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Abstract

3D reconstruction of dynamic scenes is a long-standing
problem in computer graphics and increasingly difficult the
less information is available. Shape-from-Template (SfT)
methods aim to reconstruct a template-based geometry from
RGB images or video sequences, often leveraging just a
single monocular camera without depth information, such
as regular smartphone recordings. Unfortunately, exist-
ing reconstruction methods are either unphysical and noisy
or slow in optimization. To solve this problem, we pro-
pose a novel SfT reconstruction algorithm for cloth using
a pre-trained neural surrogate model that is fast to eval-
uate, stable, and produces smooth reconstructions due to
a regularizing physics simulation. Differentiable rendering
of the simulated mesh enables pixel-wise comparisons be-
tween the reconstruction and a target video sequence that
can be used for a gradient-based optimization procedure
to extract not only shape information but also physical pa-
rameters such as stretching, shearing, or bending stiffness
of the cloth. This allows to retain a precise, stable, and
smooth reconstructed geometry while reducing the runtime
by a factor of 400–500 compared to ϕ-SfT, a state-of-the-art
physics-based SfT approach.

1. Introduction

Shape-from-template (SfT) methods are a practical solution
to many reconstruction tasks without the need for expensive
hardware setups for capturing scenes. It is possible to re-
construct dynamic geometry from image-based sources like
RGB video sequences where neither depth information nor
multiple perspectives are given. Nonetheless, some kind of
template is provided that represents the object’s state at the
beginning of the optimization. This strongly constrains the
object’s size and hence its distance to the camera. How-
ever, as each point of the underlying mesh is able to move,
there are several hundred or thousand degrees of freedom in
moving the object and changing its appearance.
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Figure 1. Behavior of stretchable objects like cloth when two an-
chor points are pulled apart from each other. Neither distances nor
angles must remain constant under these deformations.

Most current techniques rely on deformation models to
limit the degrees of freedom to e.g. isometric or conformal
deformations [2]. In reality, this behavior is only partially
fulfilled, as stretchable objects like cloth do not conserve
distances or angles. This is easy to see when we look at the
sketch in Figure 1 where two points are pulled away from
each other, causing a piece of cloth to stretch and shear over
the affected area. Such effects are always happening due to
anchor points that control the overall acceleration caused by
gravity, wind, or other forces. Therefore, it is more realistic
to model deformations by performing a physical simulation
of the dynamics [20]. Moreover, a stable simulation guar-
antees a smooth and high-quality reconstruction.

Our approach adopts the general scheme of using a dif-
ferentiable physics simulation to restrict the object’s move-
ment and a differentiable renderer which together allow for
a pixel-wise comparison to the target and corresponding
gradient-based optimization of input parameters [20]. In
contrast to previous methods, we replace the classical cloth
simulation [26, 29] with a physics-based neural network.
Furthermore, we use nvdiffrast [23] as a fast and differen-
tiable rasterizer together with optimizable uv-coordinates
for texture mapping. Our goal with these modifications is
to reduce the computation time of the optimization process
drastically from many hours to only a few minutes per scene
while retaining comparable accuracy for the reconstructed
mesh. The source code will be published upon acceptance.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. Related Work
Geometry reconstruction The Reconstruction of de-
formable objects is a difficult task and there are several
categories of algorithms that create 3D objects based on
the amount of information given and which assumptions
are made. Non-rigid structure from motion (NRSfM) al-
gorithms reconstruct deforming geometry like human faces
[5, 32], cloth, and similar thin objects [12, 41] or arbi-
trary deforming objects [42, 51] captured by a static cam-
era. They often incorporate deformation models for isome-
try, conformality, and other properties or let them be learned
by neural networks. SfT additionally makes use of a tem-
plate (e.g. initial geometry) and/or texture [2, 38]. One
approach is the analytic solution of isometric or conformal
SfT [2, 6] by solving the corresponding PDEs. Other tech-
niques involve neural networks to learn the shape deforma-
tions and reconstruct the geometry [11, 34]. The task of
reconstructing geometry might also come with further chal-
lenges like occlusions or sparse textures [30]. For a more
detailed overview in non-rigid 3D reconstruction, we refer
to a recent state-of-the-art report [45].

However, these methods usually lack in physical regular-
ization and realism, as they only apply a deformation model
that does not cover the full dynamics. To bypass this prob-
lem, a physical simulation can be used to capture deforma-
tions and realistic movement at the same time [20]. Simi-
larly, our approach also makes use of a physical simulation
but employs a fast physics-based neural network instead of
a computationally more expensive classical simulation.
Physics simulation Physical simulations are a valuable
tool for a wide variety of tasks and several simulators are
available for physical tasks in general [8, 17, 27] and cloth
in particular [25, 26, 29, 35]. The idea of constraining the
motion to a differentiable high-quality physical simulation
that is specified by its physical parameters has already been
successfully established in different tasks like the recon-
struction of humans, animals and objects [28, 46, 48, 49, 52]
and estimating cloth parameters [13, 20, 44]. The downside
of these regularizing simulations is their time-consuming
complexity which slows down corresponding applications.

A different approach towards differentiable simulations
are neural networks, as they are easy to differentiate by
construction. For example, neural networks were already
successful in tasks like simulating movement trajectories
or estimating physical parameters [15, 16]. Extensive re-
search is performed for simulating clothes on human bodies
[3, 4, 14, 39, 40] or loose fabrics [21, 24, 31].

To this end, often, supervised learning techniques are
employed for which a training dataset is created using clas-
sical simulations in order to know the underlying ground
truth parameters. This, again, includes the simulation of di-
verse physical systems [10, 33] and estimation of cloth pa-
rameters [9, 19, 36, 50]. Unfortunately, generating a large

and high-quality training dataset with traditional physical
solvers is computationally expensive [40].

Thus, recent physics-based approaches allow neural net-
works to learn cloth dynamics solely on the underlying
equations of motion without the need for ground truth data
[3, 14, 40]. However, to the best of our knowledge, such un-
supervised neural surrogate models have not yet been em-
ployed to tackle Shape-from-Template tasks.

3. Method
Our method consists of three differentiable parts as shown
in Figure 2 in order to infer the shape and physical param-
eters of cloth in a monocular video sequence. First, physi-
cal parameters (Y, S,B), external forces F⃗ext as well as an
initial template mesh x⃗0 = x⃗(t0) are fed into a pre-trained
physics-based neural cloth model in order to unroll the cloth
simulation in time and compute the subsequent cloth shapes
x⃗1, x⃗2, ..., x⃗n. Second, the updated cloth shapes are used
by a differentiable renderer to create a sequence of textured
images from a given camera position using an optimized
uv-map. The last step compares the rendered images with
target frames of a video sequence and backpropagates gra-
dients of a corresponding image loss to update the physical
cloth parameters, external forces, and the uv-map.

3.1. Neural Cloth Model

We use a neural surrogate model to obtain fast and differen-
tiable simulations of cloth dynamics. In the following sec-
tion, we present the underlying physical model, the numer-
ical scheme that is accelerated by our neural network, the
networks architecture and a physics-based training strategy.

3.1.1 Physical Cloth Model

Equations of Motion The simulated cloth is represented
by a mesh with vertex positions x⃗(t), velocities v⃗(t), and ac-
celerations a⃗(t). The dynamics are described by Newton’s
second law of motion

Ma⃗ = M
∂2x⃗

∂t2
= F⃗ (x⃗, v⃗) (1)

which relates the vertex acceleration a⃗ and mass M to the
force F⃗ (x⃗, v⃗) acting on it. The force is a superposition of
internal cloth forces F⃗int (e.g. stretching and bending), as
well as external contributions F⃗ext from gravity and wind.

3.1.2 Implicit Numerical Integration Scheme

Our neural cloth model accelerates a standard numerical in-
tegration scheme [1] to solve the equations of motion. To
this end, the simulation is modeled in discrete time steps
of constant length ∆t. Hence, we only compute positions,
velocities, accelerations, and forces at discrete times, e.g.
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Figure 2. Overview of the optimization loop. A given initial mesh is physically simulated for several time steps by a neural network
using physical parameters for stretching Y , shearing S, bending B and external forces F⃗ext. The resulting meshes are converted into RGB
images and masks by a differentiable renderer together with the known camera intrinsics, texture and an optimizable uv-map. In the end,
the renderings are compared to the target video sequence by computing pixel-wise loss functions. Gradients of these losses with respect to
the optimizable parameters lead to a successively refined physical simulation and reconstruction.

x⃗n = x⃗(n∆t). In order to get a stable update scheme, we
separate Equation (1) into two first-order differential equa-
tions for v⃗ and x⃗ and apply the backward Euler method [1]:

v⃗n+1 = v⃗n +∆tM−1F⃗n+1 = v⃗n +∆t⃗an+1 (2)

x⃗n+1 = x⃗n +∆tv⃗n+1 = x⃗n +∆tv⃗n +∆t2a⃗n+1 (3)

Unfortunately, solving this implicit scheme numerically
is computationally expensive - even more so, if we want
to compute gradients with respect to the solution. Semi-
implicit or explicit integration schemes are known for insta-
bilities when simulating the stiff equations of cloth [1] and
lose their benefit in runtime when used with tiny time steps.
Thus, we decided to train a neural network that learns how
to solve for the acceleration a⃗n+1 based on the current po-
sitions, velocities, forces, and cloth parameters. This way,
we obtain fast simulations that are naturally differentiable
via backpropagation through time.

3.1.3 Network Architecture

The neural cloth model (see Figure 3) is based on a convo-
lutional neural network architecture that maps a rectangular
grid of vertex positions x⃗n and velocities v⃗n together with
cloth parameters Y, S,B and external forces F⃗ ext

n to accel-
erations a⃗n+1 in order to update v⃗n+1 and x⃗n+1 according
to Equations (2) and (3). The CNN block makes use of a U-
Net [37] implemented by [18]. We use a gating mechanism
that allows the CNN to directly pass F⃗ ext

n to a⃗n+1 which is
useful if the cloth is in free fall. If the cloth hangs in a static
equilibrium state, a⃗n+1 = 0 and both gates can be closed.

The rectangular grid representation of the cloth was cho-
sen since this structure is similar to woven fabric when sim-
ulating cloth at yarn-level [7, 13]. Furthermore, grid com-

putations can be implemented more efficiently on GPUs
in comparison to arbitrary graph representations, since no
sparse adjacency matrix multiplications are required.
Normalizations In order to resolve ambiguities, we in-
troduce special units of measurement in which our network
operates. As the motion of vertices is only affected by
the ratio of force and mass, a⃗ = M−1F⃗ , we fix the mass
of interior vertices to be the identity M = I (border and
corner vertices are lighter by a factor of 2 and 4 respec-
tively). Moreover, we scale space and time such that edge
rest lengths Lij

0 = 1 (see Equation (7)) and the simulation
time steps ∆t = 1.

3.1.4 Physics-based Training Loss Lcloth

The network learns the dynamics of cloth in a self-
supervised manner by minimizing a physics-based loss
function Lcloth similar to [3, 40]. This way, we avoid the
need of ground truth data from computationally expensive
simulators or other sources. The loss function

Lcloth = Eint + Lext + Linert (4)

consists of an internal energy term Eint as well as loss terms
that reward accelerations in the direction of external forces
Lext and penalize sudden changes in momentum Linert.

Internal Energy Eint and Forces F⃗int

Our cloth model considers a combination

Eint = EY + ES + EB (5)

of stretching EY , shearing ES , and bending EB compo-
nents for the total internal energy. However, different ma-
terial models can easily be installed by using appropriate
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Figure 3. Architecture of the neural cloth model. Detailed expla-
nations are provided in Section 3.1.3.

energy functions. The negative gradient of this internal en-
ergy term Eint with respect to the vertex positions x⃗ results
in forces F⃗int:

F⃗int = −∂Eint

∂x⃗
(6)

Stretching To constrain the length of edges e⃗ ij between
two neighboring vertices x⃗i and x⃗j , we penalize deviations
from the rest length Lij

0 by a Hookean energy term [3]

EY =
1

2
Y
(
∥e⃗ ij∥ − Lij

0

)2

. (7)

The constant Y describes the stretching stiffness, i.e. a
weight that determines how hard it is for the system to de-
viate from the minimal energy state.
Shearing Resistance against angular displacements is
taken into account by shearing and bending forces acting
on the angle between neighboring edges. A potential can
be modeled using the squared difference between the cur-
rent angle and the target angle [7, 43]. The in-plane angles
are restricted by the shearing force between a pair of edges
(e⃗ ik, e⃗ kj), one of which is pointing in warp direction and
the other one in weft direction (see Figure 4). For an en-
closed angle φijk, the energy

ES =
1

2
S
(
φijk − φijk

0

)2

(8)

is scaled by the shearing stiffness S and the target angle
φijk
0 can be set to π/2 for a planar fabric [7].

Bending A bending loss is calculated analogously for two
consecutive edges with both pointing in the same direction
(either warp or weft) as depicted in Figure 4. Nonetheless,
a bending stiffness B is used to decouple the optimization
of both terms such that the bending energy reads

EB =
1

2
B
(
θikl − θikl0

)2
(9)

with rest angles θijk0 [40, 43]. In the case of a planar fabric
we have θijk0 ∈ {0, π}, depending on the edge directions.
We assume the parameters (Y, S,B) to be the same for all
edges and angles in the cloth.

Figure 4. Angles for shearing and bending energies. Straight and
corner connections are treated independently to separate in-plane
and out-of-plane deformations.

External Forces F⃗ext

An arbitrary force field F⃗ext might not be conservative and,
thus, cannot be modeled based on the gradient of a potential.
However, we can define a loss term Lext as

Lext = −∆t2⟨F⃗ext, a⃗⟩. (10)

F⃗ext can be seen as the effective external forces that act on
the grid nodes and result from the superposition of gravity,
wind and other forces and may vary over space and time. In
principle it is possible for these force vectors to include all
internal forces as well but this highly reduces the regulariza-
tion such that learning almost arbitrary realistic dynamics
becomes significantly harder [20].

Inertia
If the neural network only minimizes the previous loss ex-
pressions, the cloth will move to the equilibrium state in-
stantly as no contribution restricts how quickly the vertices
move. To change that, an inertia term of the form

Linert =
1

2
(∆t)2⟨⃗a,Ma⃗⟩ (11)

is added that penalizes momentum changes of the grid [40].

Equations of Motion
By training the neural cloth model, it aims to minimize the
loss function Lcloth (Equation 4) causing its gradient with
respect to the network’s outputs a⃗n+1 to vanish:

∂Lcloth

∂a⃗n+1
=

∂Eint

∂x⃗n+1︸ ︷︷ ︸
−F⃗int

∂x⃗n+1

∂a⃗n+1︸ ︷︷ ︸
∆t2

+
∂Lext

∂a⃗n+1︸ ︷︷ ︸
−∆t2F⃗ext

+
∂Linert

∂a⃗n+1︸ ︷︷ ︸
+∆t2Ma⃗n+1

!
= 0

(12)
Dividing this equation by ∆t2 leads to an implicit

scheme for Newton’s second law of motion (Equation 1):

Ma⃗n+1 = F⃗int + F⃗ext (13)

This way, the neural network can learn stable dynamics of
cloth directly from the physics-based loss that ensures phys-
ical plausibility and no ground truth data is required.
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Figure 5. Training cycle of our neural cloth model. Details are
provided in Section 3.1.5.

3.1.5 Training Cycle

To train the neural cloth model, we make use of a training
cycle similar to [14, 47] (see Figure 5). First, we create a
training pool of 5000 cloth states by initializing 32x32 grids
at random resting poses (Eint(x⃗0) = 0, v⃗0 = 0) with ran-
dom stretching Y ∈ [10, 10000], shearing S ∈ [0.01, 10]
and bending B ∈ [0.001, 10] parameters. After that, we
draw a random mini-batch of size 300 containing cloth
states (x⃗n, v⃗n), stiffness parameters (Y, S,B), random ex-
ternal forces F⃗ ext

n (e.g. gravity and wind), as well as bound-
ary conditions that fasten the top left and right corners of the
cloth (see red anchor points in Figure 1). Next, we feed the
mini-batch into the neural cloth model in order to predict
the accelerations a⃗n+1 for the next timestep. This allows
to compute v⃗n+1 and x⃗n+1 based on Equations (2) and (3)
and, thus, to evaluate the physics-based loss (Equation 4).
Since (Y, S,B) and therefore Lcloth can vary drastically, we
rescale the loss for every batch sample to equal 1. We use
the Adam optimizer [22] (the learning rate starts at 10−3

and is decreased by ×0.2 after 25 and 50 epochs) to opti-
mize the model.Finally, we feed the predictions of the neu-
ral surrogate model back into the training pool to fill it with
a larger variety and more realistic training samples. If the
physics-based loss of a sample becomes too high, we reset
the corresponding cloth sample to a new random initial pose
to avoid diverged shapes during the training. Additionally,
we randomly reset samples of the training pool from time
to time to further increase the variability of training data.

By repeating the training cycle for 100 epochs (approx.
10 hours on a Nvidia GeForce RTX 2080), we obtain a fast
and stable neural surrogate model to simulate cloth dynam-
ics that can be used for a wide variety of different stiffness,
shearing, bending parameters and offers efficient gradient
computations based on backpropagation through time.

3.2. Differentiable Rendering

3.2.1 RGB-Images and Silhouettes

Synthetic images are created using the differentiable raster-
izing functionality of nvdiffrast [23]. This requires vertex
positions with uv-coordinates and normal vectors, face in-

dices, and a texture file from which everything is known due
to an initial template and the physical simulation. The ras-
terized image is then used for the optimization step. Besides
the RGB image, a monochromatic mask is saved as well to
optimize the visible silhouette, see Equation (16).

3.2.2 Texture Mapping

The texture for rendering the cloth is extracted from the first
frame of a video sequence which might contain deforma-
tions or occlusions caused by folds. In order to reduce mis-
matches in the rendered images for later frames, we opti-
mize the uv-coordinates of each vertex using the informa-
tion of all video frames. We intentionally decided against
optimizing the texture directly because imperfect cloth mo-
tion will result in blurry textures and contributions of the
(black) background. The effect of this optimization will be
analyzed in Section 4.4.

3.3. Shape-from-Template Optimization Loop

Since each part of our pipeline (see Figure 2) is differen-
tiable, gradients can be propagated throughout the entire
optimization via backpropagation through time. This way,
the cloth shape, its physical parameters, and external forces
can be estimated by minimizing the difference between ren-
dered and real-world video frames with gradient descent.

3.3.1 Shape-from-Template Loss

To optimize the shape of the cloth template, we minimize
a loss that combines an image loss Lim, silhouette loss Lsil

and a regularization term for external forces RT :

LSfT = Lim + Lsil +RT (14)

Image Loss
The image loss averages the pixel-wise differences between
the ground truth RGB video frames I⃗i and the generated

images ˆ⃗
Ii from the simulation:

Lim =
1

Np

Np∑
i=1

∥ ˆ⃗Ii − I⃗i∥1 (15)

Silhouette Loss
As the dataset provides masks for each frame, we also cre-
ate a silhouette loss. Therefore, the masks of the ground-
truth M and rendered image M̂ are blurred by a Gaussian
kernel G with standard deviation σ = 7 pixels [20] resulting
in smooth gradients for the pixel-wise difference. Again,
the corresponding loss function is calculated as the mean of
the pixel-wise differences of the blurred masks:

Lsil =
1

Np

Np∑
i=1

∥G(M̂i, σ)−G(Mi, σ)∥ (16)
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Regularization of External Forces
We separate the external forces F⃗ext = w⃗+T⃗ into a constant
part w⃗ (e.g. gravity and constant wind) and a spatially and
temporarily varying part T⃗ (e.g. turbulent wind). This way,
we are able to assign distinct learning rates for w⃗ and T⃗
and focus regularization on T⃗ to keep external forces stable
and smooth. To this end, we penalize the turbulent part T ij

t

acting at time step t on a vertex with grid indices i, j for its
length as well as its temporal and spatial changes:

RT = α
∑
t,i,j

∥T⃗ ij
t ∥2 + β

∑
t,i,j

∥T⃗ ij
(t+1) − T⃗ ij

t ∥2

+ γ
∑
t,i,j

∥T⃗ (i+1)j
t − T⃗ ij

t ∥2 + ∥T⃗ i(j+1)
t − T⃗ ij

t ∥2
(17)

In our optimization, we set α = γ = 10−2 and β = 10−3.

3.3.2 Optimization

Our optimization loop starts with a subset of the first video
frames, similar to ϕ-SfT [20], and successively adds frames
depending on the number of optimization cycles. This pro-
cedure ensures that new dynamics are introduced by new
frames only when the previous states match the desired
movement. In our case, we start the optimization with the
first 10 frames of a video and add the next frame every 5
optimization cycles until the whole video is considered.

At the beginning of the optimization loop, the model
starts with the same physical parameters for all scenes. The
stiffness parameters (Y, S,B) begin at values (3000, 8, 0.5)
and their learning rates are set to (50, 0.1, 0.01). In or-
der to ensure stable simulations, the stiffness parameters
are bounded by minimal values (10, 0.01, 10−5). External
forces are initialized by the gravitational field g⃗ only, i.e.
w⃗ = g⃗, without additional wind or turbulences (T⃗ = 0).
The learning rates are set to 0.05 · ∥g⃗∥ and 0.001 for con-
stant and turbulent force components respectively. During
optimization, the component along the direction of gravity
is fixed such that wind can only appear in horizontal di-
rections. The uv-coordinates are initialized via the known
template mesh and updated with a learning rate of 2 ·10−4.

4. Evaluation
We evaluate our method on the ϕ-SfT dataset [20] which
provides several video sequences of real fabrics with diverse
movement. The templates are adjusted to match the require-
ments of our network, i.e. the geometry is remeshed such
that it is represented by a regular 32×32 grid. We perform a
qualitative analysis of the 3D meshes and compare the ren-
dered images to the target images. For a quantitative result,
we evaluate the precision of the reconstruction as well as the
time to converge and compare it with results of ϕ-SfT [20],
as it is the state-of-the-art SfT method that uses a physical

Scene R3
Frame 27

GT frame Rendering Front view Side view
3D reconstruction

Scene R5
Frame 43

Scene R7
Frame 34

Figure 6. Our approach follows the expected movement in the
video and produces smooth 3D geometry for the cloth. Diverse
dynamics from manual movement and wind are captured well.

simulation to regularize the object’s movement. Moreover,
we investigate the stability of our algorithm by optimizing
for thousands of iterations. Finally, we perform an ablation
study that shows the importance of various features and de-
scribe the limitations of our method.

4.1. Qualitative Evaluation

We evaluate the performance of our method on a dataset
of masked images and silhouettes containing several scenes
with diverse movements. First, we look at the reconstruc-
tions of our approach qualitatively. Figure 6 depicts the
ground truth frame, the rendered image and two views of the
reconstructed mesh for late frames in three example scenes.
Generating novel views is no problem due to the physics
simulation that generates realistic 3D geometry. Especially
scenes R3 and R5 contain intricate movement due to folding
and manual movement. Nonetheless, our algorithm is able
to follow this movement and produce a smooth and stable
3D reconstruction; see our supplementary video for more
details. This behavior is not always the case for SfT and
NRSfM methods since assumptions like isometry or con-
formality do not suffice to prevent the geometry from hav-
ing an unpleasant and noisy-looking surface [20, 32, 51].
The authors of ϕ-SfT already showed that other SfT and
NRSfM methods usually do not produce smooth and realis-
tic reconstructions and thus a physical simulation is needed
to achieve pleasing results [20]. For this reason, we focus
on comparing our method to ϕ-SfT.

4.2. Quantitative Evaluation

We measure the precision and runtime of our method and
compare it to the performance of ϕ-SfT [20]. All evalua-
tions are performed on an Nvidia A100 GPU and an AMD
Epyc 7713 CPU.
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Method R3 R4 R5 R7 R8 R9

ϕ-SfT 7.9 10.3 14.4 9.1 3.7 2.9
Ours 12.5 14.5 11.7 6.9 10.1 8.6

Ratio COurs

Cϕ−SfT
1.59 1.41 0.81 0.76 2.70 2.94

Table 1. Quantitative comparison using the symmetric Chamfer
distance C. All values are multiplied by 104 for readability.

Method R3 R4 R5 R7 R8 R9

ϕ-SfT 1204 1453 1152 1065 1186 1157
Ours 3.07 2.48 3.03 2.58 2.55 2.47

Speedup 393 585 380 412 465 469

Table 2. Runtime comparison between ϕ-SfT [20] and our method.
All numbers represent the runtime for the optimization loop until
convergence in minutes.

The dataset provides different scenes with pseudo
ground truth data in form of a target point cloud T per
frame. Therefore, we create a reconstruction point cloud
R by sampling the mesh uniformly (each mesh triangle
weighted by its area) with the same number of points as
the target point cloud. The reconstruction quality is then
measured by evaluating the symmetric Chamfer distance:

C(R, T ) =
1

|R|
∑
r⃗∈R

min
t⃗∈T

∥r⃗ − t⃗∥22 +
1

|T |
∑
t⃗∈T

min
r⃗∈R

∥r⃗ − t⃗∥22

(18)
We use the reference implementation of ϕ-SfT with de-

fault parameters (e.g. 300 optimization cycles) and compare
it to our approach after 250 cycles. Unfortunately, the op-
timization of scenes R1, R2 and R6 did not finish with this
ϕ-SfT implementation and thus they are discarded for eval-
uation. Table 1 shows the evaluated Chamfer distance be-
tween the reconstruction and the pseudo ground truth point
cloud on real scenes of the ϕ-SfT dataset. Both algorithms
perform with comparable quality and always produce high-
quality results, although ϕ-SfT matches the target better in
4 out of 6 examples. Especially in scenes R8 and R9 the re-
sults of ϕ-SfT are very close to the expectations. Nonethe-
less, our neural model performs better in scenes R5 and R7.

The main goal of our approach and its difference to ϕ-
SfT [20] lies in the runtime. Due to the neural network, we
are able to perform the physics simulation much faster than
a classical algorithm could do. Furthermore, nvdiffrast [23]
is significantly faster in rendering images than Pytorch3D.
Table 2 shows the runtime of both approaches for all scenes
in minutes. In summary, ϕ-SfT needs between 17:45 h and
24:12 h for optimizing a single scene. Compared to that, our
method only needs between 2.5 and 3 minutes per scene.
This is a speedup of a factor between 380 and 585. The
time for training our physics-based network is not included

Scene R3

Iteration 120

Scene R4

Iteration 250 Iteration 1000 Iteration 5000 Iteration 10000

Figure 7. Stability test for R3 and R4 with significant movement.
We show a side view of the reconstructed mesh at 120 (before con-
vergence), 250 (regular evaluation), 1000, 5000 and 10000 epochs.
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Figure 8. Variation in Chamfer distance C during optimization
epochs. After 400 epochs, overfitting worsens the reconstruction
quality but does not affect the stability of the overall optimization.
The remaining scenes experience very similar behavior.

because this needs to be done only once in advance and the
same network is then reused for all scenes.

4.3. Stability

We also investigate the stability of our approach by running
the optimization loop 40 times longer than usual. Figure 7
depicts reconstructed meshes from two scenes with diverse
movement at different epochs during the optimization loop.
It can be seen that our reconstructed mesh still follows the
desired movement from the video and does not change sig-
nificantly after the regular 250 epochs are reached. More-
over, Figure 8 shows how the Chamfer distance C varies
during the epochs. Overfitting worsens the Chamfer dis-
tance when our model optimizes for too long but does not
affect the stability. Compared to that, when optimizing for
too long, ϕ-SfT [20] often suffers from instabilities that
greatly decrease the reconstruction quality or even lead to
a completely different movement than expected.

4.4. Ablation Study

To analyze the importance of each feature in our approach,
we perform an ablative study in which we remove one part
at a time and compare the results to the full model. Ta-
ble 3 comprises variants that miss either the silhouette loss
Lsil, turbulent forces T ij

t , their regularization RT , the uv-
optimization, or the successive optimization scheme.
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Ablation R3 R4 R5 R7 R8 R9

Lsil 13.8 14.7 12.2 7.1 10.7 8.7
RT 12.6 14.8 11.9 7.0 10.4 8.5
T ij
t 21.0 45.9 172.4 61.9 31.5 14.7

uv-map 13.3 24.1 14.5 61.9 20.1 30.9
Suc.-opt. 9.7 19.0 12.4 19.0 13.8 13.6
Full 12.5 14.5 11.7 6.9 10.1 8.6

Table 3. Reconstruction quality when one feature in our algorithm
is removed. Small variations can also occur due to randomness.

The silhouette loss only slightly improves the results in
all scenes. Unsurprisingly, the largest difference is present
in scene R3 where one of the two holding points is mov-
ing significantly and causing the silhouette to change much
more than in other scenes. Removing the regularization
RT also does not change the quality significantly within
the given number of iterations. The simulating network it-
self processes the external forces and regularizes their effect
due to convolutional layers but we want to control them ex-
plicitly (also regarding the long-time behavior). However,
when turbulent forces are neglected completely, large mis-
matches are caused. These turbulent forces are not only
used to create local deformations that only affect a few ver-
tices but also for moving the anchor points. Especially in
scene R5 the anchor points create the majority of the dy-
namics. The uv-map optimization has a large effect on the
reconstruction precision because the texture is taken from
the first RGB frame. This might include perspective effects
and occlusions that introduce a bias into the rendering (see
Section 3.2.2). Finally, we omit the successive optimization
scheme, i.e. we optimize with all frames from the begin-
ning. Again, we observe a decreasing reconstruction quality
in all scenes except R3.

4.5. Limitations

Fine wrinkles Figure 9 shows examples in which our net-
work is not able to simulate fine wrinkles and reconstruct
corresponding details. This is visible in folds (scene R3)
and high-frequency movement from wind turbulences (R4).
Possible solutions are a higher grid resolution or different
physical energy terms for shearing and bending forces.

uv-mapping The ablation study shows that optimizing
the uv-map significantly improves the precision of the re-
constructed mesh. However, the ability of warping the tex-
ture by need also opens the possibility of creating distorted
texture mappings. Especially small details and geometric
patterns can suffer from that effect. Three examples are
shown in Figure 10 depicting the optimized cloth of scenes
R3, R7 and R9. The cloth textures in scenes R3 and R7
contain several straight lines that get smeared or shifted due
to the movement. Nevertheless, most parts of the uv-map

Figure 9. Our network does not capture high-curvature details like
sharp folds very well. Such effects occur due to manual movement
in scene R3 or wind in R4.

Figure 10. Optimizing the uv-map leads to some artifacts (red
boxes) in the texture which are most noticeable when the texture
contains regular geometric structures like straight lines or dots.

barely changed even without a regularization such that in-
tricate patterns or words (scene R7) are still intact. These
Issues could be solved by regularizing the uv-coordinates
or by optimizing the texture directly. Other methods do not
optimize the uv-map at all and keep potential deformations
from the first frame which leads to worse reconstructions.

5. Conclusion
We presented a novel Shape-from-Template method that re-
constructs the 3D geometry of a piece of cloth together with
physical parameters for stretching, shearing, and bending
based on a single monocular RGB video sequence and a
template mesh. We employ a physics-based neural network
that enables fast and stable physical simulation without the
need of costly classical simulation methods. This simula-
tion regularizes possible dynamics of the 3D geometry for
the optimization process. Our method was compared to the
state-of-the-art physics-based ϕ-SfT method and achieved
comparable results with a speedup of 400–500 times.
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