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Abstract

In this paper, we present a novel indoor 3D reconstruc-
tion method with occluded surface completion, given a se-
quence of depth readings. Prior state-of-the-art (SOTA)
methods only focus on the reconstruction of the visible areas
in a scene, neglecting the invisible areas due to the occlu-
sions, e.g., the contact surface between furniture, occluded
wall and floor. Our method tackles the task of complet-
ing the occluded scene surfaces, resulting in a complete 3D
scene mesh. The core idea of our method is learning 3D ge-
ometry prior from various complete scenes to infer the oc-
cluded geometry of an unseen scene from solely depth mea-
surements. We design a coarse-fine hierarchical octree rep-
resentation coupled with a dual-decoder architecture, i.e.,
Geo-decoder and 3D Inpainter, which jointly reconstructs
the complete 3D scene geometry. The Geo-decoder with
detailed representation at fine levels is optimized online for
each scene to reconstruct visible surfaces. The 3D Inpainter
with abstract representation at coarse levels is trained of-
fline using various scenes to complete occluded surfaces.
As a result, while the Geo-decoder is specialized for an in-
dividual scene, the 3D Inpainter can be generally applied
across different scenes. We evaluate the proposed method
on the 3D Completed Room Scene (3D-CRS) and iTHOR
datasets, significantly outperforming the SOTA methods by
a gain of 16.8% and 24.2% in terms of the completeness of
3D reconstruction. 3D-CRS dataset including a complete
3D mesh of each scene is provided on project webpage'.

1. Introduction

Interactable 3D scene reconstruction at room scale is an
enabling technology for a large variety of AR/VR and
embodied Al applications, e.g., virtual touring, room re-
arrangement, teleoperation etc. Over recent decades, nu-
merous methods [1, 3, 5, 11, 19, 24] have been developed to
reconstruct 3D surfaces. These methods have now become
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Figure 1. Occluded Surface Completion: Our approach marks
a novel 3D surface reconstruction, uniquely completing occluded
surfaces in areas invisible to existing methods. It enables more
accurate 3D modelling of furniture and the reconstruction of
furniture-obscured room regions, significantly advancing indoor
scene reconstruction.

highly automated and capable of producing high-quality
outputs. However, a critical aspect in advancing scene rep-
resentation—making it editable, re-configurable, and suit-
able for object manipulation in mixed reality and embod-
ied Al applications—lies in completing occluded areas. In
mixed reality scenarios, for instance, it is crucial to avoid
the appearance of occluded parts like the backside of a sofa
or the holes on the floors during the repositioning of fur-
niture in a living room. Ensuring a complete 3D shape of
the furniture and a seamless layout is essential for effec-
tive object manipulation and scene editing. However, most
existing methods [1, 5, 11, 24] fall short in addressing this
issue, as they predominantly focus on reconstructing visi-
ble regions where sensor measurements are available. This
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paper specifically addresses reconstructing visible surfaces
and completing invisible portions in a unified framework.
The effectiveness of classic surface reconstruction meth-
ods such as TSDF [3] and Surfels [19] suffer from the in-
herent limitations of consumer-level depth sensors, such as
depth noise and limited range capabilities. These restric-
tions often lead to incomplete geometries such as holes
in 3D reconstructions, due to the lack of depth measure-
ments caused by sensor noise and blocked views. In con-
trast, the rise of neural implicit representation methods has
shown promise in addressing these challenges. Neural Ra-
diance Fields (NeRF) [14] advances neural implicit repre-
sentations for shape modeling [17, 18] and 3D reconstruc-
tion [1, 11]. Since their internal representation is a contin-
uous field, it naturally improves the handling of the mea-
surement noise and incompleteness to some extent. How-
ever, these implicit-style methods [1, 11] primarily focus
on reconstructing visible surfaces, often overlooking invis-
ible surfaces obscured by occlusions, such as the furniture
backside and the contact areas between furniture and floor.
The large occluded areas are beyond the implicit represen-
tation’s extrapolation capabilities without specific designs.

Recent studies have combined large 2D generative mod-
els with NeRF techniques to create complete objects [13]
or scenes [8] based on RGB image inputs. However, these
focus either on object-level completion [13] or on generat-
ing outdoor scenes without editability [8], sometimes at the
compromise of reconstruction quality. However, they are
limited in accurately recovering 3D scene geometries even
with RGB-based large foundation models. Our method pri-
oritizes reconstructing high-quality scene geometry with a
small model trained on a modest amount of data.

Our framework aims to reconstruct clean and complete
3D surfaces in room-scale scenes using only depth readings,
as shown in Figure 1. The success of our method lies upon a
hierarchical octree representation of a scene, coupled with
a special design of dual-decoder architecture. Compared
to existing methods [11, 21], we uniquely treat visible and
occluded surfaces from two different aspects: 1) We sepa-
rately represent visible and occluded regions by fine-level
and coarse-level features: Fine features are expected to en-
code high-frequency detailed geometry of visible surfaces,
while coarse features are anticipated to represent contextual
structure information, which is more generalizable for oc-
cluded surface completion. 2) We design a scene-specific
visible decoder, and a generalizable cross-scene occlusion
decoder: The visible surface decoder is optimized online us-
ing depth readings in a testing scene, whereas the occluded
surface decoder is trained offline with multiple scenes.

Our main contributions can be summarized as follows:
¢ We introduce a novel 3D surface reconstruction frame-

work to realize occluded surface completion at scene-
level;

* We design a coarse-fine feature representation mecha-
nism coupled with a dual-decoder architecture, which re-
spectively reconstructs the occluded and visible geometry
in a scene;

* We design a cross-scene trained 3D Inpainter, and experi-
mentally demonstrate its generalization ability on the oc-
cluded surface completion in unseen scenes;

2. Related Work

In the fields of computer vision and graphics, scene repre-
sentations can be categorized into two primary categories:
explicit and implicit representations. Classic explicit geo-
metric representations [5, 6, 15, 24], encompassing point
clouds, voxels, and triangular meshes, have been exten-
sively employed due to their inherent simplicity and adapt-
ability. More recently, there has been growing interest
in using deep implicit representations for representing 3D
shapes and scenes. With this approach, 3D surface geome-
tries are encoded into an implicit function by neural net-
works. NeRF [14] was among the first instances to repre-
sent a scene using neural implicit representations. However,
NeRF was initially designed for novel view synthesis, and
its performance in 3D reconstruction is limited. The follow-
ing research [1, 11, 27] leveraged implicit representation to
address the incompleteness of surface reconstruction caused
by the range sensor limitation, such as noise depth readings.
Neural RGB-D [1] surface reconstruction demonstrates that
integrating depth measurements into the radiance field for-
mulation can yield more detailed and complete 3D surface
reconstructions. BNV-Fusion [11] fuses local-level neu-
ral volumes into a global neural volume, enhancing both
global completeness and fine-grained reconstruction qual-
ity. MonoSDF [27] demonstrates significant improvements
in surface reconstruction by utilizing a pre-trained depth es-
timation model, which provides complementary reconstruc-
tion cues in addition to monocular images. Despite these
advancements, a common limitation persists: while these
methods mitigate issues in reconstructing small missing re-
gions, they struggle with large occluded surface completion.

Alternatively, some research has introduced object-
centric representations [2, 10, 25] or local region represen-
tations [23, 26] to indirectly enhance scene surface comple-
tion. However, the scalability of these methods is limited
due to their reliance on category-specific or region-specific
priors, which often require pre-training with specific 3D
model datasets. This requirement poses a significant chal-
lenge in covering all categories or local regions that could
be present in a general indoor scene. In addition, iMap [20]
and NICE-SLAM [29] improve dense 3D reconstruction by
combining the advantages of neural implicit representation
with the geometry representation of the 3D SLAM system.
However, all these methods exhibit a limited capacity for
completing the surface of occluded areas at 3D scene level.
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Figure 2. Coarse-fine hierarchical octree feature volume

3. Methodology
3.1. Overview

Given a sequence of depth images and their associated cam-
era poses, our method aims to reconstruct the complete 3D
surfaces of a scene, including the visible surface and oc-
cluded surface. The pipeline of our method comprising
three stages is illustrated in Figure 3. We first convert
point clouds unprojected from given depth maps of each
scene into octree-based hierarchical feature grids (defined
in Sec.3.2). At the first stage, we train our 3D Inpainter in a
cross-scene manner using data sampled from complete 3D
meshes of scene 0,...,N-1. Each scene maintains its own oc-
tree feature volume while sharing the 3D Inpainter, which
learns contextual structure prior (Sec.3.3). At the second
stage, the complete 3D mesh is not available for the un-
seen testing scene N and only the visible points are pro-
vided from depth images. We jointly optimize its octree fea-
ture representation with our dual-decoder where the trained
3D Inpainter is frozen at this stage. The optimization re-
lies solely on the depth observations of visible surfaces as
supervision (Sec.3.4). The geo-decoder with fine-level oc-
tree features is optimized using visible points. Meanwhile,
the coarse-level octree features are optimized based on the
frozen 3D inpainter, also using the available visible points.
At the third stage, using the optimized octree representa-
tion of scene N, we extract a complete 3D mesh by pre-
dicted SDFs from the dual-decoder (Sec.3.5). In general,
the 3D inpainter is trained using cross-scene data, enabling
it to generalize on different scenes, while the geo-decoder
is optimized using the depth observations in the test scene,
which are tailored for one scene.

3.2. Hierarchical Octree Feature Volume

Initially, we need to choose an appropriate scene rep-
resentation which can encapsulate fine-grained geometric
details and contextual structure information. Similar to

NGLOD [21], we utilize learnable octree-based hierarchi-
cal feature grids to implicitly represent the entire scene’s
geometry, as shown in Figure 2. Given a sequence of depth
readings, we construct a L level octree, and store latent fea-
tures at eight corners per octree node in each level of the
tree. We randomly initialize the corner features when cre-
ating the octree and optimize them during training. The oc-
tree features at level ¢ is defined as O;. For a query point
p € R3, we compute its feature vector O;(p) by trilinear
interpolating its corresponding corner features.

In octree feature volume, fine-grained features that rep-
resent detailed geometric patterns are well-suited for re-
constructing visible surfaces. Coarse-level features encod-
ing general contextual structures are more appropriate for
occluded surface completion. Therefore, we correspond-
ingly represent visible and invisible geometry of a scene
at fine and coarse levels. In detail, we divide the hierar-
chical octree features into coarse features O, in the high-
level layer and fine feature Oy in the low-level layer as,
O = {0:0s}, Oc = {0i}im), Oy = {O0;}i=f11.
where 7 = 4 and L = 9. We feed the dual-decoder by
concatenating features at different resolution, i.e., O, to 3D
Inpainter and O to Geo-decoder. The SDF values of invis-
ible and visible surfaces are then separately inferred by the
dual-decoder.

3.3. 3D Inpainter Training Across Scenes

Considering invisible surface observations are not available
during online optimization time, we leverage 3D complete
scene meshes from multiple scenes to train a generaliz-
able 3D Inpainter. We discard the widely-adopted encoder-
decoder architecture used in BNV-Fusion [11] due to its
limited adaptability across different scene data. Instead, we
adopt a decoder-only latent optimization structure, designed
to learn contextual structure priors from cross-scene data.

Specifically, we randomly sample points p € R? includ-
ing both visible p,, and invisible points p;, i.e., p = {p,,pi}
from the complete 3D mesh of each training scene. We
further calculate their signed distances dg; as ground truth
based on the closest distances to the complete mesh sur-
faces. We feed both position encoding and coarse octree
feature retrieved by sampled point p into the 3D Inpainter
Dy, to estimate the signed distance d, as,

dp = Dip(f(p), Oc(p)), (1
where f refers to the position encoding function. We
train 3D Inpainter using binary cross entropy (BCE) loss
Cbce as,
Lbce(p) = S<dgt) : lOg(S(dp))

(1= S(dge)) - log(1 — S(dy)), @

where S(z) = 1/(1 + €*/7) is sigmoid function with a
flatness hyperparameter . We further employ two regu-
larization terms together with the BCE loss: eikonal term
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Figure 3. 1: 3D Inpainter training on Scenes 0,...,N-1. The complete 3D scene meshes are provided as ground truth. 2: Joint Geo-decoder
and octree feature volume optimization on testing Scene N. Only the visible depth images are provided as supervision, and the complete 3D
scene mesh is not available. The parameters of both the Geo-decoder and octree feature volume are updated, while 3D Inpainter parameters

are frozen. 3: 3D complete surface generation on testing Scene N.

Leir [7] and smoothness term L ,,00tn [16] as,
Leix(p) = (1= IVDr,(f(p), O DI, 3)

‘Csmooth(p) = HVDIp(f(p)v Oc(p))

4
VDLt 0t P

where € is a small perturbation. The global objective func-
tion L4, of training is defined as,

Etr (p) = ﬁbce(p) + )\eik‘ceik (p) + Asmooth[-"snwoth(p)7
(5)

where A¢;r and Agp00th are scale factors. During training,
each scene maintains its unique octree feature volume while
mutually optimizing the shared 3D Inpainter. We randomly
select one of the scenes from training Scene 0,...,N-1 and

load its feature volume. We optimize this feature volume
and the 3D Inpainter for consecutive 100 iterations and re-
peat the process for the next selected training scene. The 3D
Inpainter is trained to locate the high-level latent features
within the octree feature volume, aggregating this contex-
tual information to infer the SDFs of occluded regions.

3.4. Joint Geo-decoder and Feature Optimization
on New Testing Scene

As the depth measurements are available in the testing
scene, we can online optimize the Geo-decoder with fine-
level features, which fit this specific scene for visible ge-
ometries. On the other hand, the coarse-level features can
also be optimized using the depth reading via the frozen 3D
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Inpainter, which is used to infer the occluded geometries.
Note that the complete 3D mesh of the testing scene is not
available at this stage.

To be specific, we sample points p,, in the truncation re-
gion along the camera ray, and we further use the signed
distance between the sampled point to the beam endpoint
as the supervision dg;. During optimization, the position
encoded sampled point p,, is fed to both the Geo-decoder
Dgeo and 3D Inpainter Dy,. The Dge, utilizes fine fea-
tures Oy retrieved by point p,, while Dy, utilizes coarse
features O, retrieved by point p,, within the octree feature
volume. The estimated signed distance d,,, of visible point
Py 1 obtained by

dp, = Dgeo(f(po), Of<pv))a (6)

dpw = Dfp(f(pv)7 Oc(pv))v (7N
where f refers to the position encoding function. The global
objective function L, of optimization is defined as,
£0p (pv) = Ebce (pv)“i’Aevkﬁmk (p1))+)\smooth£sm,ooth (pv)a

8

where A\g;r and Ag00tn are scale factors. Within this p§02
cess, we only optimize the parameters of Dge,, O and O,
while the parameters of Dy, are frozen. Using the scene’s
depth measurements, we optimize the coarse-fine feature
volume tailored for the testing scene, which are used for
surface generation in the next step.

3.5. 3D Surface Generation on Testing Scene

In the surface generation phase, we generate a complete 3D
mesh using SDFs predicted from the online optimized Geo-
decoder and offline trained 3D Inpainter using the optimized
octree feature. Specifically, we uniformly sample points in
the 3D space of the testing scene. Each sampled point is
used to retrieve features from all layers of the octree. We
then apply a criterion based on the number of layers where
no features are retrieved. If the number of non-retrieved
layers exceeds a threshold o = 3, the point is classified as
an invisible point, denoted as p;; otherwise a visible point
denoted as p,,. The position encoding of p,, and its retrieved
fine octree features O go through the Geo-decoder to esti-
mate the signed distance d,,, of the visible region as,

dy, = DGeO(f(pv)a Of(pv))' )
Similar, the position encoding of p; and its retrieved coarse
octree features O, go through the 3D Inpainter to estimate
the signed distance d,,, of the occluded region as,

dpi :Dfp(f(pi)aoc(pi))' (10)

The final SDF-assigned grid samples d, = {d,,,d,, } pass
Marching Cube [12] to produce triangle mesh.

4. Experiments
4.1. Datasets, Metrics and Baselines

We evaluate the proposed method with the baselines on
two datasets: 3D-CRS and iTHOR scene dataset from AI2-

THOR [9]. Additionally, we showcase visualization re-
sults on the real-world dataset ScanNet [4]. Following
BNV [11], the standard metrics Accuracy (Accu.), Com-
pleteness (Comp.) and F1 score (F1) are employed for the
quantitative analysis. In the comparison experiments, we
aimed to demonstrate the accuracy of our proposed method
by comparing it against three baseline methods: TSDF-
Fusion [28], Go-Surf [22] and BNV-Fusion [11]. We in-
clude more details on 3D-CRS dataset building, data prepa-
ration, metrics, baselines and network architectures in the
Supplementary Material.

4.2. Evaluation on 3D-CRS dataset

We evaluated the proposed method by comparing it with
baselines on the 3D-CRS dataset. We split the 20 scenes
into 15 scenes for training and 5 scenes for testing. The per-
formance comparison with the baselines is presented in Ta-
ble 1. Our method outperforms the baselines significantly,
particularly for the Comp. and F1 scores. For the Accu.
score, our method achieves a competitive score with the
BNV-Fusion and Go-Surf, and a much higher score than
the TSDF fusion. Comp. depicts the surface complete-
ness of visible and occluded regions between the GT and
predicted 3D mesh. Our method achieves a much higher
Comp. score than the baselines because it reconstructs the
3D surface of occluded regions, while the baselines fail to
do so. Accu., on the other hand, only reflects the surface
accuracy of the predicted 3D surface compared with the
GT 3D mesh. The Accu. metrics from our method en-
compass both visible and occluded areas, offering a more
comprehensive assessment. In contrast, the Accu. reported
by the baseline methods is limited only to the visible areas.
Our Accu. score is sometimes lower than that of the BNV-
Fusion due to prediction errors in occluded regions. The ac-
curacy in reconstructing occluded surfaces thus contributes
to a lower overall average score in our method. Most impor-
tantly, the BNV-Fusion’s encoder benefits from pre-training
on the extensive ShapeNet dataset, which substantially im-
proves its accuracy in reconstructing visible surfaces. In
contrast, our method does not incorporate pre-training with
ShapeNet data.

Visualizations of the 3D mesh results in Figure 6 reveal
that the baselines could only reconstruct the surfaces of vis-
ible areas, failing to complete the surface of occluded ar-
eas. The TSDF-Fusion can complete smaller occluded areas
but tends to inaccurately merge different surfaces, resulting
in inflated surfaces. BNV-Fusion has a very limited ability
to complete the occluded surface, especially when working
with a sparse set of depth images. In contrast, our method
reconstructed the accurate and smooth 3D surface of both
visible and occluded areas, particularly evident in areas
like the backside of the sofa and the floor under furniture
(columns 1,2,3). Moreover, our method also provides more
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Method Scene01 Scene05 Scene06 Scene09 Scenel7
Accu./Comp./F1  Accu./Comp./F1  Accu./Comp./F1 Accu./Comp./F1  Accu./Comp./Fl
TSDF Fusion [28]  84.3/65.8/73.9 92.1/66.2/77.0 79.2/56.0/65.6 81.3/51.6/63.1 86.1/61.3/71.6
Go-Surf [22] 88.6/75.3/81.4 95.8/71.3/81.8 90.5/71.7/80.0 88.4/64.7/74.7 87.4/71.1/78.4
BNV-Fusion [11] 93.7/81.7/87.3 95.2/81.2/87.7 89.7/74.9/81.6 89.4/68.1/77.3 94.4/76.6/84.6
Ours 91.1/92.3/91.7 94.3/90.0/92.1 88.0/89.0/88.5 88.2/83.3/85.7 90.6/92.0/91.3

Table 1. Performance comparison between the proposed method and baselines on the 3D-CRS dataset.

Method FloorPlan207 FloorPlan210 FloorPlan213 FloorPlan220 FloorPlan225 FloorPlan229
Accu./Comp./F1  Accu./Comp./F1  Accu./Comp./F1 ~ Accu./Comp./F1 = Accu./Comp./F1  Accu./Comp./F1

TSDF Fusion [28]  80.3/64.2/71.3 86.0/68.9/76.5 85.8/67.9/75.8 80.8/66.4/72.9 78.3/62.0/69.2 76.6/67.4/71.7
Go-Surf [22] 91.0/70.2/79.3 92.2/71.0/80.2 91.0/70.2/79.2 83.8/67.0/74.5 88.8/67.5/76.7 86.3/73.1/79.2
BNV-Fusion [11] 92.0/71.6/80.5 93.3/73.6/82.3 93.9/71.9/81.4 89.1/70.6/78.8 86.5/69.9/77.3 93.1/76.2/83.9

Ours 91.3/90.1/90.7 92.1/92.6/92.3

89.0/88.3/88.6

86.0/89.7/87.8 87.1/88.8/87.9 87.2/89.4/88.3

Table 2. Performance comparison between the proposed method and baselines on the iTHOR dataset.

VA

TSDF-Fusion B

BNV-Fusion

Ours Ground Truth

Figure 4. Visual comparison of room layout after furniture re-
moval on the 3D-CRS dataset

complete 3D shapes of complex furniture, such as tables,
chairs, potted plants and ceiling lamp (columns 3,4,5,1), by
accurately inpainting backside and bottom. These visualiza-
tions effectively highlight the superiority of our method in
achieving more complete 3D surface reconstructions, where
the baselines tend to leave many incomplete areas or holes.

To offer a clearer visualization of the occluded surfaces
within room layouts, we present a visual comparison in Fig-
ure 4, showing room layouts after furniture removal on the
3D-CRS dataset. It is evident that the room layout results
generated by the baseline methods contain many large miss-
ing areas. In contrast, our method provides a complete room
layout surface without obvious missing regions.

4.3. Evaluation on iTHOR dataset

We conducted further evaluations of our proposed method
against baselines on the iTHOR dataset. We randomly se-
lected 10 scenes from the iTHOR dataset for training and
used the remaining 3 different scenes for testing. To ensure
robustness in our evaluation, we repeated this selection pro-
cess twice, thereby obtaining evaluation results from a total
of 6 distinct scenes. Our evaluation includes both quanti-
tative and qualitative comparisons, with results presented

Figure 5. Visualization on ScanNet dataset: row1-Ours, row2-GT.

in Table 2 and Figure 7, respectively. On all the testing
sequences, our method outperformed the baselines on the
Comp. and F1 metrics by a significant margin. Our method
achieved a similar Accu. score to that of the BN'V-Fusion
and Go-Surf, while outperforming the TSDF-Fusion. These
results demonstrate that our reconstructions are more com-
plete, as evidenced by our high Comp. scores.

We present visual comparison results on the iTHOR
dataset in Figure 7. All the methods can reconstruct the
complete 3D surface of visible areas. However, our method
uniquely reconstructs occluded 3D surfaces, such as the un-
seen sides of the sofa, the wall behind the TV, and the floor
beneath the furniture, which areas are missing in the base-
line’s reconstructions. Most importantly, our method goes
beyond just inpainting large and planar missing parts like
the surfaces of the sofa, floors, and walls (column 1,2,3). It
also accurately reconstructs high-frequency object surfaces,
such as the backside of a lamp pole (column 5), the leaf of
the potted plant (column 5) and the unseen parts of deco-
rations on the table (columns 4,6). In BNV-Fusion results,
these surfaces are typically missing, while in TSDF-Fusion
results, they often appear inflated.

4.4. Evaluation on ScanNet dataset

Despite the inability to conduct quantitative evaluations on
the ScanNet [4] dataset due to their incomplete pseudo-
GT 3D meshes, we qualitatively demonstrate our method’s
adaptability to this real-world dataset in Figure 5. Owing to
ScanNet’s lack of complete meshes for direct training, we
trained our inpainter on 3D-CRS and tested it on ScanNet.
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Figure 6. Visual comparison on the 3D-CRS dataset: row1-TSDF Fusion, row2-BNV Fusion, row3-Ours, row4-GT.

Figure 7. Visual comparison on the iTHOR dataset: row1-TSDF Fusion, row2-BNV Fusion, row3-Ours, row4-GT.

The Geo-decoder and octree features were optimized using
depths from the ScanNet scenes. Our method is observed to
effectively complete areas missing from the pseudo-GT 3D
mesh provided by the ScanNet.

4.5. Ablation Study

To demonstrate the individual effectiveness of each compo-
nent in our method, we conducted ablation studies using the
3D-CRS dataset. Since our contributions mainly include 3D
Inpainter and coarse-fine features mechanism, our ablation
study analyses the impact of our designs from both aspects.

We train five different variations: 1) our method without
3D Inpainter; 2) our method without training 3D Inpainter
on cross-scene data; We optimize the 3D Inpainter together
with Geo-decoder only using visible depth on testing Scene.
3) our method only uses fine features without coarse fea-
tures; 4) our method only uses the coarse features without
fine features; 5) our full method. The average values of
the evaluation metrics across five testing scenes from the
3D-CRS dataset are given in Table 4. In addition, we con-
ducted an analysis to investigate how varying the number of
available depth frames per scene impacts the performances
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Method 50 Depth Frames 100 Depth Frames 150 Depth Frames  All Depth Frames
Accu./Comp./F1 Accu./Comp./F1 Accu./Comp./F1 Accu./Comp./F1
TSDF Fusion [28]  81.8/61.6/70.2 83.4/61.4/70.7 84.0/61.1/70.7 84.6/60.2/70.2
Go-Surf [22] 87.5/68.8/77.0 90.4/69.6/78.5 91.7/70.3/79.5 90.1/70.8/79.3
BNV-Fusion [11] 91.5/62.3/74.0 91.9/68.5/78.5 92.4/74.3/82.3 92.5/76.5/83.7
Ours 88.3/87.5/87.9 89.1/88.1/88.6 89.1/88.4/88.7 90.4/89.3/89.9

Table 3. Ablation study of the depth frame numbers in each scene on the 3D-CRS Dataset.

Method Accu. Comp. Fl1
Ours w/o Inpainter 914 822 86.5
Ours w/o Cross-Scene Train Inpainter  83.3 82.4 82.9
Ours only Coarse Feature 86.0 88.5 87.2
Ours only Fine Feature 86.6 82.2 84.3
Ours-full 89.1 90.1 89.7

Table 4. Ablation study on the 3D-CRS Dataset.

of our methods in Table 3.

3D Inpainter: We first analyse the impact of the 3D In-
painter, specifically trained across various scenes. From Ta-
ble 4, without 3D Inpainter or cross-scene training, these
two variations achieve slightly higher Comp. scores com-
pared to BN'V-Fusion but much lower score than our full
method. It effectively illustrates the individual contribu-
tion to the design of the 3D Inpainter. The first variation
presents a similar Accu. score with BNV-Fusion and our
full method, while the second variation exhibits a lower
Accu. score. This is because the Accu. metric of dual-
decoder reflects the average performance across both oc-
cluded and visible surface reconstructions. The relatively
lower Accu. in reconstructing occluded surfaces thus bring-
ing down this average value. This also confirms that only a
well-trained 3D Inpainter can accurately predict occluded
surfaces. We also provide a visual comparison in Figure 8.

Coarse-Fine Feature: We secondly analyse the impact
of the coarse-fine feature mechanism which distinctively
represents occluded and visible regions within 3D scenes.
As shown in Table 4, when we exclusively use either the
coarse or fine features to feed into the dual-decoder, there is
a noticeable decrease in both the Accu. and Comp. scores.
When only coarse features are utilized, the performance de-
cline can be attributed to the inadequate geometric details
within coarse features, which is not precise enough for the
accurate reconstruction of visible regions. On the other
hand, when solely relying on fine features, the score de-
crease is due to their limited coverage within the 3D space,
where the 3D points sampled in the occluded regions fail
to find their associated fine-level features. Thus, the Comp.
score experiences a significant drop in this case. This limita-
tion results in insufficient contextual structure clues within
the fine features, which cannot handle the occluded surface
reconstruction. These ablation results indirectly validate the
effectiveness of our coarse-fine feature mechanism, under-
scoring its contribution to the overall performance.

Different Numbers of Depth Frames: We conducted
an analysis to understand the impact of different numbers

Figure 8. Left: 3D Inpainter w/o cross-scene training; Right: 3D
Inpainter with cross-scene training.

of depth frames per scene on the optimization process for
the Geo-decoder and octree feature volume. This online
optimization was performed using four different sets, each
comprising 50, 100, 150, and the full number of depth im-
ages, respectively. The average values of the evaluation
metrics across five testing scenes for both the baselines and
our approach are given in Table 3. As the number of depth
frames is reduced, the coverage of visible areas in the scene
decreases, leading to an increase of occluded regions. For
the baselines, their Comp. score significantly decreases due
to the increase of occluded regions lacking depth measure-
ments. This decline occurs despite the BNV-Fusion’s de-
coder being pre-trained on the extensive ShapeNet dataset.
Our Comp. score also remains steady with only a slight
drop, even with a very limited number of depth frames. This
consistent performance is attributed to our 3D Inpainter’s
capacity to accurately complete and reconstruct occluded
surfaces that were invisible from the given depth frames.

5. Conclusion

In this paper, we propose a novel indoor 3D surface recon-
struction method using a sequence of depth images. The
main new feature is that our method not only reconstructs
the accurate 3D surface of the visible areas but also com-
pletes the occluded surfaces. Our core novelty lies in the
dual-decoder architecture incorporating coarse-fine hierar-
chical octree neural representations, designed to reconstruct
occluded and visible regions respectively. We evaluated
the proposed method on two benchmarks, 3D-CRS and
iTHOR, showing significant improvements in completion,
especially for the occluded regions, surpassing the prior
works. The experimental results verify our method’s gen-
eralization capability of completing the 3D geometry in un-
seen scenes. Lastly, we plan to release our 3D-CRS dataset
for future research once its license receives approval from
Bosch LLC.
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