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Abstract
In this paper, we present a novel indoor 3D reconstruc-

tion method with occluded surface completion, given a se-
quence of depth readings. Prior state-of-the-art (SOTA)
methods only focus on the reconstruction of the visible areas
in a scene, neglecting the invisible areas due to the occlu-
sions, e.g., the contact surface between furniture, occluded
wall and floor. Our method tackles the task of complet-
ing the occluded scene surfaces, resulting in a complete 3D
scene mesh. The core idea of our method is learning 3D ge-
ometry prior from various complete scenes to infer the oc-
cluded geometry of an unseen scene from solely depth mea-
surements. We design a coarse-fine hierarchical octree rep-
resentation coupled with a dual-decoder architecture, i.e.,
Geo-decoder and 3D Inpainter, which jointly reconstructs
the complete 3D scene geometry. The Geo-decoder with
detailed representation at fine levels is optimized online for
each scene to reconstruct visible surfaces. The 3D Inpainter
with abstract representation at coarse levels is trained of-
fline using various scenes to complete occluded surfaces.
As a result, while the Geo-decoder is specialized for an in-
dividual scene, the 3D Inpainter can be generally applied
across different scenes. We evaluate the proposed method
on the 3D Completed Room Scene (3D-CRS) and iTHOR
datasets, significantly outperforming the SOTA methods by
a gain of 16.8% and 24.2% in terms of the completeness of
3D reconstruction. 3D-CRS dataset including a complete
3D mesh of each scene is provided on project webpage1.

1. Introduction
Interactable 3D scene reconstruction at room scale is an
enabling technology for a large variety of AR/VR and
embodied AI applications, e.g., virtual touring, room re-
arrangement, teleoperation etc. Over recent decades, nu-
merous methods [1, 3, 5, 11, 19, 24] have been developed to
reconstruct 3D surfaces. These methods have now become
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Figure 1. Occluded Surface Completion: Our approach marks
a novel 3D surface reconstruction, uniquely completing occluded
surfaces in areas invisible to existing methods. It enables more
accurate 3D modelling of furniture and the reconstruction of
furniture-obscured room regions, significantly advancing indoor
scene reconstruction.

highly automated and capable of producing high-quality
outputs. However, a critical aspect in advancing scene rep-
resentation—making it editable, re-configurable, and suit-
able for object manipulation in mixed reality and embod-
ied AI applications—lies in completing occluded areas. In
mixed reality scenarios, for instance, it is crucial to avoid
the appearance of occluded parts like the backside of a sofa
or the holes on the floors during the repositioning of fur-
niture in a living room. Ensuring a complete 3D shape of
the furniture and a seamless layout is essential for effec-
tive object manipulation and scene editing. However, most
existing methods [1, 5, 11, 24] fall short in addressing this
issue, as they predominantly focus on reconstructing visi-
ble regions where sensor measurements are available. This
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