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Abstract

Diffusion models have achieved remarkable success
in generating high-quality, diverse, and creative images.
However, in text-based image generation, they often strug-
gle to accurately capture the intended meaning of the text.
For instance, a specified object might not be generated,
or an adjective might incorrectly alter unintended objects.
Moreover, we found that relationships indicating posses-
sion between objects are frequently overlooked. Despite the
diversity of users’ intentions in text, existing methods of-
ten focus on only some aspects of these intentions. In this
paper, we propose Predicated Diffusion, a unified frame-
work designed to more effectively express users’ intentions.
It represents the intended meaning as propositions using
predicate logic and treats the pixels in attention maps as
fuzzy predicates. This approach provides a differentiable
loss function that offers guidance for the image generation
process to better fulfill the propositions. Comparative eval-
uations with existing methods demonstrated that Predicated
Diffusion excels in generating images faithful to various text
prompts, while maintaining high image quality, as validated
by human evaluators and pretrained image-text models.

1. Introduction

Recent advancements in deep learning have paved the way
for generating high-quality, diverse, and creative images.
This progress is primarily attributed to diffusion mod-
els [13, 35], which recursively update images to remove
noise and to make them more realistic. Diffusion models are
significantly more stable and scalable compared to previous
methods, such as generative adversarial networks [9, 26]
or autoregressive models [16, 36]. Moreover, the field of
text-based image generation is attracting considerable at-
tention, with the goal being to generate images faithful to
a text prompt given as input. Even in this area, the con-
tributions of diffusion models are notable [28]. We can
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Figure 1. Visualizations of typical challenges in text-based image
generation using diffusion models. The proposed Predicated Dif-
fusion can address all of these challenges.

benefit from commercial applications such as DALL-E [29]
and Imagen [33], as well as the state-of-the-art open-source
model, Stable Diffusion [24, 31]. These models are trained
on large-scale and diverse image-text datasets, which allows
them to respond to a variety of prompts and to generate im-
ages of objects with colors, shapes, and materials not found
in the existing datasets.

However, many previous studies have pointed out that
these models often generate images that ignore the in-
tended meanings of a given prompt, as exemplified in
Fig. 1 [2, 6, 30, 39]. When multiple objects are specified in a
prompt, only some are generated, with the others disappear-
ing (see the column missing objects in Fig. 1). Also, two
specified objects are sometimes mixed together to form one
object in the generated image (object mixture). Given an ad-
jective in a prompt, it alters a different object than the one
the adjective was originally intended to modify (attribute
leakage). We have found a novel challenge: while a prompt
specifies an object being held by someone, the object is de-
picted as if discarded on the ground (possession failure).
Since retraining diffusion models on large-scale datasets is
prohibitively expensive, many studies have proposed meth-
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ods offering guidance for the image generation process of
pre-trained diffusion models, ensuring that the images are
updated to become more faithful to the prompt. However,
these guidances vary widely, and a unified solution to ad-
dress the diverse challenges has yet to be established.

The root cause of these challenges lies in the diffusion
models’ inability to accurately capture the logical state-
ments presented in the given prompts, as observed in other
image-text models [41]. If we could represent such logi-
cal statements using predicate logic and integrate it into the
diffusion model, the generated images might be more faith-
ful to the statements. Motivated by this idea, we introduce
Predicated Diffusion in this paper. Herein, we represent the
relationships between the words in the prompt by proposi-
tions using predicate logic. By employing attention maps
and fuzzy logic [10, 25], we measure the degree to which
the image under generation fulfills the propositions, pro-
viding guidance for images to become more faithful to the
prompt. See the conceptual diagram in Fig. 2. The contri-
bution of this paper is threefold.

Theoretical Justification and Generality: Most exist-
ing methods have been formulated based on deep insights,
which makes it unclear how to combine them effectively
or how to apply them in slightly different situations. In
contrast, Predicated Diffusion can resolve a variety of chal-
lenges based on the same foundational theory, allowing us
to deductively expand it to address challenges not summa-
rized in Fig. 1.

High Fidelity to Prompt: The images generated by the
proposed Predicated Diffusion and comparison methods
were examined by human evaluators and pretrained image-
text models [17, 27]. We observed that Predicated Diffusion
generates images more faithful to the prompts and more ef-
fectively prevents the issues shown in Fig. 1, while main-
taining or even improving the image quality.

New Challenge and Solution: This paper introduces a new
challenge, named possession failure, which occurs when the
generated image fails to correctly depict a prompt indicat-
ing a subject in possession of an object. Thus, we broaden
the horizons of the current research, which has mainly fo-
cused on the presence or absence of objects and attributes,
to encompass actions. The fact that Predicated Diffusion
can successfully address this new challenge is worthy of at-
tention.

2. Related Work
Diffusion Models for Image Generation A diffusion
model was proposed as a parameterized Markov chain [13,
34]. Taking a given image x as the initial state x0, the for-
ward process q(xt+1|xt) adds noise to the state xt from
time t = 0 to T . The model learns the reverse process
p(xt−1|xt) and thereby the data distribution p(x) = p(x0).

A white teddy bear with a green shirt and a smiling girl

exist

modify modify modify

possess

existence
∃𝑥. 𝐺𝑖𝑟𝑙(𝑥)

⋮

modification
∀𝑥. 𝑊ℎ𝑖𝑡𝑒 𝑥 ↔ 𝐵𝑒𝑎𝑟(𝑥)

⋮

possession

∀𝑥. 𝑆ℎ𝑖𝑟𝑡(𝑥) → 𝐵𝑒𝑎𝑟(𝑥)

• ℒ ∃𝑥. 𝐺𝑖𝑟𝑙 𝑥 =−log 1−ς𝑖 1−𝐴𝐺𝑖𝑟𝑙 𝑖  

• ℒ ∀𝑥. 𝑊ℎ𝑖𝑡𝑒 𝑥 ↔ 𝐵𝑒𝑎𝑟(𝑥) =−σ𝑖 log 1−𝐴𝑊ℎ𝑖𝑡𝑒 𝑖 × 1−𝐴𝐵𝑒𝑎𝑟 𝑖

−σ𝑖 log 1−𝐴𝐵𝑒𝑎𝑟 𝑖 × 1−𝐴𝑊ℎ𝑖𝑡𝑒 𝑖

• ℒ ∀𝑥. 𝑆ℎ𝑖𝑟𝑡 𝑥 → 𝐵𝑒𝑎𝑟(𝑥) =−σ𝑖 log 1−𝐴𝑆ℎ𝑖𝑟𝑡 𝑖 × 1−𝐴𝐵𝑒𝑎𝑟 𝑖  

⋮

(2) Deduce statements

(3) Represent them by propositions

(4) Obtain loss functions on attention maps

A white teddy bear with a green shirt and a smiling girl

(1) Given a text prompt

(5) Run a diffusion model under guidance

(6) Get an image faithful to the prompt

𝑡 = 50

𝑡 = 25

𝑡 = 0

possessionmodification existence

Figure 2. The conceptual diagram of the proposed Predicated Dif-
fusion, composed of steps (1)–(6). One can make propositions
manually or using a syntactic dependency parser.

Intuitively speaking, it repeatedly denoises images to be
more realistic. The reverse process resembles a discretized
stochastic differential equation, akin to the Langevin dy-
namics, which ascends the gradient of the log-probability,
∇x log p(x), where∇x denotes the gradient with respect to
image x [35].

A diffusion model can learn the conditional probability
p(x|c). The condition c might be text, images, or other
annotations [28, 31]. One of the leading models, Stable
Diffusion, employs the cross-attention mechanism for con-
ditioning [37]. A convolutional neural network (CNN),
U-Net [32], transforms the image x into an intermediate
representation. For text conditions, a text encoder, based
on CLIP [27], transforms text prompt c into a sequence
of intermediate representations, each linked to a word w
within the prompt c. Given these representations, the cross-
attention mechanism creates an attention map Aw for each
word w. U-Net then updates the image x using these maps
as weights. Technically, these processes target not the im-
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age x but the latent variable z extracted by a variational au-
toencoder [15].

Despite its sophistication, Stable Diffusion sometimes
fails to capture the intended meaning of the text prompt,
as discussed in the Introduction. To address this, Structure
Diffusion feeds segmented text prompts to the text encoder
to emphasize each clause [6].

Training-Free Guidance Even when a diffusion model
is designed without condition c, it can reproduce the con-
ditional probability p(x|c) without retraining. This is be-
cause, from a diffusion model p(x) and a separate clas-
sifier p(c|x) for class label c, one can obtain the gra-
dient of the conditional log-probability, ∇x log p(x|c) =
∇x log p(c|x) +∇x log p(x). Although grounded in proba-
bility theory, what it practically offers is additional guidance
∇x log p(c|x) for updating images, which is generalized as
classifier guidance [3].

Consider the reverse process modeled as a Gaussian
distribution p(xt−1|xt) = N (xt−1|µθ(xt, t),Σθ(xt, t)),
where the parameters are determined by neural networks
µθ and Σθ. A guidance method can be defined as a method
that introduces an adjustment g(xt, t) to the update in the
reverse process as N (xt−1|µθ(xt, t) + g(xt, t),Σθ(xt, t)).

When the diffusion model is conditioned on c, the differ-
ence between conditional and unconditional updates serves
as classifier-free guidance, which can adjust the fidelity of
the generated image to condition c [12]. Liu et al. [18]
proposed Composable Diffusion, inspired by energy-based
models [5]. It generates an image conditioned on two con-
cepts, c0 and c1, by summing their respective conditional
updates. It negates or removes a concept cn from generated
images by subtracting the update conditioned on cn, termed
as a negative prompt. Some studies developed guidance us-
ing annotations, such as bounding boxes [19, 20, 40] and
segmentation masks [23]. While effective in intentionally
controlling image layout, guidance methods based on anno-
tations sometimes limit the diversity of generated images.

Attention Guidance Other previous studies developed
guidance methods using the attention maps of the cross-
attention mechanism, termed as attention guidance. High
pixel intensity in an attention map Aw suggests the pres-
ence of the corresponding object or concept w at that pixel.
Attend-and-Excite enhances the intensity of at least one
pixel in the attention map Aw to ensure the existence of
the corresponding object w (that is, address missing ob-
jects) [2]. SynGen equalizes the intensity distributions for
related nouns and adjectives, while differentiating others,
thus addressing attribute leakage [30]. While these meth-
ods are based on deep insights, they lack comprehensive
theoretical justification and generality.

Table 1. Propositions and Attention Map.

Proposition Attention Map

true 1
false 0
P (x) AP [i]
¬P (x) 1−AP [i]
P (x) ∧Q(x) AP [i]×AQ[i]
P (x) → Q(x) 1−AP [i]× (1−AQ[i])
P (x) ∨Q(y) 1− (1−AP [i])× (1−AQ[j])
∀x. P (x)

∏
i AP [i]

∃x. P (x) 1−
∏

i(1−AP [i])

3. Method

3.1. Predicated Diffusion

Predicate Logic First-order predicate logic is a formal
language for expressing knowledge [7]. Variables like x
and y denote unspecified objects. Predicates like P and Q
indicate properties or relationships between objects. Using
variables and predicates, we can express logical statements
that define object properties. For example, the proposition
P (x) represents the statement “x has property P .” If the
predicate P indicates the property “being a dog,” the propo-
sition P (x) represents the statement “x is a dog.” The ex-
istential quantifier, denoted by ∃, declares the existence of
objects satisfying a given property. Thus, the proposition
∃x. P (x) asserts the existence of at least one object x that
satisfies the predicate P , representing that “There is a dog.”

Fuzzy Logic in Attention Map Let AP [i] ∈ [0, 1] denote
the intensity of the i-th pixel in the attention map AP cor-
responding to a word P . Here, we treat the intensity AP [i]
as a continuous version of a proposition P (x). Specifically,
we employ the product fuzzy logic and its operations (the
strong conjunction, strong negation, and material implica-
tion), summarized in Table 1 [10, 25]. AP [i] = 1 indicates
that the proposition P (x) holds, whereas AP [i] = 0 implies
that it does not. 1 − AP [i] indicates the the negation of the
proposition, ¬P (x). Given another proposition Q(x), we
consider the conjunction Q(x) ∧ P (x) to correspond to the
product AQ[i] × AP [i] in the attention maps. The implica-
tion satisfies P (x) → Q(x) = ¬(P (x) ∧ ¬Q(x)), which
corresponds to 1 − AP [i] × (1 − AQ[i]). The disjunction
Q(x) ∨ P (x) is equivalent to ¬(¬Q(x) ∧ ¬P (x)) and cor-
responds to 1 − (1 − AQ[i]) × (1 − AP [i]). The univer-
sal quantifier ∀ asserts that a predicate holds for all objects.
∀x. P (x) = ∧xP (x) corresponds to

∏
i AP [i]. Using this,

the existential proposition ∃x. P (x) can be re-expressed as
¬(∀x.¬P (x)), corresponding to 1−

∏
i(1−AP [i]).

Predicated Diffusion For simplicity, we will treat itali-
cized words as predicates. For instance, we will use Dog(x)
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Table 2. Statements that Predicated Diffusion Can Express.

Statements Example Prompts Loss

Existence There is a dog (1)
Modification A black dog (2)
Concurrent existence There are a dog and a cat (3)
One-to-one correspondence A black dog and a white cat (5)
Possession A man holding a bag (6)
Multi-color A green and grey bird (A1)
Negation without snow (A2)

to represent the statement “x is a dog” rather than P (x). We
represent the prompt “There is a dog” by the proposition
∃x.Dog(x). Then, we expect that 1−

∏
i(1−ADog [i]) = 1.

To encourage this, we consider its negative logarithm,

L[∃x.Dog(x)] = − log(1−
∏

i(1−ADog [i])), (1)

and adopt it as the loss function. Minimizing it makes the
intensity of at least one pixel approach 1, ensuring the exis-
tence of a dog. This loss function is inspired by the negative
log-likelihood for Bernoulli random variables.

Here, we propose an attention guidance, Predicated Dif-
fusion. Given a proposition R to hold, Predicated Diffusion
converts it to an equation of the attention map intensity fol-
lowing Table 1, takes its negative logarithm, uses it as a loss
function L[R], and integrates it into the reverse process as
the guidance term g(xt, t) = −∇xtL[R]. The guidance
term decreases the loss function L[R] and guides the image
toward fulfilling the proposition R. A visual representation
is found in Fig. 2. We provide an overview of prompts and
their corresponding loss functions in Table 2.

We develop this idea into the modification by adjectives.
For a prompt such as “There is a black dog,” it can be de-
composed into: “There is a dog,” and “The dog is black.”
The former statement has been discussed above. We repre-
sent the latter by the proposition ∀x.Dog(x) → Black(x).
Then, the loss function is

L[∀x.Dog(x)→ Black(x)]

= −
∑

i log(1−ADog [i]× (1−ABlack [i])).
(2)

Intuitively, this loss function guides all pixels depicting a
dog towards a black hue; however, its purpose is not to ren-
der the dog entirely in solid black. We employed product
fuzzy logic to imply a tendency rather than enforce a strict
property.

3.2. Addressing Challenges

Concurrent Existence by Logical Conjunction When a
text prompt specifies multiple objects, a frequent challenge
is the disappearance of one of the objects, known as missing
objects. We address this challenge using Predicated Diffu-
sion. Take, for example, the prompt “There are a dog and a
cat.” This prompt can be decomposed into two statements:

“There is a dog,” and “There is a cat.” As noted above, each
statement can be represented by a proposition using the ex-
istential quantifier. Since two propositions can be combined
using logical conjunction, the original prompt is represented
by the proposition (∃x.Dog(x)) ∧ (∃x.Cat(x)). The cor-
responding loss function is

L[(∃x.Dog(x)) ∧ (∃x.Cat(x))]
= L[∃x.Dog(x)] + L[∃x.Cat(x)].

(3)

Minimizing this loss function encourages the concurrent ex-
istence of both a dog and a cat.

One-to-One Correspondence When a prompt includes
multiple adjectives and nouns, diffusion models often strug-
gle with correct correspondence, leading to the challenge
referred to as attribute leakage. For instance, with the
prompt “a black dog and a white cat,” leakage could result
in the generation of a white dog or a black cat. To pre-
vent such leakage using Predicated Diffusion, it is essen-
tial to deduce statements that are implicitly suggested by
the original prompt. Firstly, we can deduce the statement
“The dog is black” and its the converse, “The black object
is a dog.” The latter can be represented by the proposition
∀x.Black(x) → Dog(x). When these two statements are
combined, they can be represented using a biimplication:
∀x.Dog(x)↔ Black(x). This leads to the loss function:

L[∀x.Dog(x)↔Black(x)]

=L[∀x.Dog(x)→Black(x)∧∀x.Black(x)→Dog(x)]

=L[∀x.Dog(x)→Black(x)]+L[∀x.Black(x)→Dog(x)]

(4)

Next, we can deduce the negative statement “The dog is
not white,” represented by ∀x.Dog(x) → ¬White(x). A
similar deduction applies to the white cat. Hence, the com-
prehensive loss function for the original prompt is:

Lone−to−one = L[∀x.Dog(x)↔ Black(x)]

+ L[∀x.Cat(x)↔White(x)]

+ αL[∀x.Dog(x)→ ¬White(x)]

+ αL[∀x.Cat(x)→ ¬Black(x)],

(5)

where the hyperparameter α ∈ [0, 1] adjusts the weight of
the negative statements. To further ensure the existence of
objects, the loss function (3) can also be applied.

Possession by Logical Implication Given the prompt “a
man holding a bag,” diffusion models often depict the bag
as not being held by the man. We refer to this challenge as
possession failure. To address this using Predicated Diffu-
sion, we propose the proposition ∀x.Bag(x) → Man(x),
leading to the loss function:

L[∀x.Bag(x)→ Man(x)]

= −
∑

i log(1−ABag [i]× (1−AMan [i])).
(6)
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The loss function aims to depict the bag as part of the man.
Because attention maps typically have lower resolution than
the original image, minor displacements between objects
and their possessors are acceptable, eliminating the need
for complete overlaps. This approach applies not just to
holding but also to any words indicating possession, such
as having, grasping, and wearing.

3.3. Comparisons, Extensions, and Limitations

Several studies have introduced loss functions or quality
measures for machine learning methods by drawing inspi-
ration from fuzzy logic [4, 8, 14, 21, 22]. In this context,
Predicated Diffusion is the first method to establish the cor-
respondence between the attention map and the predicates.

The propositions and corresponding loss functions can
be adapted to a variety of scenarios, including, but not lim-
ited to, the concurrent existence of more than two objects, a
single object modified by multiple adjectives, the combina-
tion of one-to-one correspondence and possession, and the
negation of existence, modifications, and possessions, as we
will show in the following sections. The definition of con-
junction allows us to simply sum up loss functions for all
propositions. These propositions can be formulated manu-
ally by users, extracted automatically from prompts using
a syntactic dependency parser, or derived from additional
data sources such as scene graphs [6].

Predicated Diffusion inherits some of the general limita-
tions of diffusion models, including challenges like the in-
ability to count objects accurately and the tendency for bias
toward more typical examples. Due to this limitation, the
loss function (5) is inappropriate when multiple instances
of the same noun are modified by different adjectives (e.g.,
“a black dog and a white dog”).

The (weak) conjunction of Gödel fuzzy logic and the
product fuzzy logic is achieved by the minimum opera-
tion [10, 25]. If we employ this operation and define the loss
function by taking the negative instead of the negative log-
arithm, the proposition asserting the concurrent existence,
(∃x.Dog(x)) ∧ (∃x.Cat(x)), leads to the loss function
max(1 − maxi ADog[i], 1 − maxi ACat[i]). This is equiv-
alent to the one used for Attend-and-Excite [2]. This com-
parison suggests that our approach considers Attend-and-
Excite as Gödel fuzzy logic, replaces the underlying logic
with the product fuzzy logic, and broadens the scope of tar-
get propositions. Similar to the loss function (5), SynGen
equalizes the attention map intensities for related nouns and
adjectives [30]. SynGen additionally differentiates those for
all word pairs except for the adjective-noun pairs. In con-
trast, the loss function (5) differentiates those for only spe-
cific pairs which could trigger attribute leakage based on
inferred propositions, thereby preventing the disruption of
the harmony, as shown in the following section.

4. Experiments and Results

4.1. Experimental Settings

We implemented Predicated Diffusion by adapting the of-
ficial implementation of Attend-and-Excite [2]1. The re-
verse process spans 50 steps; we applied the guidance of
Predicated Diffusion only to the initial 25 steps, following
[2, 30]. See Appendix A.1 for more details. For compari-
son, we also prepared Composable Diffusion [18], Structure
Diffusion [6], and SynGen [30], in addition to Stable Diffu-
sion and Attend-and-Excite. All methods used the officially
pretrained Stable Diffusion v1.4 [31]2 as backbones.

We conducted four experiments for assessing each
method’s performance. We provided each method with the
same prompt and random seed, and then generated a set of
images. Human evaluators were tasked with the visual as-
sessment of these generated images as follows.

(i) Concurrent Existence: We prepared 400 random
prompts, each mentioning “[Object A] and [Object
B]”, and generated 400 sets of images. The evalua-
tors identified cases of “missing objects” based on two
criteria: a lenient criterion where “object mixture” was
not counted as “missing objects”, and a strict criterion
where it was. For Predicated Diffusion, we used the
loss function (3).

(ii) One-to-One Correspondence: Similarly, we prepared
400 random prompts, each mentioning “[Adjective A]
[Object A] and [Adjective B] [Object B]”. In addition
to identifying missing objects, the evaluators identified
the cases of “attribute leakage”. For Predicated Diffu-
sion, we used the loss function (3)+(5) with α = 0.3.

(iii) Possession: We prepared 10 prompts, each mention-
ing “[Subject A] is [Verb C]-ing [Object B]”. [Verb C]
can be “have,” “hold,” “wear,” or the like. We gener-
ated 20 images for each of these prompts. In addition
to identifying missing objects, the evaluators identified
the cases of “possession failure”. For Predicated Dif-
fusion, we used the loss function (3)+(6).

(iv) Complicated: To demonstrate the generality of Predi-
cated Diffusion, we prepared diverse prompts, some of
which were taken from the ABC-6K dataset [6]. Im-
ages were generated after manually extracting proposi-
tions and their respective loss functions. While a sum-
mary of generated images is presented, numerical eval-
uations were not undertaken due to the diversity of the
prompts.

Experiments (i) and (ii) were inspired by previous works [2,
6, 30]. In Experiments (i)–(iii), the evaluators also assessed
the fidelity of the generated images to the prompts. Instruc-

1https://github.com/yuval- alaluf/Attend- and-
Excite (MIT license)

2https://github.com/CompVis/stable- diffusion
(CreativeML Open RAIL-M)
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Table 3. Results of Experiments (i) for Concurrent Existence and (ii) for One-to-One Correspondence.

Experiment (i) for Concurrent Existence Experiment (ii) for One-to-One Correspondence

Human Evaluation Automatic Evaluation Human Evaluation Automatic Evaluation

Methods Missing† Fidelity Similarity‡ CLIP- Missing† Attribute Fidelity Similarity‡ CLIP-
Objects IQA Objects Leakage IQA

Stable Diffusion 54.7 / 66.0 11.0 0.326 / 0.767 0.761 64.8 / 73.5 88.5 06.0 0.345 / 0.744 0.756
Composable Diffusion 44.5 / 82.3 02.5 0.317 / 0.739 0.764 49.3 / 83.5 88.5 03.8 0.348 / 0.729 0.757
Structure Diffusion 56.0 / 64.5 12.0 0.325 / 0.763 0.763 64.3 / 69.5 86.5 05.8 0.346 / 0.741 0.760
Attend-and-Excite 25.3 / 36.3 29.5 0.342 / 0.814 0.766 28.0 / 35.8 64.5 19.3 0.367 / 0.792 0.761
SynGen — — — / — – 23.3 / 29.3 40.3 36.8 0.367 / 0.801 0.750

Predicated Diffusion 18.5 / 28.5 30.3 0.348 / 0.825 0.775 10.0 / 16.5 33.0 44.8 0.379 / 0.811 0.769
†Using the lenient and strict criterions. ‡Text-image similarity and text-text similarity.
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Figure 3. Example results of Experiment (i) for concurrent existence. See also Fig. A2.
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Figure 4. Example results of Experiment (ii) for one-to-one correspondence. See also Fig. A3.
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tions and evaluation criteria provided to the evaluators are
detailed in Appendix A.2 The candidates of objects, adjec-
tives, and prompts can be found in Appendix A.3.

We also automatically measured the fidelity and quality
of generated images by using the pretrained image-text en-
coder, CLIP [27] and image-captioning model, BLIP [17].
We prepared 10,000 images for each of Experiments (i)–
(iii). For the fidelity, we evaluated similarity measures pro-
posed by Chefer et al. [2]. The text-image similarity is the
cosine similarity between the prompts and the generated im-
ages in the embedding space of CLIP. For the text-text sim-
ilarity, instead of the generated images, their captions gen-
erated by BLIP are used. For the quality, we performed
CLIP image quality assessment (CLIP-IQA) [38]. This
metric evaluates how close an image is to the text “good
photo” as opposed to “bad photo” in the embedding space,
and it has been proven to be highly correlated with the hu-
man perception of image quality. Unlike Frèchet inception
distance (FID) [11] or the similarity measures introduced
above, CLIP-IQA does not require the ground truth dataset
or the text prompts, but only measures image quality.

4.2. Results

Concurrent Existence and One-to-One Correspondence
Table 3 summarizes the results from Experiments (i) and
(ii). Scores of human evaluations are expressed in percent-
ages. Higher scores are desirable for fidelity, similarities,
and CLIP-IQA, while lower values are preferred for the re-
maining metrics. Predicated Diffusion notably outperforms
other methods, as it achieved the best outcomes across all
13 metrics; it improves both the quality and fidelity of the
generated images. It is worth noting that SynGen degraded
the image quality measured by CLIP-IQA compared to the
backbone, Stable Diffusion. Figures 3 and 4 show exam-
ple images for visual evaluation, where images in each col-
umn are generated using the same random seed. See also
Figs. A2 and A3 in Appendix. Stable Diffusion, Compos-
able Diffusion, and Structure Diffusion often exhibit miss-
ing objects and attribute leakage. The absence of objects
is particularly evident when prompts feature unusual object
combinations like “a crown and a rabbit” and “a yellow car
and a blue bird.” When the prompts specify visually similar
objects, such as “a bird and a cat,” the two objects often get
mixed together. While Attend-and-Excite effectively pre-
vents the issue of missing objects, it struggles with attribute
leakage in Experiment (ii), due to its lack of a dedicated
mechanism to address this. While SynGen has achieved rel-
atively good results, Predicated Diffusion outperforms it by
further preventing missing objects and attribute leakage and
producing images most faithful to the prompt. Although
this aspect was not explicitly part of the evaluation, SynGen
often generates multiple instances of small objects, such as
birds and balloons.

Possession Table 4 summarizes the results from Experi-
ment (iii). Predicated Diffusion notably outperforms other
methods on all seven metrics. Compared to Stable Diffu-
sion, Attend-and-Excite succeeds in preventing missing ob-
jects but, on the contrary, fails to prevent possession failure,
losing human-evaluated fidelity and CLIP-IQA. Figures 5
and A4 show visual samples of generated images. If [Sub-
ject A] is an animal, Attend-and-Excite succeeds more fre-
quently than Stable Diffusion in depicting both objects but
often depicts [Object B] as discarded on the ground or sus-
pended in the air. If [Subject A] is a human, the vanilla
Stable Diffusion often produces satisfactory results. Then,
Attend-and-Excite, however, tends to deteriorate the over-
all image quality. With the possession relationship, [Sub-
ject A] and [Object B] often overlap. Attend-and-Excite
makes both stand out competitively and potentially disrupts
the overall harmony. In contrast, the loss function (6) is
designed to encourage overlap, and hence Predicated Diffu-
sion adeptly depicts subjects in possession of objects.

Qualitative Analysis on Complicated Prompts Fig-
ures 6, A5, and A6 show example results from Experiment
(iv) along with the propositions used for Predicated Diffu-
sion. Both the vanilla Stable Diffusion and Structure Dif-
fusion plagued by missing objects and attribute leakage.
When tasked with generating “A black bird with a red beak,”
SynGen produced multiple red objects, as observed in Ex-
periments (i) and (ii). When generating “A white teddy bear
with a green shirt and a smiling girl,” comparison methods
other than Predicated Diffusion often mistakenly identified
the girl, not the teddy bear, as the owner of the green shirt.
In comparison to the vanilla Stable Diffusion, SynGen re-
duced the size of the teddy bear’s shirt because it differ-
entiates between the intensity distributions on the attention
maps of different objects. A similar tendency is evident in
the third case in Fig. 6, where the adjective “green” often
alters wrong objects, and the green hair is not placed on the
baby’s head. Predicated Diffusion performed well in these
scenarios, which include the concurrent existence of more
than two objects with specified colors and possession rela-
tionships simultaneously.

See Appendix B for further assessments; visualization of
attention maps (B.1), assignment of multiple colors to a sin-
gle object, negation of objects (B.2), automatic extraction of
propositions (B.3), additional analyses (B.4), ablation stud-
ies (B.5), and a discussion on more recent models (B.6).

5. Conclusion
This paper proposed Predicated Diffusion, where the in-
tended meanings in a text prompt are represented by propo-
sitions using predicate logic, offering guidance for text-
based image generation by diffusion models. Experiments
using Stable Diffusion as a backbone have demonstrated
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Table 4. Results of Experiment (iii) for Possession

Human Evaluation Automatic Evaluation

Methods Missing Objects† Possession Failure Fidelity Similarity CLIP-IQA

Stable Diffusion 31.5 / 36.0 52.5 33.5 0.320 / 0.811 0.762
Attend-and-Excite 07.5 / 17.0 51.5 27.5 0.334 / 0.843 0.760

Predicated Diffusion 04.0 / 07.0 29.5 52.0 0.345 / 0.855 0.765
†Using the lenient and strict criterions. ‡Text-image similarity and text-text similarity.
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Figure 5. Example results of Experiment (iii) for possession. See also Fig. A4.

A black bird with red beak
A white teddy bear with a green shirt

and a smiling girl
A baby with green hair laying

in a black blanket next to a teddy bear
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∧(∀x.Bird(x)↔ Black(x))
∧(∀x.Beak(x)↔ Red(x))
∧(∀x.Beak(x)→ Bird(x))

(∃x.Bear(x)) ∧ (∃x.Shirt(x))
∧(∃x.Girl(x))
∧(∀x.Bear(x)↔White(x))
∧(∀x.Bear(x)↔ Teddy(x))
∧(∀x.Shirt(x)↔ Green(x))
∧(∀x.Girl(x)↔ Smiling(x))
∧(∀x.Shirt(x)→ Bear(x))

(∃x.Baby(x)) ∧ (∃x.Hair(x))
∧(∃x.Blanket(x))∧(∃x.Bear(x))
∧(∀x.Hair(x)↔ Green(x))
∧(∀x.Blanket(x)↔ Black(x))
∧(∀x.Bear(x)↔ Teddy(x))
∧(∀x.Hair(x)→ Baby(x))

Figure 6. Example results of Experiment (iv) using prompts in ABC-6K. See also Figs. A5 and A6.

that Predicated Diffusion effectively addresses common
challenges; missing objects, attribute leakage, and posses-
sion failures. Compared to existing methods, Predicated
Diffusion excels in generating images that are more faith-
ful to the prompts and of superior quality. Moreover, due to
the generality of predicate logic, Predicated Diffusion can
fulfill complicated prompts that include multiple objects,
adjectives, and their relationships. Although predicates can-
not represent all meanings present in natural languages, they

can handle most scenarios for adjusting the layout of gener-
ated images. In future work, we plan to combine Predicated
Diffusion with other backbones and explore 2-ary predi-
cates asserting relationships, such as Above(x, y), which
implies “x is above y.”
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[10] Petr Hájek. Metamathematics of Fuzzy Logic. Springer
Netherlands, Dordrecht, 1998. 2, 3, 5

[11] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs Trained by
a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. In Advances in Neural Information Processing
Systems (NeurIPS), 2017. 7

[12] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion
Guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 3

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), pages 6840–6851, 2020.
1, 2

[14] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and
Eric Xing. Harnessing Deep Neural Networks with Logic
Rules. In Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 2410–2420, 2016. 5

[15] Diederik P. Kingma and Max Welling. Auto-Encoding Vari-
ational Bayes. In International Conference on Learning Rep-
resentations (ICLR), 2014. 3

[16] Alexander Kolesnikov and Christoph H. Lampert. PixelCNN
Models with Auxiliary Variables for Natural Image Mod-
eling. In International Conference on Machine Learning
(ICML), 2017. 1

[17] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
BLIP: Bootstrapping Language-Image Pre-training for Uni-
fied Vision-Language Understanding and Generation. In In-
ternational Conference on Machine Learning (ICML), pages
12888–12900. PMLR, 2022. 2, 7

[18] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B. Tenenbaum. Compositional Visual Generation
with Composable Diffusion Models. In European Confer-
ence on Computer Vision (ECCV), 2022. 3, 5, 4

[19] Wan-Duo Kurt Ma, J. P. Lewis, W. Bastiaan Kleijn, and
Thomas Leung. Directed Diffusion: Direct Control of Object
Placement through Attention Guidance. arXiv, 2023. 3

[20] Jiafeng Mao and Xueting Wang. Training-Free Location-
Aware Text-to-Image Synthesis. arXiv, 2023. 3

[21] Giuseppe Marra, Francesco Giannini, Michelangelo Dili-
genti, Marco Maggini, and Marco Gori. T-Norms Driven
Loss Functions for Machine Learning. Applied Intelligence,
2023. 5

[22] Goncalo Mordido, Julian Niedermeier, and Christoph
Meinel. Assessing Image and Text Generation with Topolog-
ical Analysis and Fuzzy Logic. In IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 2012–
2021, Waikoloa, HI, USA, 2021. IEEE. 5

[23] Dong Huk Park, Grace Luo, Clayton Toste, Samaneh Azadi,
Xihui Liu, Maka Karalashvili, Anna Rohrbach, and Trevor
Darrell. Shape-Guided Diffusion with Inside-Outside Atten-
tion. arXiv, 2023. 3

[24] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. SDXL: Improving Latent Diffusion Mod-
els for High-Resolution Image Synthesis. 2023. 1

[25] Piotr Prokopowicz, Jacek Czerniak, Dariusz Mikołajewski,
Łukasz Apiecionek, and Dominik Ślȩzak, editors. Theory
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