposed by Houlsby et al. [27]. The
adapter is plugged behind the FFN but before the skip con-
nection of the FFN is added (Fig. 3e). The adapter addition-
ally possesses its own skip connection:

x 7→ Adapter
(
FFN(x)

)
+ FFN(x) + x . (10)

Note that the two occurrences of FFN(x) in Eq. (10) refer
to the same instantiation. The adapter sees the transformed
features coming from the FFN but cannot access the features
added later on by the skip connection of the FFN.

3.4. Initialization of adapter parameters

Since training a deep learning model is a non-convex opti-
mization problem, the initialization of parameters is impor-
tant. In this work, we evaluate three different variants of
parameter initializations for adapters proposed in the litera-
ture. All of them have the goal to initialize the adapters in a
way that minimizes the initial influence of the adapters at the
start of their training. This is a sensible goal since adapters
extend an already pre-trained frozen network.
Houlsby initialization. Houlsby et al. [27] propose to draw
the weights of the projection matrices from a zero-centered
Gaussian distribution with a standard deviation of σ = 0.01,
truncated at 2σ, and use zero for their biases.
BERT initialization. For the BERT model [10], the initial-
ization works similar to [27] but the Gaussian distribution
has a standard deviation of σ = 0.02 and is not truncated.
This form of initialization is used by Pfeiffer et al. [47].
LoRA initialization. LoRA [28] initializes the weights and
biases of the down-projection with a uniform Kaiming He ini-
tialization [22]; the weights and biases of the up-projection
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are initialized to zero. Therefore, the output of the adapter at
the beginning of training equals zero and the adapter initially
does not contribute.

3.5. Data normalization in pre-processing

Data normalization is common practice during image pre-
processing. It is typically done by shifting and scaling of
each input pixel xij for each channel c as

x̂ijc = (xijc − µc)/σc . (11)

Most widely used are the mean µ = (0.485, 0.456, 0.406)T

and standard deviation σ = (0.229, 0.224, 0.225)T of the
ImageNet dataset [53], commonly referred to as ImageNet
normalization. Another option is using 0.5 for every element
of µ and σ, which is commonly referred to as Inception
normalization because it is used for the Inception family of
CNN architectures, starting with Inception-v3 [55]. The Im-
ageNet normalization aims to center the input data around 0
with a standard deviation of 1. The Inception normalization,
on the other hand, transforms the input values such they are
strictly in range [−1, 1].

Because we try to adapt to a target domain on a very low
parameter budget, it is important to use the data normaliza-
tion the network saw during its pre-training. Otherwise, the
parameter-efficient transfer method of choice needs to first
compensate for the shift in input data statistics and loses
parts of its capacity to adapt to the target domain.

4. Experiments
4.1. Datasets

In order to carry out a detailed study of the utility of adapters
in the context of ViT models, we experiment with two stan-
dard benchmarks for task adaptation.
VTAB. The Visual Task Adaptation Benchmark (VTAB)
[62] consists of 19 tasks, which are further grouped into
three categories: Natural, Specialized, and Structured. The
Natural group contains natural images captured using stan-
dard photographic equipment. The Specialized group is built
from datasets of images captured with specialized equip-
ment, from remote sensing and medical domains. Lastly,
the Structured group is for evaluating the understanding of
the scene structure. Here, the majority of the datasets are
compiled from synthetic images with scenes that are easy
to assess for humans but have a large domain gap to natural
image datasets. Each task of VTAB consists of 800 train-
ing and 200 validation images. The test sets have the same
number of images as the test sets in the original datasets.
FGVC. Following Jia et al. [30], we compile five datasets
for fine-grained visual classification (FGVC): CUB-200-
2011 [58], NABirds [26], Oxford Flowers [44], Stanford
Dogs [33], and Stanford Cars [16]. Because VTAB bench-
marks task adaptation in a low-data regime in terms of the

Table 1. Adapter position. We report the average accuracy in %
(± std. dev.) on the VTAB val sets for different adapter positions.
Adapterbase with Houlsby initialization and rank r=8 is used in all
experiments.

Position Natural Specialized Structured Average

Pre 82.4 ± 0.4 86.2 ± 0.8 57.5 ± 0.5 75.3 ± 0.3
Intermediate 83.0 ± 0.4 85.0 ± 0.8 57.2 ± 0.5 75.1 ± 0.3
Parallel 83.0 ± 0.3 86.2 ± 0.6 57.7 ± 0.6 75.6 ± 0.3
Post 83.0 ± 0.3 85.7 ± 0.4 59.1 ± 0.3 76.0 ± 0.2

number of available training images, we use FGVC to eval-
uate adaptation methods in settings where training data is
abundant. Where validation sets are not available in FGVC,
we follow Jia et al. [30] to create the validation splits.

For further details regarding the dataset properties of
VTAB and FGVC, see supplemental material.

4.2. Experimental settings

For all our experiments, we use a ViT-B/16 network [12] that
was pre-trained on ImageNet-21k [53]. We follow its pre-
training settings, in particular, regarding input data normal-
ization. We train all models with an AdamW [39] optimizer
with a learning rate of 10−3, a weight decay of 10−4, and a
batch size of 64, following [63]. For full fine-tuning, we
use a learning rate of 10−4, which we found leads to better
results. We use a cosine learning rate schedule with a linear
warm-up over the first 10 epochs and train for 100 epochs in
total. We use stochastic depth with linearly increasing drop
rates as a function of network depth from 0 to 0.1 for the
frozen network and with a drop rate of 0.1 for the adapters
during training. Apart from data normalization (cf . Sec. 3.4),
we resize input images to 224×224 px for VTAB and use a
randomly resize crop to 224×224 px and horizontal flipping
for FGVC. For the ablations and to determine hyperparam-
eters, we evaluate on the validation splits. We include the
validation sets in the training data for producing final results.

4.3. Exploring adapter configurations

Adapter position. We first evaluate the four possible posi-
tions to connect an adapter to the FFN section of the trans-
former layer, as described in Sec. 3.3. In our ablation, we use
Adapterbase (cf . Eq. (4)) with rank r=8 and use the Houlsby
initialization. In this experiment, the adapters neither have a
layer normalization nor use scaling.

The results on the VTAB validation set for all four adapter
positions are presented in Tab. 1. The Post-Adapter yields
the best result with 76.0% average accuracy over all VTAB
subgroups. It confirms our hypothesis that the adapter should
follow the frozen FFN module because it can then post-hoc
modify the features flowing through the network. The par-
allel configuration comes in second with 75.6% average
accuracy, receiving the same input as the FFN but having to
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Table 2. Inner adapter structure. We evaluate the different com-
ponents of the adapter structure, e.g., normalization layer (Norm),
layer-wise and channel-wise learnable scaling on the VTAB val
sets. The difference to Adapterbase (first row) is shown in ∆base.

Bias Norm Scaling Initialization Accuracy (%) ∆base

✓ Houlsby 76.0 ± 0.2 0.0
Houlsby 75.6 ± 0.4 −0.4

✓ LoRA 75.5 ± 0.3 −0.5
✓ BERT 75.8 ± 0.3 −0.2
✓ ✓ Houlsby 75.9 ± 0.3 −0.1
✓ ✓ layer Houlsby 75.9 ± 0.3 −0.1
✓ layer Houlsby 76.2 ± 0.3 +0.2
✓ ✓ channel Houlsby 75.8 ± 0.3 −0.2
✓ channel Houlsby 76.5 ± 0.2 +0.5

learn a residual modification to the FFN instead of a subse-
quent one. Pre-Adapter and Intermediate-Adapter are subpar
compared to the other positions. They either do not have
access to the feature transformation happening afterwards in
the FFN or to the features of the skip connection containing
the output of the attention.
Inner structure. Next, we investigate the impact of the in-
ner structure of adapters including their initialization. Tab. 2
shows our findings with average accuracies calculated over
the three VTAB subgroups. Removing the biases from the
linear layers leads to a decrease in accuracy of 0.4 percent-
age points (pp). We find that the Houlsby initialization of the
adapter parameters is best while BERT and LoRA initializa-
tions reduce the accuracy by 0.2 pp and 0.5 pp. Adding layer
normalization (LN) to the adapter is slightly detrimental for
all settings, both with scaling and without, while addition-
ally adding 2d parameters per layer. We find that a learned
scaling is in general beneficial for image-classification tasks.
Adding layer-wise scaling leads to a gain of 0.2 pp. The
inclusion of a learned, channel-wise scaling, as proposed
here, gives the strongest improvement of 0.5 pp, reaching an
accuracy of 76.5% on the VTAB validation set while only
adding half of the parameters compared to LN.
What makes a great adapter? From our systematic explo-
ration of possible adapter configurations, we conclude that
adapter modules in the Post-Adapter position with a learn-
able, channel-wise scaling and Houlsby initialization work
best for computer vision tasks. We call our proposed adapter
configuration Adapter+. The addition of layer normaliza-
tion, as suggested by Pfeiffer et al. [47], is not necessary and
even leads to detrimental effects in our setting.
Configurations from previous work. Different configu-
rations of adapters have been established in previous work.
We compare their configurations to our systematic approach
with rank r=8 on the VTAB validation sets. Using our own
implementations already leads to better results than reported
in literature but enables us to compare on equal footing.
Houlsby et al. [27] use an Intermediate-Adapter with their

Table 3. Comparison of Adapter+ with adapter configurations
from previous work. We report the average accuracy in % (± std.
dev.) of each subgroup and across all groups on the VTAB val sets.

Configuration # Param (M) Natural Specialized Structured Average

Houlsby [27], r=8 0.39 82.9 ± 0.2 85.5 ± 0.3 58.9 ± 0.8 75.8 ± 0.3
Houlsby [27], r=4 0.24 82.9 ± 0.4 84.9 ± 0.3 58.3 ± 0.6 75.4 ± 0.3
Pfeiffer [47] 0.21 82.9 ± 0.3 86.1 ± 0.9 58.4 ± 0.7 75.8 ± 0.4
AdaptFormer [6] 0.19 83.0 ± 0.4 85.0 ± 0.2 57.4 ± 0.5 75.2 ± 0.2
Adapter+ 0.20 83.0 ± 0.2 86.8 ± 0.6 59.7 ± 0.4 76.5 ± 0.2

proposed initialization both at the FFN section as well at the
attention part of the transformer layer. Additionally, they
adapt the LN parameters of the backbone. We, therefore,
compare their setting additionally with r = 4 to compare
on roughly the same parameter budget. Pfeiffer et al. [47]
suggest a Post-Adapter like us but with a BERT initialization
and they employ a layer normalization inside the adapter.
AdaptFormer [6] has the same configuration as a scaled
parallel adapter (Scaled PA) [21], which was proposed for
NLP tasks, the only difference being the layer-wise scaling s.
Scaled PA uses a fixed scaling of s = 4 for the adapters
whereas AdaptFormer suggests to use s = 0.1 for vision
tasks. Optimizing s for VTAB may lead to better results.
Our results are presented in Tab. 3. We see a clear advantage
of our Adapter+ configuration, gaining at least 0.7 pp over
all previous adapter realizations considered despite having
the second lowest number of trainable parameters.

4.4. Main results

VTAB. We evaluate Adapter+ on the VTAB test sets and
compare to other methods in Tab. 4. We provide results for
full fine-tuning and tuning only the linear classifier while
freezing the rest of the backbone [11] as a baseline of classi-
cal fine-tuning methods. As competing parameter-efficient
tuning methods, we include LoRA [28], VPT [30], NOAH
[63], SSF [38], FacT [31], Consolidator [19], and SPT [20].

Wherever possible, we re-evaluate the other methods with
a suitable data normalization for the pre-trained backbone
and after the full training schedule to enable a fair compar-
ison. For LoRA, we use our own implementation because
the original work does not cover VTAB. For VPT, we adopt
the number of tokens per task from their hyperparameter
optimization but find that we do not need to tune learning
rate and weight decay per task. Additionally, deviating from
the original implementation, we optimize with AdamW [39]
instead of SGD [52] and change to an appropriate data nor-
malization. We present the original results from [30] on
VTAB together with our re-evaluation. Our improved imple-
mentation of VPT increases the average accuracy by 4.4 pp
from 72.0% to 76.4%. SSF, FacT, and SPT released code to
evaluate on VTAB. For FacT and SPT, we change the data
normalization to match the backbone; SSF already uses the
correct one. We re-run the provided code and present the
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Table 4. Detailed results on the VTAB test sets. We report original results and re-evaluations (⟳) in % after a complete training schedule
with suitable data normalization. Grayed out numbers are not included in the ranking for best and second best results. †: Early-stopping
based on the test set, •: unsuitable data normalization, E: per-task hyperparameter optimization. 1Average across the average accuracies of
the VTAB groups, following previous work. 2No complete code release for Consolidator, hence training and evaluation details are unknown.

Natural Specialized Structured

#
Pa

ra
m

(M
)

C
ifa

r1
00

[3
4]

C
al

te
ch

10
1

[1
4]

D
T

D
[8

]

Fl
ow

er
10

2
[4

4]

Pe
ts

[4
6]

SV
H

N
[4

3]

Su
n3

97
[5

9]

A
ve

ra
ge

C
am

el
yo

n
[5

7]

E
ur

oS
A

T
[2

4]

R
es

is
c4

5
[7

]

R
et

in
op

at
hy

[1
3]

A
ve

ra
ge

C
le

vr
-C

ou
nt

[3
2]

C
le

vr
-D

is
t.

[3
2]

D
M

L
ab

[2
]

K
IT

T
I-

D
is

t.
[1

7]

dS
pr

-L
oc

.[
41

]

dS
pr

-O
ri

[4
1]

sN
O

R
B

-A
zi

.[
35

]

sN
O

R
B

-E
le

.[
35

]

A
ve

ra
ge

G
lo

ba
lA

ve
ra

ge
1

Full 85.8 73.2 92.6 70.4 97.9 86.2 90.6 39.6 78.6 87.1 96.6 87.5 74.0 86.3 66.6 61.0 49.8 79.7 82.6 51.9 33.5 37.0 57.8 74.2
Linear 0.04 78.1 88.1 69.0 99.1 90.0 36.0 56.9 73.9 79.8 90.7 73.7 73.7 79.5 32.4 30.5 35.9 61.9 11.2 26.2 14.3 24.5 29.6 61.0

LoRA [28] 0.29 83.0 91.7 71.6 99.2 90.9 83.8 56.7 82.4 86.2 95.7 83.5 71.9 84.3 77.7 62.3 49.0 80.2 82.2 51.7 31.0 47.0 60.1 75.6
VPT-Deep E• [30] 0.60 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.5 81.8 96.1 83.4 68.4 82.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 55.0 72.0
VPT-Deep E⟳ 0.60 83.0 93.0 71.2 99.0 91.3 84.1 56.0 82.5 84.9 96.6 82.5 74.5 84.6 77.5 58.7 49.7 79.6 86.2 56.1 37.9 50.7 62.1 76.4
NOAH E†•◦ [63] 0.43 69.6 92.7 70.2 99.1 90.4 86.1 53.7 80.2 84.4 95.4 83.9 75.8 84.9 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 61.3 75.5
SSF E† [38] 0.24 69.0 92.6 75.1 99.4 91.8 90.2 52.9 81.6 87.4 95.9 87.4 75.5 86.6 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 59.0 75.7
SSF E⟳ 0.24 61.9 92.3 73.4 99.4 92.0 90.8 52.0 80.3 86.5 95.8 87.5 72.8 85.7 77.4 57.6 53.4 77.0 78.2 54.3 30.3 36.1 58.0 74.6
FacT-TK8 E†• [31] 0.05 70.3 88.7 69.8 99.0 90.4 84.2 53.5 79.4 82.8 95.6 82.8 75.7 84.2 81.1 68.0 48.0 80.5 74.6 44.0 29.2 41.1 58.3 74.0
FacT-TK8 E⟳ 0.05 74.9 92.7 73.7 99.1 91.3 85.5 57.7 82.1 86.8 94.9 84.1 70.9 84.2 81.9 64.1 49.2 77.2 83.8 53.1 28.2 44.7 60.3 75.5
FacT-TK≤32 E†• [31] 0.10 70.6 90.6 70.8 99.1 90.7 88.6 54.1 80.6 84.8 96.2 84.5 75.7 85.3 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 60.7 75.6
FacT-TK≤32 E⟳ 0.10 74.6 93.7 73.6 99.3 90.6 88.7 57.5 82.6 87.6 95.4 85.5 70.4 84.7 84.3 62.6 51.9 79.2 85.5 52.0 36.4 46.6 62.3 76.5
Consolidator 2 [19] 0.30 74.2 90.9 73.9 99.4 91.6 91.5 55.5 82.4 86.9 95.7 86.6 75.9 86.3 81.2 68.2 51.6 83.5 79.8 52.3 31.9 38.5 60.9 76.5
SPT-Adapter †• [20] 0.23 72.9 93.2 72.5 99.3 91.4 84.6 55.2 81.3 85.3 96.0 84.3 75.5 85.3 82.2 68.0 49.3 80.0 82.4 51.9 31.7 41.2 60.8 75.8
SPT-Adapter ⟳ 0.22 74.7 94.1 73.0 99.1 91.2 84.5 57.5 82.0 85.7 94.9 85.7 70.2 84.1 81.3 63.2 49.1 80.7 83.5 52.0 26.4 41.5 59.7 75.3
SPT-Adapter †• [20] 0.43 72.9 93.2 72.5 99.3 91.4 88.8 55.8 82.0 86.2 96.1 85.5 75.5 85.8 83.0 68.0 51.9 81.2 82.4 51.9 31.7 41.2 61.4 76.4
SPT-Adapter ⟳ 0.43 74.9 93.2 71.6 99.2 91.1 87.9 57.2 82.2 87.0 95.4 86.5 72.4 85.3 81.1 63.2 50.3 80.2 84.4 51.4 31.5 42.2 60.5 76.0

Adapter+, r=1 0.07 85.4 92.4 73.1 99.1 91.3 83.1 58.1 83.2 87.2 96.6 85.3 72.6 85.5 80.7 60.6 50.9 79.9 83.3 55.6 27.1 43.0 60.1 76.3
Adapter+, r=2 0.09 85.4 93.0 72.7 99.2 90.6 85.3 58.0 83.5 87.9 96.8 85.5 71.4 85.4 83.2 61.0 51.6 80.1 86.1 56.3 30.7 46.5 61.9 76.9
Adapter+, r=4 0.13 84.8 93.8 72.7 99.2 90.6 86.5 57.4 83.6 87.5 96.9 85.9 71.5 85.4 83.4 61.6 53.6 81.4 87.3 55.3 34.4 48.1 63.1 77.4
Adapter+, r=8 0.20 84.6 94.2 72.3 99.3 90.7 87.6 56.7 83.6 87.7 97.0 86.7 72.3 85.9 83.2 60.9 53.8 80.3 88.1 55.6 35.7 47.7 63.1 77.6
Adapter+, r=16 0.35 83.7 94.2 71.5 99.3 90.6 88.2 55.8 83.3 87.5 97.0 87.4 72.9 86.2 82.9 60.9 53.7 80.8 88.4 55.2 37.3 46.9 63.3 77.6

Adapter+, r∈ [1..4] E 0.11 85.4 93.8 72.7 99.1 90.6 86.5 58.1 83.7 87.5 96.8 85.9 71.4 85.4 83.4 61.0 53.6 81.4 87.3 55.3 34.4 48.1 63.1 77.4
Adapter+, r∈ [1..8] E 0.16 85.4 93.8 72.7 99.1 90.7 87.6 58.1 83.9 87.7 96.8 86.7 72.3 85.9 83.4 60.9 53.8 80.3 88.1 55.3 35.7 47.7 63.1 77.7
Adapter+, r∈ [1..32] E 0.27 85.4 93.8 72.7 99.1 90.7 88.2 58.1 84.0 87.5 96.8 87.8 73.9 86.5 83.4 60.9 53.8 80.3 87.2 55.3 37.9 47.7 63.3 77.9

results after a full training schedule. For completeness, we
also report the results from the original publications. How-
ever, we found that the code releases of [20, 31, 38] use early
stopping based on the best result on the test set. We argue
that tuning hyperparameters such as the number of training
epochs on the test set goes against established practices in
machine learning; rather the validation set should be used
for early stopping. Yet, due to the limited size of the training
and validation sets in VTAB, it is not feasible to report test
results without also training on the validation data. Hence,
we chose to complete a full training schedule of 100 epochs
instead of using early stopping. Training SSF for the full
schedule leads to a decrease in average accuracy of 1.1 pp
over the original publication and re-evaluating SPT leads
to a decrease of up to 0.5 pp, even with a corrected data
normalization. FacT on the other hand benefits from our
re-revaluation, since the accuracy decrease from training a
complete schedule is offset by improvements from applying
the appropriate data normalization. There was no complete
code release with configurations to train Consolidator on
VTAB at the time of writing, hence we report results as-is.

Adapter+ shows the best parameter-accuracy trade-off
among all methods evaluated. This can also be clearly seen in
Fig. 1. Additionally, Adapter+ sets a new state of the art with

an average accuracy of up to 77.6% over all VTAB subgroups
even without any per-task hyperparameter optimization. If
we determine the optimal rank r per task on the validation set,
we can further improve the accuracy to 77.9%. Optimizing
the rank leads to a better parameter-accuracy trade-off than
using a fixed rank across all tasks.

In Fig. 2, we compare the average accuracy on the sub-
groups of VTAB. Wherever possible, we present the results
of re-evaluating methods after the last training epoch and
matching the data normalization to the backbone. The aver-
age accuracies of Adapter+ with r ∈ [1..32] are consistently
higher than those of the competing methods. Note that the
accuracies of other methods except SPT differ drastically
across the different VTAB subgroups. Adapter+, on the other
hand, shows a high degree of robustness to the domain shifts
between groups.
FGVC. Next, we present our results on the FGVC bench-
mark in Tab. 5. From the contenders, only SSF [38] has
released code and hyperparameter configurations for train-
ing on FGVC at the time of writing. As we know from
the code releases for VTAB, the reported numbers show the
accuracy for early stopping based on the test set. There-
fore, we expect a similar evaluation for FGVC. While we
do not endorse early stopping based on the test set, we ad-
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Table 5. Detailed results on the FGVC test sets. We report
original results and re-evaluations (⟳) in % after a complete training
schedule with suitable data normalization. Grayed out numbers are
not included in the ranking for best and second best results.
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Linear 0.18 88.9 81.8 99.5 92.6 52.8 83.1

VPT-Deep [30] 0.85 88.5 84.2 99.0 90.2 83.6 89.1
VPT-Deep ⟳ 0.85 90.1 83.3 99.6 90.3 85.0 89.7
SSF [38] 0.39 89.5 85.7 99.6 89.6 89.2 90.7
SSF ⟳ 0.39 88.9 85.0 99.6 88.9 88.9 90.3
SPT-Adapter [20] 0.40 89.1 83.3 99.2 91.1 86.2 89.8
SPT-LoRA [20] 0.52 88.6 83.4 99.5 91.4 87.3 90.1

Adapter+, r∈ [1..32] 0.34 90.0 83.2 99.6 91.6 89.1 90.7
Adapter+ (best epoch) 0.34 90.4 85.0 99.7 92.6 89.1 91.4

ditionally provide numbers for that setting in Tab. 5 for the
sake of comparability. Even when training for a complete
schedule, Adapter+ shows the best average accuracy with
90.7% over all five datasets in FGVC, 0.4 pp over the second
best method under similar evaluation. When early stopping
with the test set, Adapter+ reaches 91.4% average accuracy,
0.7 pp over the second best method and 2.4 pp better than
full fine-tuning. This demonstrates that Adapter+ also yields
state-of-the-art results for task adaptation when training data
is abundant while having the best parameter efficiency.

4.5. Ablations

Data normalization. We showcase the effect of using an
unsuitable data normalization for the chosen ViT in Tab. 6.
The gap between ImageNet and Inception normalization (see
Sec. 3.5) is largest for VPT [30], with a 3.4 pp difference in
average accuracy, which explains around two-thirds of the
gain for our re-evaluation as shown in Fig. 1. We suspect that
VPT has less of an ability to scale and shift the data because
the learnable tokens only act on the attention mechanism.
LoRA [28], FacT [31], and adapters all employ linear layers
that can directly scale and shift the features of the frozen
backbone and thus compensate better for improper data nor-
malization. It is worth mentioning that our Adapter+ is the
most robust to improper normalization out of the methods
evaluated, with a gap of only 2.6 pp average accuracy.
Training regularization. We investigate the importance of
training regularization methods like stochastic depth [29] and
dropout [15] for training adapters on a frozen ViT backbone
and evaluate on the VTAB validation sets. We use linearly
increasing drop rates as a function of network depth from
0 to 0.1 for the frozen layers of the ViT model, and a drop rate

Table 6. Effects of ImageNet vs. Inception data normalization.
All methods are evaluated on the VTAB val sets. In column ∆Average

we report the increase in accuracy in pp across all VTAB subgroups.
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VPT 79.2 83.0 53.8 72.0 82.2 86.2 57.9 75.4 3.4
LoRA 78.4 84.1 53.2 71.9 82.0 85.8 56.4 74.7 2.8
FacT-TK 78.0 83.3 56.1 72.4 81.6 85.6 58.1 75.1 2.7
Adapter+ 80.5 85.0 56.0 73.9 83.0 86.8 59.7 76.5 2.6

Table 7. Influence of training regularization. We evaluate accu-
racy in % with Adapterbase with rank r=8 on the VTAB val sets.

Adapter

Stochastic Depth Dropout None

V
iT Stochastic Depth 76.0 75.4 75.3

None 74.5 74.3 73.7

of 0.1 when using dropout or stochastic depth for the adapter
modules. The results in Tab. 7 show a clear benefit for using
stochastic regularization for the frozen layers as well as the
adapters during training. Using dropout in the adapters is
only slightly better than no regularization for adapters, with
a gain of only 0.1 pp. With an increase in accuracy of 0.7 pp,
stochastic depth is the preferred regularization method for
adapters. However, our results show that the more important
part is the stochastic depth regularization for the frozen
modules of the ViT backbone. Disabling it in training leads
to a loss of 1.5 pp accuracy compared to a training where
stochastic depth is used throughout the model.

5. Conclusion

Applied at the right position and with an optimal inner struc-
ture, the simple concept of adapters produces state-of-the-art
results for task adaptation. To understand how adapters can
“strike back”, we conducted the first systematic and in-depth
study on how to best construct adapters and integrate them
with vision transformers. This allowed us to determine the
optimal connection point for the adapter in the transformer
layer. Further, we proposed to use a learnable, channel-wise
scaling and showed its benefit for computer vision tasks. Our
insights led us to the creation of Adapter+ that yields the
highest accuracy and the best parameter-accuracy trade-off
on VTAB (77.6%, 0.2M) without any per-task hyperparame-
ter optimization and on FGVC (90.7%, 0.34M), showing its
superiority over more complicated methods.
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