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Abstract

Decentralized federated learning (DFL) facilitates col-
laborative model training across multiple connected clients
without a central coordination server, thereby avoiding the
single point of failure in traditional centralized federated
learning (CFL). However, DFL exhibits increased suscep-
tibility to Byzantine attacks owing to the lack of a respon-
sible central server. Furthermore, a benign client in DFL
may be dominated by Byzantine clients (more than half of
its neighbors are malicious), posing significant challenges
for robust model training. In this work, we propose DFL-
Dual, a novel Byzantine-robust DFL method through dual-
domain client clustering and trust bootstrapping. Specif-
ically, we first propose to leverage both data-domain and
model-domain distance metrics to identify client discrep-
ancies. Then, we design a trust evaluation mechanism
centered on benign clients, which enables them to evalu-
ate their neighbors. Building upon the dual-domain dis-
tance metric and trust evaluation mechanism, we further
develop a two-stage clustering and trust bootstrapping tech-
nique to exclude Byzantine clients from local model aggre-
gation. We extensively evaluate the proposed DFL-Dual
method through rigorous experimentation, demonstrating
its remarkable performance superiority over existing robust
CFL and DFL schemes.

1. Introduction
Federated learning (FL) is a popular distributed machine
learning paradigm that enables collaborative model training
across multiple clients without centralizing their raw train-
ing data [7, 15, 20, 39]. The traditional centralized feder-
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ated learning (CFL) framework relies on a central server to
coordinate the distributed model training process [3]. This
dependence on a central entity may incur a single point of
failures [16, 22]. Specifically, the normal model training
process can be disrupted in cases where the central server
experiences a crash or is hacked. Decentralized federated
learning (DFL) [10, 12, 26] facilitates collaborative model
training among connected clients without a central coordi-
nation server, thereby avoiding the single-point-of-failure
issue. DFL has given rise to a new wave of distributed learn-
ing methods [17, 25, 35] that achieve comparable model
accuracy to state-of-the-art CFL approaches while offering
several significant advantages (e.g., fault tolerance, scala-
bility, and flexibility) [18].

However, similar to CFL, DFL remains vulnerable to
Byzantine attacks due to the inaccessibility of peer clients’
local training data and the uninspectable local training pro-
cess [9, 23, 24]. Specifically, malicious clients may tam-
per with local training data (i.e., data poisoning attacks) or
falsify model parameters (i.e., model poisoning attacks) to
craft malicious models to disrupt the model training pro-
cess. Furthermore, DFL exhibits increased susceptibility to
Byzantine attacks owing to the lack of a responsible cen-
tral server. Consequently, effective Byzantine-robust DFL
schemes (i.e., defense mechanisms) are highly desired to
attain satisfactory DFL model training performance.

Thus far, researchers have developed diverse defense
mechanisms against Byzantine attacks in CFL [5, 28, 34,
38]. The basic idea of these Byzantine-robust CFL ap-
proaches is that the central server tries to identify and ex-
clude malicious local models from aggregation. However,
their direct application to DFL is impeded due to the ab-
sence of coordination from a central entity. Furthermore,
a benign client in DFL may be overwhelmed by Byzantine
clients (i.e., most of its neighbors are malicious), which ex-
acerbates the difficulty in identifying malicious clients.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24756



While recent studies have focused on the development
of Byzantine-robust DFL schemes [6, 8, 27, 35], it is worth
noting that, to the best of our knowledge, they have not
explicitly accounted for the practical and crucial problem
setting where malicious neighbors may dominate benign
clients, and the data distribution among clients is highly
non-independent and identically distributed (non-IID).

In this work, we propose DFL-Dual, a novel Byzantine-
robust DFL method through dual-domain client clustering
and trust bootstrapping. DFL-Dual employs multiple dis-
tance metrics in both model-domain (cosine similarity and
Euclidean distance) and data-domain (Wasserstein distance)
to distinguish benign clients from Byzantine ones. Hence,
even under a rigorous adversary setting where the data
is highly non-IID and Byzantine clients dominate benign
ones, DFL-Dual remains resilient. Specifically, we first
propose to leverage both model-domain Euclidean distance
and data-domain Wasserstein distance to identify disparities
among clients. Then, we establish a trust evaluation mech-
anism centered on benign clients, leveraging cosine simi-
larities of their local models with those of their neighbors
for assessment. Building upon the dual-domain distance
metrics and trust evaluation mechanism, we further devise a
two-stage clustering and trust bootstrapping technique. The
first stage generates a divergence rate for each client, while
the second stage excludes malicious local models from
model aggregation. The main contributions of this work are
summarized as follows: 1) A Novel Byzantine-robust DFL
Framework: To our best knowledge, DFL-Dual is the first
Byzantine-robust DFL framework that can effectively de-
fend against both untargeted and targeted Byzantine attacks
under a rigorous adversary setting with exceeding 50%
Byzantine clients and highly non-IID data distributions; 2)
Multi Distance Metric Utilization: We leverage multiple
distance metrics in both model-domain and data-domain to
identify disparities among clients. This multi-metric combi-
nation enables accurate discrimination between Byzantine
clients and benign ones; 3) Two-stage Clustering and Trust
Bootstrapping: We design a two-stage clustering and trust
bootstrapping technique. The first stage generates a diver-
gence rate for each client, while the second stage excludes
malicious local models from model aggregation; and 4)
Extensive Performance Evaluation: We thoroughly eval-
uate DFL-Dual through extensive experiments on various
datasets, models, adversary settings, and Byzantine attacks.
The results validate its significant performance superiority
over existing schemes.

2. Preliminaries and Related Work

2.1. Decentralized Federated Learning

Consider a DFL system that consists of a set N =
{1, 2, . . . , N} of clients. Each client i ∈ N has a private

training dataset Di containing |Di| data samples and holds
a local model θi. Formally, DFL aims to find a model θ that
minimizes the weighted average of losses among N clients:

min
θ

1

N

N∑
i=1

Fi (θ;Di) , (1)

where Fi (θ;Di) = 1
|Di|

∑
ζ∈Di

F (θ; ζ) is the local
loss function of client i. DFL usually involves T =
{1, 2, . . . , T} rounds. In each round t ∈ T , the following
procedures are sequentially executed.
• Local Model Training: Each client i samples a mini-batch

of training samples from its local training dataset and
computes a stochastic gradient gt

i. Then, client i updates
its local model as

θ
t+ 1

2
i = θt

i − ηgt
i, (2)

where η denotes the learning rate, θt
i represents the local

model of client i at the beginning of the t-th global train-
ing round, and θ

t+ 1
2

i stands for the pre-aggregation local
model of client i in round t.

• Model Exchange and Aggregation: Each client i sends its
pre-aggregation local model θt+ 1

2
i to its connected neigh-

bors and receives their counterparts. Then, each client i
aggregates the received pre-aggregation local models (in-
cluding its own) to update its local model as

θt+1
i (Gi) = Agg

({
θ
t+ 1

2

k : k ∈ Gi
})

, (3)

where Gi denotes the sub-graph centered on client i (in-
cluding client i and its neighbors), Agg (·) represents the
adopted aggregation rule (e.g., the consensus update rule
in [19]), and the resulting θt+1

i is the post-aggregation
local model of client i in round t.

2.2. Byzantine-Robust CFL and DFL

In CFL, a commonly used aggregation rule is FedAvg [20].
However, the post-aggregation local model of a benign
client can be easily manipulated by a malicious local model
crafted by Byzantine clients in FedAvg [4]. To thwart such
Byzantine attacks and achieve secure model training, re-
searchers have developed various Byzantine-robust aggre-
gation rules [4–6, 9, 27, 33, 36, 37].

For example, Krum [4] aggregates a client’s received
local models by selecting the one with the smallest sum
of Euclidean distances to its subset of neighboring local
models. Median and Trimmed Mean [36] are two ro-
bust aggregation rules based on coordinate-wise statistics.
They compute the coordinate-wise median and trimmed av-
erage as the aggregated value for each model parameter
among all received local models of a client. By employing
FLtrust [5], a benign client can assign a low trust score to
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Figure 1. Framework of DFL-Dual.

a neighbor’s pre-aggregation local model if it significantly
deviates from the client’s own pre-aggregation local model.
The recently proposed FLdetector [37] investigated the
defenses from a new perspective, i.e., detecting malicious
clients by checking their model-updates consistency. Thus,
each client can only aggregate shared local models from
neighbors detected as benign. The work in [27] proposed
Bristle, which enables each client to securely update its
model by designing a fast distance-based prioritize and a
novel performance-based integrator.

The work in [8] applied Median, Trimmed Mean,
and Krum aggregation rules to DFL. An iterative filtering
rule is designed for DFL in [30], where a benign client re-
peatedly discards the model with the largest Euclidean dis-
tance to the average of its neighbors’ models. Nevertheless,
existing studies leave a notable gap in understanding how
to effectively establish a Byzantine-robust DFL framework
for practical and essential problem settings where malicious
neighbors may overwhelm benign clients and the data dis-
tribution among clients is highly non-IID.

3. Threat Model
• Attacker’s Goal: The attacker aims to send well-crafted

poisoned pre-aggregation local models via compromised
clients to benign clients to disrupt the DFL model train-
ing process. We consider both untargeted attacks (aiming
to ruin the model performance indiscriminately) and tar-
geted attacks (aiming to manipulate the model behavior
on specific attacker-chosen inputs) in this work.

• Attacker’s Capability: We consider a rigorous scenario
where the attacker can compromise over 50% of the en-
tire client population. Moreover, the compromised clients
can strategically cluster around benign clients and dom-
inate them. That is, more than half of a benign client’s
neighbors can be Byzantine clients.

• Attacker’s Background Knowledge: We consider two

cases of attacker’s background knowledge (i.e., full
knowledge and partial knowledge). Besides the local
training data and models at compromised clients in the
partial knowledge scenario, the attacker also knows the
pre-aggregation local models on every benign client in
the full knowledge scenario. Note that the full knowledge
scenario has limited applicability in practice as we cannot
ensure any two clients are connected. We use it to evalu-
ate our defensive performance against adaptive attacks.

4. Methodology

4.1. Overview of DFL-Dual

DFL-Dual relies on benign clients to identify and filter out
malicious pre-aggregation local models crafted by compro-
mised neighbors in each training round. Without loss of
generality, we take a benign client i and its connected neigh-
bors (forming a sub-graph Gi) as a concrete example to
illustrate how DFL-Dual works. The framework of DFL-
Dual is presented in Figure 1, and the workflow in each
round of model aggregation at benign client i is as follows:

• Dual-Domain Distance Computation: After receiving all
pre-aggregation local models from its neighbors, the be-
nign client i computes pairwise Euclidean distances be-
tween any two pre-aggregation local models in Gi. Be-
sides, benign client i performs privacy-respecting model
inversion on all pre-aggregation local models of clients in
Gi to synthesize a corresponding dummy dataset for each
client. Then, it computes pairwise Wasserstein distances
among all synthesized dummy datasets. The weighted
sum of these two distances constitutes the dual-domain
distance, which will be used for client clustering.

• Cosine Similarity Computation: Benign client i computes
the cosine similarity between its own pre-aggregation lo-
cal model and its neighbors’ counterparts, which will be
used to obtain the trust score.
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• Two-stage Clustering and Trust Bootstrapping: For each
client j ∈ Gi, benign client i clusters remaining clients
Gi\j into two groups based on their dual-domain dis-
tances to client j. The trust score of each group (defined
as the average cosine similarity of the pre-aggregation lo-
cal models in the group w.r.t client i) bootstraps the group
selection, which allows to determine a divergence rate for
each client j ∈ Gi. Then, benign client i clusters all
clients in Gi into two groups based on the generated di-
vergence rates, with the trust score of each group boot-
strapping the local model aggregation for client i.

4.2. Dual-Domain Distance Computation

Unlike existing studies (e.g., [4, 5, 8, 30]) that rely on
single-domain distances to detect Byzantine clients, DFL-
Dual utilizes dual-domain distances to enable each benign
client to identify its Byzantine neighbors more accurately.

4.2.1 Model-Domain Distance Computation

Following prior works (e.g., [4, 30]), we employ the Eu-
clidean distance (ED) metric to measure the discrepancies
between benign and Byzantine clients in the model domain.
Formally, the Euclidean distance Eij (θi,θj) between two
local models θi and θj is computed as

Eij (θi,θj) = ∥θi − θj∥2, (4)

where ∥ · ∥2 denotes the ℓ2-norm of a vector. Generally, a
larger Euclidean distance means greater discrepancy.

However, the Euclidean distance metric suffers from the
curse of dimensionality [11]. Specifically, deep models can
be viewed as high-dimensional vectors, and usually, the Eu-
clidean distance is unable to distinguish poisoned models
from benign ones in high-dimensional space. Hence, we
further introduce the data-domain distance metric below.

4.2.2 Data-Domain Distance Computation

In DFL, no client has access to others’ private training data.
Consequently, a natural question arises: how can we ob-
tain data-domain distances to reveal the disparities between
Byzantine and benign clients? To answer this question, we
introduce a privacy-respecting model inversion method to
obtain a dummy dataset for each client.

1) Privacy-Respecting Model Inversion. Inspired by
Deep Leakage from Gradients (DLG) [40] that infers private
training data of clients from their shared gradients in FL,
we introduce a privacy-respecting model inversion method
to obtain a dummy dataset for each client. The basic idea
of DLG is randomly generating dummy data samples and it-
eratively updating them by matching the dummy gradients
derived from dummy data with clients’ shared actual gradi-
ents. However, to avoid privacy leakage of clients as in DLG

and highlight the discrepancies among different clients’ un-
derlying data distributions, we make the following three-
fold adaptations to DLG.
• First, we allow each client i to perform E epochs of

local training via mini-batch SGD with a batch size of
B. Then, each client shares the pre-aggregation lo-
cal model rather than raw gradient to its neighbors
along with the epoch number E and mini-batch size
B. In this way, client i shares an equivalent gradient(
θ
t+1/2
i − θt

i

)
/ (E|Di|/B) in each training round t.

• Second, we introduce a scaling factor s(t) (i.e., s to the
power of t) in each round t to amplify the differences
among the equivalent gradients of different clients, espe-
cially in later training rounds where the equivalent gradi-
ents start to cancel out (approaching 0).

• Third, unlike DLG that optimizes both feature x′
i and label

y′i of each dummy data sample, we propose to optimize
only x′

i, while y′i is sampled uniformly at random from
all possible labels of the dataset and fixed.
Therefore, the dummy dataset for client i in round t is

generated by solving the following optimization problem:

x′∗
i = arg min

x′
i

∥
∂ℓ

(
(x′

i, y
′
i) ;θ

t
i

)
∂θt

i

−
s(t)

(
θ
t+1/2
i − θt

i

)
E|Di|/B

∥22,

(5)
where x′

i is the dummy feature to be optimized and ℓ (·) is
the loss function. We will show that the optimal solution x′∗

i

is close to the original data feature xi from the perspective
of distribution (without disclosing pixel-level private infor-
mation), thus enabling each benign client to assess its neigh-
bors in the data domain.

2) Wasserstein Distance Determination. We use the
Wasserstein distance (WD) [29] between generated dummy
datasets to capture the data-domain divergences among
clients. The Wasserstein distance between any two dummy
datasets (x′

i, y
′
i) and

(
x′
j , y

′
j

)
of clients i and j is given as

Wij

(
x′
i, x

′
j

)
=

l∑
c=1

m∑
d=1

Wass
(
x′,c,d,
i , x′,c,d,

j

)
, (6)

where Wass (·, ·) is the WD between any two vectors,
x′,c,d,
i and x′,c,d,

j denotes the vector of all samples with fea-
ture d and label c in the dummy datasets of clients i and j,
respectively, and l and m are the total number of labels and
features of generated dummy datasets, respectively.

4.2.3 Dual-domain Distance Calculation

After receiving the pre-aggregation local models from its
neighbors, benign client i clips the weighted sum of Eu-
clidean distance and Wasserstein distance of any two clients
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in the sub-graph Gi to obtain the pairwise dual-domain dis-
tance as follows:

Dij = min (Wij + αEij , C1) ,∀(i, j) ∈ Gi, (7)

where Dij is the dual-domain distance between clients i and
j, with α and C1 being tunable empirical parameters.

4.3. Trust Score Determination

To facilitate the accurate identification of Byzantine neigh-
boring clients for benign clients, we further introduce the
cosine similarity (CS) distance metric. It is a dimension-
less metric with values falling within [−1, 1], which helps
achieve fair and robust evaluation of models under different
attacks and environments. Formally, the cosine similarity
between two models θi and θj is computed as

Sij (θi,θj) =
⟨θi,θj⟩

∥θi∥2 · ∥θj∥2
. (8)

Clearly, a smaller cosine similarity value Sij (θi,θj) means
the two models deviate from each other more significantly.

Then, we introduce the trust score (TS) of a client group
from a benign client’s perspective. Specifically, we define
the trust score of a client group as the average cosine sim-
ilarity values of the corresponding pre-aggregation local
models w.r.t. that of a benign client. Mathematically, the
trust score of benign client i to one group Q of its neigh-
bors is computed as

TSi (Q) =
1

|Q|
∑
k∈Q

Sik. (9)

The trust score will bootstrap the selection of a benign
group of neighbors for benign clients, as elaborated below.

4.4. Two-stage Clustering and Trust Bootstrapping

Large divergences in models and data among clients are
common in DFL, especially when the data distribution
among clients is highly non-IID. Hence, instead of sim-
ply rejecting pre-aggregation local models with large diver-
gences, we propose a two-stage clustering and trust boot-
strapping (TB) mechanism, whose workflow is as follows:
• Stage 1: Dual-domain Distance-based Clustering and

Trust Bootstrapping. For each client j ∈ Gi, benign client
i clusters remaining clients Gi\j into two groups Mj1

and Mj2 based on their dual-domain distances to client
j. That is,

Mj1,Mj2 = 2-Median ({Dkj , k ∈ Gi\j}) . (10)

Then, benign client i bootstraps the selection of the group
M∗

j for client j with a higher trust score, which is

M∗
j =

{
Mj1, TSi (Mj1) > TSi (Mj2) ,
Mj2, otherwise. (11)

Algorithm 1: DFL-Dual

1 Inputs: Client number N , communication topology
G, global training rounds T , Clipping parameters
C1 and C2.

2 Outputs: Local models θT
i for each client i ∈ N .

3 Initialization: Local models θ0
i for each client

i ∈ N .
4 for t ∈ {1, 2, . . . , T} do
5 for benign client i ∈ N in parallel do
6 θ

t+1/2
i ← Local update by (2).

7 end
8 for benign client i ∈ N in parallel do
9 Ekj ,∀(k, j) ∈ Gi ← Compute ED by (4).

10 Wkj ,∀(k, j) ∈ Gi ← Compute WD by (6).
11 Dkj ,∀(k, j) ∈ Gi ← Compute dual-domain

distance by (7).
12 Sij ,∀j ∈ Gi ← Compute CS by (8).
13 Mj1,Mj2, j ∈ Gi ← Clustering by (10).
14 M∗

j , j ∈ Gi ← Bootstraps selection by (11).
15 rj , j ∈ Gi ← Obtain divergence rate by (12)

and (13).
16 Ni1, Ni2, j ∈ Gi ← Clustering by (14).
17 N∗

i , j ∈ Gi ← Bootstraps selection by (15).
18 θt+1

i (N∗
i )←Model aggregation by (3).

19 end
20 end

Furthermore, benign client i computes the divergence rate
rj for client j based on the selected groups M∗

j and M∗
i

as follows:
rj = min (qj/qi, C2) (12)

where
qj =

∑
k∈M∗

j

Djk, qi =
∑

k∈M∗
i

Dik, (13)

and C2 is a tunable empirical parameter.
• Stage 2: Divergence Rate-based Clustering and Trust

Bootstrapping. Based on the divergence rates of client
j ∈ Gi, benign client i first clusters all clients j ∈ Gi into
two groups Ni1 and Ni2, i.e.,

Ni1, Ni2 = 2-Median ({rj , j ∈ Gi}) . (14)

Benign client i then bootstraps the selection of the group
N∗

i with a higher trust score as follows:

N∗
i =

{
Ni1, TSi (Ni1) > TSi (Ni2) ,
Ni2, otherwise. (15)

The pre-aggregation local models in the finally selected
group N∗

i are aggregated to obtain the post-aggregation lo-
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Figure 2. The performance comparison between DFL and DFL-
Dual without Byzantine attacks.

cal model for client i. The details of the proposed DFL-Dual
method are summarized in Algorithm 1.

5. Experiments
5.1. Experimental Setup

Taking Figure 1 (a) as an example of the decentralized com-
munication topology, we evaluate DFL-Dual on different
datasets and various models with two performance metrics
of Accuracy (ACC) and Attack Success Rate (ASR). Specif-
ically, we evaluate DFL-Dual on MNIST [14] and Fashion-
MNIST [31] using Logistic Regression (LR), Fully Con-
nected (FC), and Convolutional Neural Network (CNN),
and on CIFAR-10 [13] using ResNet-18. We adopt the same
method in [5, 38] to simulate different non-IID data distri-
bution degrees. Specifically, the non-IID degree is captured
by a sample allocation probability p, with larger p indicat-
ing a higher non-IID degree. We consider both untargeted
and backdoor attacks. The untargeted attacks include Label
Flipping Attack, Krum Attack [9], and Back-Gradient At-
tack [21], while the targeted attacks include Scaling Attack
[1], DBA Attack [32], and A little is Enough Attack [2]. We
take 6 aggregation methods (i.e., DFL [19], DFLTrust [5],
DFLDetector [37], Multi-Krum [4], BridgeM [8], and
IOS [30]) as baselines. Notably, for those designed for CFL,
we trim them to fit in the DFL scenario. All experiments
are conducted using PyTorch 2.0 on a machine with 2 RTX
4090 GPUs. The detailed experimental settings and param-
eters are provided in the supplementary material.

5.2. Convergence Performance of DFL-Dual

We first consider an ideal case that all 10 clients in Figure 1
(a) are benign with the non-IID degree being 0.8. Figure 2
shows the model performance via DFL-Dual and vanilla
DFL, and we find DFL-Dual converges as nicely as vanilla
DFL when no Byzantine attacks happen.

5.3. Privacy-respecting Property of DFL-Dual

In the model inversion process, DFL-Dual generates a
dummy dataset (with 10 samples for MNIST and Fashion-
MNIST, and 5 samples for CIFAR10, for each class) based

Original

ResNet18

CNN

Original

Original

FC

Figure 3. Illustration of original and dummy data samples.

on a client’s pre-aggregation local model. Figure 3 illus-
trates the original images and the generated dummy sam-
ples (images) by the model inversion process in DFL-Dual.
We find from this figure that it is nearly impossible to in-
fer any private information from the generated dummy data
samples, and thus verifies the privacy-respecting property
of DFL-Dual.

5.4. Defense against Untargeted Attacks

The averaged accuracy of different models (CNN, FC, and
LR) trained on various datasets using different aggregation
methods is shown in Table 1. It is seen from the table that
DFL-Dual consistently exhibits the highest accuracy under
different untargeted attacks on almost all of the training
tasks compared to other baselines. This verifies the effec-
tiveness and robustness of the proposed DFL-Dual method.

Def
Src MNIST Fashion CIFAR10

CNN LR CNN FC ResNet18

DFL (No Attack) 95.39 89.84 84.85 82.67 49.96

L
ab

el
Fl

ip
pi

ng

DFLTrust 18.28 1.11 12.8 53.21 10
DFLDetector 33.84 89.9 84.06 36.36 29.58
Multi-Krum 36.45 89.83 84.37 60.4 25.09

DFL 26.05 15.40 31.78 20.85 25.3
BridgeM 50.31 44.76 61.12 66.17 34.89

IOS 0.24 0.95 0.51 0.57 20.59

DFL-Dual 96.64 88.97 83.98 82.03 49.06

K
ru

m

DFLTrust 20.01 1.11 14.76 64.33 10
DFLDetector 22.01 17.66 32.91 31.5 22.08
Multi-Krum 30.35 24.01 27.42 32.08 10

DFL 71.14 71.88 49.76 58.88 10
BridgeM 26.12 42.44 27.66 37.91 10

IOS 77.08 77.59 50.44 68.11 10

DFL-Dual 96.14 89.05 83.69 81.91 49.84

B
ac

k-
G

ra
di

en
t

DFLTrust 9.8 9.8 10 10 10
DFLDetector 9.8 14.74 10 11.75 10
Multi-Krum 9.8 15.61 10 10.17 11.72

DFL 25.81 56.05 19.41 27.39 10.03
BridgeM 22.17 47.72 28.23 35.65 15.70

IOS 10.52 42.17 12.33 34.59 19.29

DFL-Dual 95.14 88.99 83.73 81.99 49.1

Table 1. Accuracies (%) under Untargeted Attacks.

5.5. Defense against Targeted Attacks

The averaged accuracy and ASR of different models (CNN,
FC, and LR) trained on various datasets using different ag-
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gregation methods are shown in Table 2. The results val-
idate that DFL-Dual consistently exhibits higher accuracy
on benign testing data and lower ASR on testing data with
backdoor triggers than other baselines.

Defence
Source MNIST Fashion CIFAR10

CNN CNN ResNet18
DFL (No Attack) 95.39 84.85 49.96

DFLTrust 9.8/
100

10/
100

19.45/
100

DFLDetector 67.06/
99.75

69/
91.94

20.85/
85.66

Multi-Krum 96.92/
99.99

98.44/
2.55

31.62/
53.49

DFL 49.61/
100

61.78/
98.91

18.7/
79.14Sc

al
in

g

BridgeM 72.02/
99.96

57.3/
98.34

26.23/
65.86

IOS 11.01/
97.43

81.74/
91.85

30.78/
53.64

DFL-Dual 96.21/
0.50

84.83/
1.70

49.01/
4.44

DFLTrust 9.8/
100

10/
100

18.64/
82.27

DFLDetector 34.06/
70.46

84.97/
4.21

17.53/
82.59

Multi-Krum 96.89/
0.43

84.93/
3.34

26.28/
58.76

DFL 9.8/
100

10/
100

17.87/
87.49D
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BridgeM 22.17/
100

28.23/
91.69

15.7/
80.08

IOS 97.04/
0.29

82.13/
1.91

25.87/
62.34

DFL-Dual 96.54/
0.48

83.38/
2.53

48.79/
4.35

DFLTrust 92.29/
99.75

80.1/
98.91

33.59/
100

DFLDetector 92.34/
8.74

83.08/
14.74

36.94/
100

Multi-Krum 95.25/
0.72

84.38/
7.42

38.62/
97.64
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DFL 95.01/
85.35

81.55/
86.25

45.66/
99.67

BridgeM 95.66/
5.60

83.27/
28.74

48.44/
89.38

IOS 96.95/
0.53

84.31/
5.9

45.05/
89.82

DFL-Dual 95.59/
0.55

83.88/
2.16

50.01/
4.78

Table 2. Accuracies/ASRs (%) under Targeted Attacks.

5.6. Impact of Adversary Parameters

To further assess the effectiveness of DFL-Dual, we sys-
tematically compare its defensive performance on various
configurations, including different percentages of Byzan-
tine clients and various degrees of non-IID data distribution.
We take the scaling attack as an example for the above com-
parison study, with the default Byzantine percentage and
non-IID degree being 60% and 0.8, respectively.

5.6.1 ASR versus Byzantine Percentage

Figure 4 depicts the ASRs for the scaling attack across
a spectrum of Byzantine client percentages, ranging from
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Figure 4. ASR versus Byzantine client percentage.
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Figure 5. ASR versus non-IID degree.

20% to 80% (their topologies are in supplementary due to
page limitation). It is evident that the ASRs of baseline
schemes exhibit a clear upward trend, which reveals their
inadequacy in effectively identifying and excluding a rela-
tively substantial number of Byzantine clients. In contrast,
DFL-Dual consistently maintains a low ASR, even when
80% of clients are compromised (note that the remaining
two benign clients are connected in this extreme scenario).
This resilient performance highlights DFL-Dual’s superior
capability in navigating adversarial environments character-
ized by a multitude of malicious clients.

5.6.2 ASR versus Non-IID Degree

Figure 5 illustrates the relationship between the ASRs
against the considered defense schemes and the degree of
non-IID data distribution (as indicated by the probability
value p). The results reveal that, for baseline methods,
the ASR increases with a higher degree of non-IID. This
is attributed to the amplified divergences between benign
local model updates, making it challenging to distinguish
whether the outlying local model updates stem from Byzan-
tine attacks or non-IID data distribution. Surprisingly, the
ASR remains low under DFL-Dual, even when p = 0.8. In
all cases, our proposed DFL-Dual consistently outperforms
the baselines, achieving a lower ASR.

5.7. Ablation Study

To comprehensively assess the significance of considering
both model-domain and data-domain distances in cluster-
ing clients and incorporating the trust bootstrapping mecha-
nism for guiding cluster selection to identify malicious local
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Def
Atk Scaling A Little is Enough DBA

MNIST Fashion CIFAR10 MNIST Fashion CIFAR10 MNIST Fashion CIFAR10
w/o ED 96.82/0.36 85.16/1.49 36.85/31.61 93.16/1.07 85.65/57.12 50.01/4.29 37.21/18.99 62.14/48.91 41.33/9.01
w/o WD 86.49/0.48 14.73/21.02 49.69/4.59 95.05/95.76 79.84/56.93 50.75/3.83 12.38/52.92 54.56/47.84 49.64/3.76
w/o TB 75.60/95.23 30.99/46.31 49.74/4.67 96.62/31.15 84.42/42.68 50.43/4.08 50.97/74.23 69.40/49.19 47.78/4.42

DFL-Dual 96.21/0.50 84.83/1.70 49.01/4.44 95.59/0.55 83.88/2.16 50.01/4.78 96.54/0.48 83.38/2.53 48.79/4.35

Table 3. Ablation Study on Accuracies/ASRs (%) under Targeted Attacks.

models, we conduct ablation studies on our proposed DFL-
Dual framework. We examine three variants:
• DFL-Dual-w/o-ED, where only data-domain WD are em-

ployed for client clustering in the first stage;
• DFL-Dual-w/o-WD, where only model-domain ED are

utilized for client clustering in the first stage;
• DFL-Dual-w/o-TB, omitting the trust bootstrapping

mechanism for cluster selection. Instead, the cluster with
a lower average dual-domain distance is selected.

Table 3 presents the accuracies and ASRs of DFL-Dual and
its variants against three targeted attacks. DFL-Dual con-
sistently exhibits high accuracies and low ASRs against the
evaluated targeted attacks. In contrast, each of the three
variants fails to defend against at least one targeted attack.
Thus, our findings affirm the efficacy of each technical de-
sign individually, emphasizing that their combination yields
a more robust defense against adversarial scenarios.

5.8. Defense against Adaptive Attacks

Finally, we consider a more practical and rigorous adver-
sarial scenario where each Byzantine client has access to all
benign clients’ pre-aggregation local models in each train-
ing round and knows the adopted distance metrics in DFL-
Dual. Hence, they can conduct adaptive attacks. In this
work, we formulate an adaptive attack by adding a regular-
ization term to the loss function of Byzantine clients, which
enables them to launch stealthy attacks from the perspec-
tives of the three distance metrics (i.e., ED, CS, and WD).
Specifically, we modify the loss function of each Byzantine
client k in round t as:

min
θt
k

βLk+(1− β)
(
E(θ̂

t
,θt

k) + S(θ̂
t
,θt

k) + E(ĝt, gtk)
)
,

(16)
where Lk is the original loss of Byzantine client k, β is the
adaptive factor to balance attack strength and stealthiness.
E
(
θ̂
t
,θt

k

)
and S

(
θ̂
t
,θt

k

)
are the ED and CS between the

average of all benign clients’ local models θ̂
t

and the ma-
licious model θt

k, and E (ĝt, gtk) is the ED between the av-

erage of estimated benign gradient ĝt ≈ θ̂
t
− θ̂

t+1/2
and

the Byzantine gradient gtk. Based on (5), we use E (ĝt, gtk)
to regularize WD between the corresponding generated
dummy datasets indirectly. Given its three adopted met-
rics (ED, CS, and WD), these three terms are incorporated
to bypass DFL-Dual. Figure 6 shows the accuracy and ASR
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Figure 6. Accuracy/ASR versus adaptive rate.

of DFL-Dual on CIFAR-10 versus adaptive rate β of three
adaptive targeted attacks, where we can find a consistent
solid performance. This further verifies the robustness and
effectiveness of the proposed DFL-Dual method.

6. Conclusion

This paper presented DFL-Dual, a novel Byzantine-robust
DFL framework through dual-domain client clustering and
trust bootstrapping. DFL-Dual leverages multiple distance
metrics in the model domain (cosine similarity and Eu-
clidean distance) and the data domain (Wasserstein dis-
tance) to identify client disparities. This multi-metric com-
bination enables accurate discrimination between Byzan-
tine and benign clients, even under a rigorous adversary
setting with highly non-IID data distribution and exceed-
ing 50% Byzantine clients dominating both the entire client
population and a benign client’s neighbors. We conduct an
extensive experimental evaluation of DFL-Dual. The results
validate its superior defensive performance against untar-
geted and targeted Byzantine attacks over existing schemes.
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