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Abstract

Images of the natural world, collected by a variety of
cameras, from drones to individual phones, are increasingly
abundant sources of biological information. There is an ex-
plosion of computational methods and tools, particularly
computer vision, for extracting biologically relevant infor-
mation from images for science and conservation. Yet most
of these are bespoke approaches designed for a specific task
and are not easily adaptable or extendable to new ques-
tions, contexts, and datasets. A vision model for general or-
ganismal biology questions on images is of timely need. To
approach this, we curate and release TREEOFLIFE-10M,
the largest and most diverse ML-ready dataset of biology
images. We then develop BIOCLIP, a foundation model
for the tree of life, leveraging the unique properties of bi-
ology captured by TREEOFLIFE-10M, namely the abun-
dance and variety of images of plants, animals, and fungi,
together with the availability of rich structured biological
knowledge. We rigorously benchmark our approach on di-
verse fine-grained biology classification tasks and find that
BIOCLIP consistently and substantially outperforms exist-
ing baselines (by 16% to 17% absolute). Intrinsic evalua-
tion reveals that BIOCLIP has learned a hierarchical rep-
resentation conforming to the tree of life, shedding light on
its strong generalizability.1

1. Introduction
Digital images and computer vision are quickly becoming
pervasively used tools to study the natural world, from evo-
lutionary biology [13, 51] to ecology and biodiversity [5,
77, 83]. The capability to rapidly convert vast quantities of
images from museums [64], camera traps [1, 6, 7, 59, 77],
and citizen science platforms [2, 40, 54, 58, 60, 62, 75,

*Equal contribution. †{stevens.994,su.809}@osu.edu
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79–81, 87, 88] into actionable information (e.g., species
classification, individual identification, and trait detection)
has accelerated and enabled new advances in tasks such
as species delineation [32], understanding mechanisms of
adaptation [23, 39], abundance and population structure es-
timation [3, 40, 58, 82], and biodiversity monitoring and
conservation [83].

However, applying computer vision to answer a biologi-
cal question is still a laborious task requiring substantial ma-
chine learning expertise and effort—biologists must manu-
ally label sufficient data for the specific taxa and task of
interest, and find and train a suitable model for the task.
Meanwhile, foundation models [12] such as CLIP [69] and
GPT-3 [14] are extraordinarily valuable by enabling zero-
shot or few-shot learning for a wide range of tasks. An
analogous vision foundation model for biology should be
useful for tasks spanning the entire tree of life [37, 53] in-
stead of just the taxa it was trained on. Such a model would
significantly lower the barrier to apply AI to biology.

In this work, we aim to develop such a vision foundation
model for the tree of life. To be broadly useful for real-
world biology tasks, this model should meet the following
criteria. First, it should generalize to the entire tree of
life, where possible, to ensure it supports researchers study-
ing many different clades rather than a niche. Furthermore,
it is infeasible to collect training data that covers the mil-
lions of known taxa [38, 44], so the model must generalize
to taxa not present in training data. Second, it should learn
fine-grained representations of images of organisms as bi-
ology frequently engages with organisms that are visually
similar, like closely related species within the same genus
[67] or species mimicking others’ appearances for a fitness
advantage [39]. This fine-grained granularity is crucial be-
cause the tree of life organizes living things into both broad
categories (animal, fungus, and plant) and very fine-grained
ones (see Fig. 1). Finally, due to the high cost of data col-
lection and labeling in biology, strong performance in the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19412



Plantae Tracheophyta Polpodiopsida Polypodiales Onocleaceae Onoclea hintonii

Plantae
Plantae

Tracheophyta
Tracheophyta Polpodiopsida

Polpodiopsida Polypodiales
Polypodiales

Onocleaceae
Onocleaceae

Onoclea
Onoclea

sensibilis
hintonii

Kingdom Phylum Class Order Family Genus Species

(b) Autoregressive Representations

(a) Taxonomic Labels

T1 Tn

I1 I1·T1

…

I1·Tn

……

In·Tn

…

In In·T1 …

…

…

(c) Contrastive Objective

Im
ag

e 
Fe

at
ur

es

(d) Onoclea sensibilis (e) Onoclea hintonii

Figure 1. (a) Two taxa, or taxonomic labels, for two different plants, Onoclea sensibilis (d) and Onoclea hintonii (e). These taxa are
identical except for the species. (b) The autoregressive text encoder naturally encodes the hierarchical structure of the taxonomy. See
how the Order token(s) (Polypodiales) can incorporate information from the Kingdom, Phylum and Class tokens, but nothing later in the
hierarchy. This helps align the visual representations to this same hierarchical structure (see §4.6). (c) These hierarchical representations
of taxonomic labels are fed into the standard contrastive pre-training objective and are matched with image representations (d) and (e).

low-data regime (i.e., zero-shot or few-shot) is critical.
While the goals of generalization, fine-grained classifi-

cation, and data efficiency are not new in computer vision,
existing general-domain vision models [61, 69, 95] trained
on hundreds of millions of images fall short when applied
to evolutionary biology and ecology. Specifically, exist-
ing vision models produce general fine-grained represen-
tations, useful for comparing common organisms like dogs
and wolves, but not for more fine-grained comparisons, e.g.,
Onoclea sensibilis and Onoclea hintonii (see Fig. 1).

We identify two major barriers to developing a vision
foundation model for biology. First, there is a need for
suitable pre-training datasets: existing datasets [28, 86,
88, 89] lack either scale, diversity, or fine-grained labels.
Second, there is a need to investigate suitable pre-training
strategies that leverage special properties of the biology do-
main to better achieve the three pivotal goals, e.g., the tree
of life taxonomy, which is insufficiently considered in main-
stream pre-training algorithms [48, 61, 69].

In light of these goals and challenges in achieving them,
we introduce 1) TREEOFLIFE-10M, a large-scale ML-
ready biology image dataset, and 2) BIOCLIP, a vision
foundation model for the tree of life, trained with suitable
use of taxa in TREEOFLIFE-10M. We outline the contribu-
tions, conceptual framework, and design decisions below:
TREEOFLIFE-10M: a large-scale, diverse ML-ready bi-
ology image dataset. We curate and release the largest
ML-ready dataset to-date of biology images with associ-
ated taxonomic labels, containing over 10 million images
covering 454 thousand taxa in the tree of life.2 In compar-
ison, the current largest ML-ready biology image dataset,
iNat21 [86], contains only 2.7 million images covering
10 thousand taxa. TREEOFLIFE-10M integrates existing
high-quality datasets like iNat21 and BIOSCAN-1M [28].
More importantly, it includes newly curated images from
the Encyclopedia of Life (eol.org), which supplies most
of TREEOFLIFE-10M’s data diversity. Every image in

2By ML-ready, we mean the data is standardized in a format suitable
for training ML models and is readily available for downloading.

TREEOFLIFE-10M is labeled with its taxonomic hierar-
chy to the finest level possible, as well as higher taxonomic
ranks in the tree of life (see Fig. 1 and Tab. 3 for examples of
taxonomic ranks and labels). TREEOFLIFE-10M enables
training BIOCLIP and future biology foundation models.
BIOCLIP: a vision foundation model for the tree of life.
With a large-scale labeled dataset like TREEOFLIFE-10M,
a standard, intuitive training strategy (as adopted by other
vision models like ResNet50 [33] and Swin Transformer
[48]) is to use a supervised classification objective and learn
to predict the taxonomic indices from an image. However,
this fails to recognize and leverage the rich structure of tax-
onomic labels—taxa do not exist in isolation but are inter-
connected in a comprehensive taxonomy. Consequently, a
model trained via plain supervised classification may not
generalize well to taxa unseen in training, nor could it sup-
port zero-shot classification of unseen taxa.

Instead, we propose a novel strategy combining CLIP-
style multimodal contrastive learning [69] with the rich bi-
ological taxonomy for BIOCLIP. We “flatten” the taxon-
omy from Kingdom to the distal-most taxon rank into a
string called taxonomic name, and use the CLIP contrastive
learning objective to learn to match images with their cor-
responding taxonomic names. Intuitively, this helps the
model generalize to unseen taxa—even if the model has not
seen a species, it has likely learned a reasonable represen-
tation for that species’ genus or family (see Fig. 1). BIO-
CLIP also supports zero-shot classification with taxonomic
names of unseen taxa. We further propose, and demonstrate
the effectiveness of, a mixed text type training strategy; by
mixing different text types (e.g., taxonomic vs. scientific vs.
common names) during training, we retain the generaliza-
tion from taxonomic names while being more flexibility at
test time. For example, BIOCLIP still excels even if only
common species names are offered by downstream users.
Comprehensive benchmarking. We comprehensively
evaluate BIOCLIP on 10 fine-grained image classification
datasets covering animals, plants, and fungi, including a
newly curated RARE SPECIES dataset unseen in training.
BIOCLIP achieves strong performance in both zero-shot
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and few-shot settings and substantially outperforms both
CLIP [69] and OpenCLIP [42], leading to an average abso-
lute improvement of 17% (zero-shot) and 16% (few-shot).
Intrinsic analysis further reveals that BIOCLIP has learned
a more fine-grained hierarchical representation conforming
to the tree of life, explaining its superior generalization.

2. TREEOFLIFE-10M
Recent work has shown that data quality and diversity are
critical when training CLIP models [24, 26, 57]. We cu-
rate TREEOFLIFE-10M, the most diverse large-scale pub-
lic ML-ready dataset for computer vision models in biology.

2.1. Images
The largest ML-ready biology image dataset is iNat21 [86]
with 2.7M images of 10K species. Despite this class
breadth compared to popular general-domain datasets like
ImageNet-1K [70], 10K species is limited for biology. The
International Union for Conservation of Nature (IUCN) re-
ported over 2M total described species in 2022, with over
10K bird species and over 10K reptile species alone [44].
iNat21’s species diversity limits its potential for training a
foundation model for the entire tree of life.

Motivated to find high-quality biology images with a fo-
cus on species diversity, we turn to the Encyclopedia of Life
project (EOL; eol.org). EOL collaborates with a variety
of institutions to gather and label millions of images. We
download 6.6M images from EOL and expand our dataset
to cover an additional 440K taxa.

Species are not evenly distributed among the differ-
ent subtrees in the tree of life; insects (of the class In-
secta with 1M+ species), birds (of the class Aves with
10K+ species) and reptiles (of the class Reptilia with 10K+
species) are examples of highly diverse subtrees with many
more species. To help a foundation model learn extremely
fine-grained visual representations for insects, we also in-
corporate BIOSCAN-1M [28], a recent dataset of 1M lab
images of insects, covering 494 different families.3 Fur-
thermore, BIOSCAN-1M contains lab images, rather than in
situ images like iNat21, diversifying the image distribution.

2.2. Metadata & Aggregation
The TREEOFLIFE-10M dataset integrates iNat21 (training
split), our curated EOL dataset, and BIOSCAN-1M by ag-
gregating the images and canonicalizing the labels. This
is a highly non-trivial task because taxonomic hierarchies
are notoriously noisy and rarely consistent between sources
[4, 31, 36, 52, 63], likely contributing to the prior lack of

3We note that BIOSCAN-1M’s label granularity may still be limited for
insects. 98.6% of BIOSCAN-1M’s images are labeled to the family level
but only 22.5% and 7.5% of the images have genus or species indicated,
respectively. Lack of label granularity is an inherent challenge.
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Figure 2. Treemap of the 108 phyla in TREEOFLIFE-10M. Dif-
ferent colors are different phyla; nested boxes represent classes,
orders, and families. Box size, not number of inner boxes, repre-
sents relative number of samples.

image datasets large enough to train a foundation-scale vi-
sion model for the entire tree of life. We carefully unify and
backfill taxonomic hierarchies from EOL, the Integrated
Taxonomic Information System (ITIS) [43], and iNaturalist
with special consideration for the existence of homonyms
(genus-species labels shared among higher-order taxa). For
more information on this process, the challenges, our solu-
tions, and remaining issues, see Appendix C.

2.3. Release & Statistics
Tab. 1 presents dataset statistics: TREEOFLIFE-10M has
over 10M images across more than 450K unique taxonomic
names. Fig. 2 shows the distribution of images by phyla and
the respective lower-rank taxa (order through family).

Our curated training and test datasets (TREEOFLIFE-
10M and RARE SPECIES, described in §4.2) are avail-
able on Hugging Face (with DOIs) under a public domain
waiver, to the extent primary source licenses allow. This
includes CSVs with image metadata and links to the pri-
mary sources, accompanied by a GitHub repository with the
scripts to generate the datasets.4

3. Modeling
BIOCLIP is initialized from OpenAI’s public CLIP check-
point and continually pre-trained on TREEOFLIFE-10M
with CLIP’s multimodal contrastive learning objective.

3.1. Why CLIP?
Compared with general domain computer vision tasks, one
of the most salient differences for the biology domain is
its rich label space. Not only are the taxon labels large in
quantity (there are 2M+ recorded species as of 2022 [44]),
but they are also connected with each other in a hierarchical
taxonomy. This is a challenge for training a good founda-
tion model that can achieve satisfactory coverage and gen-
eralization. Despite this, the intricate structure in the label

4We encourage future work to cite iNat21 [86], BIOSCAN-1M [28] and
to appropriately attribute images from EOL based on their licenses if citing
TREEOFLIFE-10M.
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Dataset Description Images Unique Classes

iNat21 Citizen scientist labeled image dataset from iNaturalist for fine-grained classification. 2.7M 10,000

BIOSCAN-1M Expert labeled image dataset of insects for classification. 1.1M 7,831

EOL A new dataset with citizen scientist images sourced from Encyclopedia of Life and
taxonomic labels standardized by us. 6.6M 448,910

TREEOFLIFE-10M Largest-to-date ML-ready dataset of biology images with taxonomic labels. 10.4M 454,103

Table 1. Training data sources used in TREEOFLIFE-10M. We integrate and canonicalize taxonomic labels across the sources (§2.2).

Name Description Examples Classes Labels

A
ni

m
al

s Birds 525 Scraped dataset of bird images from web search. [68] 89,885 525 Taxonomic
Plankton Expert-labeled in situ images of plankton [35]. 4,080 102 Mixed
Insects Expert and volunteer-labeled in-the-wild citizen science images of insects [74]. 4,680 117 Scientific

Insects 2 Mixed common and scientific name classification for insect pests [91]. 4,080 102 Mixed

Pl
an

ts
&

Fu
ng

i PlantNet Citizen science species-labeled plant images, some drawings [27]. 1,000 25 Scientific
Fungi Expert-labeled images of Danish fungi [66]. 1,000 25 Scientific

PlantVillage Museum-style leaf specimens labeled with common names [25]. 1,520 38 Common
Medicinal Leaf Species classification of leaves from mature, healthy medicinal plants [71]. 1,040 26 Scientific

PlantDoc 17 diseases for 13 plant species [76]. 1,080 27 Common

RARE SPECIES
Subset of species in the IUCN Red List categories: Near Threatened through
Extinct in the Wild (iucnredlist.org). 12,000 400 Taxonomic

Table 2. Datasets used for evaluation. All tasks are classification evaluated with Top-1 accuracy.

space, accumulated through centuries of biology research,
provides very rich signal for learning better generalization.
Intuitively, if the label space’s structure is successfully en-
coded in a foundation model, even if the model has not seen
a certain species, it will likely have learned a good repre-
sentation for that species’ corresponding genus or family.
Such a hierarchical representation serves as a strong prior
to enable few-shot or even zero-shot learning of new taxa.

Many vision foundation models, such as ResNet [33]
and Swin Transformer [48], adopt a supervised classifica-
tion objective and directly learn the mapping from input im-
ages to class indices. As a result, each class label is treated
as a distinct symbol, and their relationships are neglected.
A key realization of our work is that the multimodal con-
trastive learning objective used in CLIP can be repurposed
for leveraging the hierarchical structure of the label space.
This is not an obvious choice; after all, TREEOFLIFE-10M
is largely labeled with class labels and not with free-form
text like image captions. The autoregressive text encoder
naturally embeds the taxonomic hierarchy into a dense la-
bel space by conditioning later taxonomic rank representa-
tions on higher ranks (Fig. 1). While hierarchical classi-
fication [9, 11, 96] can also leverage taxonomy, we empiri-
cally show that CLIP-style contrastive learning significantly
improves generalization (§4.4). We note that repurposing
CLIP’s multimodal contrastive learning objective for learn-
ing hierarchical representations conforming to a taxonomy
is a novel and non-trivial technical contribution.

CLIP trains two uni-modal embedding models, a vision
encoder and a text encoder, to (1) maximize feature sim-

Text Type Example

Common black-billed magpie
Scientific Pica hudsonia

Taxonomic Animalia Chordata Aves Passeriformes
Corvidae Pica hudsonia

Scientific + Common Pica hudsonia with common name
black-billed magpie

Taxonomic + Common
Animalia Chordata Aves Passeriformes
Corvidae Pica hudsonia with common
name black-billed magpie

Table 3. Text types considered in the training of BIOCLIP.

ilarity between positive (image, text) pairs and (2) mini-
mize feature similarity between negative (image, text) pairs,
where positive pairs are from the training data and negative
pairs are all other possible (image, text) pairings in a batch.
After training, CLIP’s encoder models embed individual in-
stances of their respective modalities into a shared feature
space. Next, we discuss formatting the text input to CLIP
to incorporate the taxonomic structure.

3.2. Text Types
An advantage of CLIP is that the text encoder accepts free-
form text. In biology, unlike other classification tasks, class
names are diversely formatted. We consider the following:
Taxonomic name. A standard seven-level biology taxon-
omy from higher to lower level is kingdom, phylum, class,
order, family, genus and species. For each species, we “flat-
ten” the taxonomy by concatenating all labels from root to
leaf into a single string, which we call the taxonomic name.
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Scientific name. Scientific names are composed of genus
and species (e.g., Pica hudsonia).
Common name. Taxonomy categories are usually Latin,
which is not often seen in generalist image-text pre-training
datasets. Instead, the common name, such as “black-billed
magpie,” is more widespread. Note that common names
may not have a 1-to-1 mapping to taxa: A single species
may have multiple common names, or the same common
name may refer to multiple species.

For certain downstream use cases of BIOCLIP, it might
be the case that only one type of label, e.g., scientific names,
is available. To improve the flexibility at inference time, we
propose a mixed text type training strategy: at each training
step, we pair each input image with a text randomly sam-
pled from all of its available text types (shown in Tab. 3).
We empirically show that this simple strategy retains the
generalization benefits of taxonomic names while provid-
ing more flexibility in using other names at inference time
(§4.3). The final text input to CLIP is the name in the stan-
dard CLIP template, e.g., “a photo of Pica hudsonia”.

4. Experiments
We train BIOCLIP on TREEOFLIFE-10M, compare BIO-
CLIP to general vision models and investigate how our
modeling choices affect BIOCLIP’s performance.

4.1. Training and Evaluation Details

To train BIOCLIP, we initialize from OpenAI’s CLIP
weights [69] with a ViT-B/16 vision transformer [22] image
encoder and a 77-token causal autoregressive transformer
text encoder. We continue pre-training on TREEOFLIFE-
10M for 100 epochs with a cosine learning rate schedule
[49]. We train on 8 NVIDIA A100-80GB GPUs over 2
nodes with a global batch size of 32,768. We also train
a baseline model on only the iNat21 dataset and multiple
ablation models on 1M examples randomly sampled from
TREEOFLIFE-10M (Secs. 4.3 and 4.4), following the same
procedure for BIOCLIP except with a smaller global batch
size of 16,384 on 4 NVIDIA A100 GPUs on 1 node. All
hyperparameters and training details are in Appendix D and
training and evaluation code is publicly available.

We evaluate on 10 different classification tasks: the 8
biologically-relevant tasks from Meta-Album [84], Birds
525 [68] and our new RARE SPECIES task (described in
§4.2). Meta-Album is a dataset collection for meta-learning,
encompassing various subjects. Specifically, we use the
Plankton, Insects, Insects 2, PlantNet, Fungi, PlantVillage,
Medicinal Leaf, and PlantDoc datasets. Our classification
tasks cover all four multi-celled kingdoms in the tree of
life (animals, plants, fungi, and protists) and have a di-
verse image distribution (photographs, microscope images,
drawings, and museum specimens). Tab. 2 summarizes the

datasets; they comprise a variety of label types from full
taxonomic names to only scientific or common name.

For zero-shot learning, we follow the same procedure as
CLIP. For few-shot learning, we follow SimpleShot [90]
and use a nearest-centroid classifier. For k-shot learning,
we first randomly sample k examples for each class and ob-
tain the image embedding from the visual encoder of the
pre-trained models. We then compute the average feature
vector of the k embeddings as the centroid for each class.
All the examples left in the dataset are used for testing. Af-
ter applying mean subtraction and L2-normalization to each
centroid and test feature vector, we choose the class with
the nearest centroid to the test vector as the prediction. We
repeat each few-shot experiment 5 times with different ran-
dom seeds and report the mean accuracy in Tab. 4. Results
with standard deviations are reported in Appendix E.

We compare BIOCLIP with the original OpenAI CLIP
[69] and OpenCLIP [42] trained on LAION-400M [73]. In-
tuitively, common names of organisms are most pervasive in
the training data of CLIP and OpenCLIP and these models
work best with common names. This is also confirmed in
our preliminary tests. Therefore, we use common names as
class labels for CLIP and OpenCLIP by default unless un-
available for a dataset. BIOCLIP can leverage taxonomic
names, so we use taxonomic+common names by default.
However, as noted in Tab. 2, the test datasets come in a
variety of labels. Whenever the preferred label type is not
available, we use labels that come with the dataset. We also
compare to an ImageNet-21K [21] pre-trained model [78]
and DINO [15] for few-shot classification.

4.2. Can BIOCLIP Generalize to Unseen Taxa?
Taxonomic names are added, removed, and changed as
biologists discover and classify new and existing species.
BIOCLIP should generalize to unseen taxonomic names to
avoid re-training for every new species. To empirically an-
swer whether BIOCLIP generalizes well to unseen taxa, we
introduce a new evaluation task that is both biologically and
empirically motivated: RARE SPECIES.

Classifying “rare” species is an important and challeng-
ing computer vision application in biology, particularly in
the context of global conservation efforts [83]. To the best
of our knowledge, there is no diverse, publicly available
rare species classification dataset. Recently published work
[47, 56] lack species diversity with only a dozen classes.
We aim to fill this gap, collecting all ⇡ 25K species on the
IUCN Red List (iucnredlist.org) classified5 as Near Threat-
ened, Vulnerable, Endangered, Critically Endangered, or
Extinct in the Wild. We select 400 such species represented
by at least 30 images in our EOL dataset, then remove

5IUCN has classified 150,388 species and generally updates their list
twice per year (IUCN Update Schedule). The classifications used for this
dataset are current as of July 13, 2023.
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Mean (�)

Random Guessing 0.2 1.2 1.0 1.0 4.0 4.0 2.6 4.0 3.7 0.3 2.2

Zero-Shot Classification

CLIP 49.9 3.2 9.1 9.8 58.5 10.2 5.4 15.9 26.1 31.8 21.9 –
OpenCLIP 54.7 2.2 6.5 9.6 50.2 5.7 8.0 12.4 25.8 29.8 20.4 �1.5
BIOCLIP 72.1 6.1 34.8 20.4 91.4 40.7 24.4 38.6 28.4 38.0 39.4 +17.5

– iNat21 Only 56.1 2.6 30.7 11.5 88.2 43.0 18.4 25.6 20.5 21.3 31.7 +9.8

One-Shot Classification

CLIP 43.7 25.1 21.6 13.7 42.1 17.2 49.7 70.1 24.8 28.5 33.6 –
OpenCLIP 53.7 32.3 23.2 14.3 45.1 18.4 53.6 71.2 26.8 29.2 36.7 +3.1
Supervised-IN21K 60.2 22.9 14.7 14.4 46.7 16.9 62.3 58.6 27.7 28.0 35.2 +1.6
DINO 40.5 37.0 23.5 16.4 30.7 20.0 60.0 79.2 23.7 31.0 36.2 +2.6
BIOCLIP 71.8 30.6 57.4 20.4 64.5 40.3 58.8 84.3 30.7 44.9 50.3 +16.7

– iNat21 Only 74.8 29.6 53.9 19.7 67.4 35.5 55.2 75.1 27.8 36.9 47.5 +13.9

Five-Shot Classification

CLIP 73.5 41.2 39.9 24.6 65.2 27.9 71.8 89.7 35.2 46.0 51.5 –
OpenCLIP 81.9 52.5 42.6 25.0 68.0 30.6 77.8 91.3 42.0 47.4 55.9 +4.4
Supervised-IN21K 83.9 39.2 32.0 25.4 70.9 30.9 82.4 82.3 44.7 47.3 53.9 +2.4
DINO 70.8 56.9 46.3 28.6 50.3 34.1 82.1 94.9 40.3 50.1 55.4 +3.9
BIOCLIP 90.0 49.3 77.8 33.6 85.6 62.3 80.9 95.9 47.5 65.7 68.8 +17.3

– iNat21 Only 90.1 48.2 73.7 32.1 84.7 55.6 77.2 93.5 41.0 55.6 65.1 +13.6

Table 4. Zero-, one- and five-shot classification top-1 accuracy for different models. Bold indicates best accuracy. All models use the
same ViT-B/16 architecture. “iNat21 Only” follows the same procedure as BIOCLIP but uses iNat21 instead of TREEOFLIFE-10M. �
denotes the difference in mean accuracy with CLIP. Supervised-IN21K [78] and DINO [15] are vision-only models and cannot do zero-shot
classification.

Dataset Train#Test! Com Sci Tax Sci+Com Tax+Com

TOL-1M

Com 24.9 9.5 10.8 22.3 21.0
Sci 11.0 22.3 4.5 21.5 8.0
Tax 11.8 10.1 26.6 16.0 24.8
Sci+Com 24.5 12.9 12.6 28.0 24.9
Tax+Com 20.5 8.0 19.7 24.0 30.4
Mixture 26.1 24.9 26.7 29.5 30.9

iNat21-2.7M Mixture 20.4 14.7 15.6 20.9 21.3
TOL-10M Mixture 31.6 30.1 34.1 37.0 38.0

Table 5. Zero-shot accuracy on species not seen during training
(RARE SPECIES task). Different rows and columns indicate dif-
ferent text types during training and test time, respectively. Blue
indicates best accuracy and Orange indicates second-best. Using
the taxonomic name over the scientific name always improves ac-
curacy (22.3!26.6 and 28.0!30.4). The final rows use the full
iNat21 dataset and TREEOFLIFE-10M for reference.

them from TREEOFLIFE-10M, creating an unseen RARE
SPECIES test set with 30 images per species. This dataset
demonstrates (1) BIOCLIP’s out-of-distribution generaliza-
tion to unseen taxa, (2) BIOCLIP’s potential applications,
and (3) provides a crucial dataset for the community to ad-
dress the ongoing biodiversity crisis.

Results. Tab. 4 shows that BIOCLIP substantially outper-
forms both baseline CLIP models, as well as the iNat21-
trained CLIP model, at zero-shot classification, especially
on unseen taxa (see the “Rare Species” column). We at-
tribute BIOCLIP’s strong zero-shot performance on this
broad and diverse set of tasks to the broad and diverse
classes in TREEOFLIFE-10M. We explore how data diver-
sity leads to broadly useful image representations in §4.3.

4.3. How Do Text Types Affect Generalization?
We investigate how different text types affect zero-shot
generalization by training BIOCLIP on a 10% subset
of TREEOFLIFE-10M (10% due to computational con-
straints). We use our Rare Species dataset because the test
classes have every text type, and all species are excluded
from training, making it ideal for testing generalization to
unseen taxa. Prior works find that the diversity of captions
makes stronger vision models [57] and randomly use one of
five different captions for each image during training rather
than a single fixed caption [72]. Similarly, we use a mixed
text type strategy (§3.2). How does that affect performance?
Results. The zero-shot ablation results are in Tab. 5;
there are several salient observations. First, using taxo-
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Objective Mean 1-Shot Mean 5-shot

Cross-entropy 16.5 26.2
Hier. cross-entropy 19.3 30.5
CLIP 44.7 63.8

Table 6. One- and five-shot classification top-1 accuracy for dif-
ferent pre-training objectives on TREEOFLIFE-1M. Results are
macro-averaged over all the test sets in Tab. 4.

nomic+common names yields the strongest performance,
showing the importance of incorporating the taxonomic
structure for generalization. Second, when only using a sin-
gle text type for training, performance degrades substan-
tially when a different text type is used at test time. Us-
ing mixed text types for training yields consistently strong
performance across all text types during testing. These re-
sults indicate that mixed text type pre-training largely re-
tains the generalization benefits of using taxonomic names
while also providing flexibility of different text types for in-
ference, an important property for a foundation model that
may be used for diverse downstream tasks. Finally, using
1M examples from TREEOFLIFE-10M outperforms using
2.7M examples from iNat21, further confirming the impor-
tance of the added data diversity from TREEOFLIFE-10M.

4.4. Is the CLIP Objective Necessary?
Using the CLIP objective to pre-train on a labeled image
dataset is an unintuitive decision (Goyal et al. [29] fine-
tune using the CLIP objective, but do not pretrain). We
justify our choice by training two ViT-B/16 models on
TREEOFLIFE-1M using a cross-entropy classification loss
and a multitask hierarchical variant, then compare them
against the CLIP objective under the few-shot setting. The
multitask hierarchical training objective is to predict the la-
bels for kingdom, phylum, etc., down to species, using cross
entropy for each level of the taxonomy, then summing those
losses [11]. Pseudo-code is provided in Listing 1.
Results. We evaluate each model on the same set of 10
tasks but only in the one-shot and five-shot settings because
non-CLIP models cannot do zero-shot classification. We re-
port mean accuracy in Tab. 6. The hierarchical classification
model outperforms simple classification and is comparable
to the CLIP baseline (see Tab. 4). However, the CLIP ob-
jective massively outperforms both baselines and strongly
justifies our repurposing of the CLIP objective.

4.5. Can BIOCLIP Classify More Than Species?
BIOCLIP is trained on a (contrastive) species-classification
objective, which might limit its use beyond species clas-
sification. We consider plant diagnosis with the PlantVil-
lage and PlantDoc datasets, which require classifying both
species and disease (if any). Large-scale data labeling is
expensive, but biologists always label several instances for
field guides or museum collections. Few-shot classification

is thus an ideal setting for this sort of task transfer.
Results. BIOCLIP outperforms baselines at classifying
plant diseases based on visual symptoms, in both zero-
shot and few-shot settings (see PlantVillage and PlantDoc
in Tab. 4). While Radford et al. [69] find that CLIP one-
shot and two-shot classification is often worse than zero-
shot (because few-shot settings cannot use the semantic in-
formation in the class name), BIOCLIP has learned useful
visual representations that are useful even with only one
labeled example: BIOCLIP’s mean one-shot accuracy is
9.1% higher than zero-shot accuracy.

4.6. Does BIOCLIP Learn the Hierarchy?
BIOCLIP demonstrates strong performance in a low-data
regime on our extrinsic evaluation, but why? We further
conduct an intrinsic evaluation and visualize BIOCLIP’s
learned image representations to shed light on this question
(Fig. 3). We embed image representations from iNat21’s
validation set (unseen during training) using t-SNE [85] and
color the points by the image’s taxonomic label. For each
plot, we run t-SNE independently on the subset of examples
under the labeled taxonomical rank. Each plot visualizes
one taxonomic hierarchy rank and the top six categories of
the next rank, e.g., the top left plot visualizes the six most
common phyla in the Animalia kingdom. At higher ranks
like kingdom (omitted for space) and phylum, both CLIP
and BIOCLIP have good separation, but BIOCLIP’s repre-
sentations are more fine-grained and contain a richer clus-
tering structure. At lower ranks, BIOCLIP produces evi-
dently more separable features, while CLIP’s features are
cluttered and lack a clear structure. Appendix F has more
qualitative results and visuals.

5. Related Work
Multimodal foundation model training data. CLIP [69]
trained state-of-the-art vision models from noisy, web-scale
(100M+) image-text datasets using a contrastive objective
that is optimized for image retrieval. ALIGN [45] and BA-
SIC [65] further scaled the number of training examples
from 400M to 6.6B, improving vision representation qual-
ity. However, further work [24, 26, 57, 93, 94] all find
that dataset diversity and better alignment between the im-
age and caption semantics are more important than dataset
size and lead to stronger performance on downstream tasks.
TREEOFLIFE-10M emphasizes the importance of diver-
sity, adding over 440K classes to iNat21’s 10K and leading
to stronger zero-shot performance.
Domain-specific CLIPs. Domain-specific training often
beats general training [18, 30], but subject-matter experts
are often too expensive to hire to label large-scael domain-
specific datasets. Image-text training is thus particularly po-
tent because models can learn from noisy image-text pairs.
Ikezogwo et al. [41] and Lu et al. [50] gathered 1M+ image-
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Figure 3. T-SNE visualization of image features, colored by taxonomic labels. BIOCLIP (B) is visualized in the first and third row and
OpenAI’s CLIP (O) is visualized in the second and fourth rows. BIOCLIP’s features better preserve the hierarchical structure: while both
BIOCLIP and CLIP cleanly separate the phyla in the Animalia Kingdom (top left), only BIOCLIP successfully separates the orders in the
Insecta Class (top right) and the families in the Lepidoptera Order (bottom left).

text pairs for computational pathology. We gather 10⇥ the
images, emphasizing class diversity.

Hierarchy in computer vision. Hierarchy in computer vi-
sion is well-studied, in part because ImageNet [70] classes
are from the hierarchical WordNet [55]. Bilal et al.
[10] study model predictions on ImageNet and find that
model confusion patterns follow the hierarchical class struc-
ture. They incorporate hierarchy into AlexNet’s architec-
ture [46] and improve ImageNet top-1 error by 8% abso-
lute. Bertinetto et al. [9] measure image classifiers’ mis-
take severity and propose alternative objectives that incor-
porate hierarchy, reducing mistake severity at the expense of
worsening top-1 accuracy. Zhang et al. [96] propose a con-
trastive objective where the hierarchical distance between
labels corresponds to the desired distance in the embed-
ding space, and outperform cross-entropy on ImageNet and
iNat17 [88]. We apply hierarchical classification to 454K
unique classes through a repurposed CLIP objective, while
prior work applied hierarchies to smaller label spaces.

Computer vision for biology. Fine-grained classification
is a classic challenge in computer vision, and biological
images are often used to benchmark models. Berg et al.
[8], Piosenka [68], Wah et al. [89] all use bird species clas-
sification to evaluate fine-grained classification ability. Bi-
ology tasks are used for contrastive learning frameworks
[20, 92], weakly supervised object detection [19] and semi-
supervised learning methods [34].

6. Conclusion
We introduce TREEOFLIFE-10M and BIOCLIP, a large-
scale diverse biology image dataset and a foundation model
for the tree of life, respectively. Through extensive evalua-
tion, we show that BIOCLIP is a strong fine-grained clas-
sifier for biology in both zero- and few-shot settings. We
corroborate our hypothesis that using the entire taxonomic
name leads to stronger generalization than other caption
types through an ablation on unseen species and by visu-
alizing BIOCLIP’s representations, finding that BIOCLIP-
embedded images better match the taxonomic hierarchy.

Although the CLIP objective efficiently learns visual
representations over 450K taxa, BIOCLIP is fundamentally
trained to do classification. Future work will further scale
up the data, e.g., incorporating more than 100M research-
grade images from iNaturalist, and collect richer textual de-
scriptions of species’ appearances such that BIOCLIP can
extract fine-grained trait-level representations.
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Damoulas, André A. Dhondt, Tom Dietterich, Andrew
Farnsworth, Daniel Fink, John W. Fitzpatrick, Thomas Fred-
ericks, Jeff Gerbracht, Carla Gomes, Wesley M. Hochachka,
Marshall J. Iliff, Carl Lagoze, Frank A. La Sorte, Matthew
Merrifield, Will Morris, Tina B. Phillips, Mark Reynolds,
Amanda D. Rodewald, Kenneth V. Rosenberg, Nancy M.
Trautmann, Andrea Wiggins, David W. Winkler, Weng-Keen
Wong, Christopher L. Wood, Jun Yu, and Steve Kelling. The
eBird enterprise: An integrated approach to development and
application of citizen science. Biological Conservation, 169:
31–40, 2014.

[80] Brian L Sullivan, Jocelyn L Aycrigg, Jessie H Barry, Rick E
Bonney, Nicholas Bruns, Caren B Cooper, Theo Damoulas,
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