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Abstract

The absence of real targets to guide the model train-

ing is one of the main problems with the makeup transfer

task. Most existing methods tackle this problem by synthe-

sizing pseudo ground truths (PGTs). However, the gener-

ated PGTs are often sub-optimal and their imprecision will

eventually lead to performance degradation. To alleviate

this issue, in this paper, we propose a novel Content-Style

Decoupled Makeup Transfer (CSD-MT) method, which

works in a purely unsupervised manner and thus elimi-

nates the negative effects of generating PGTs. Specifi-

cally, based on the frequency characteristics analysis, we

assume that the low-frequency (LF) component of a face

image is more associated with its makeup style informa-

tion, while the high-frequency (HF) component is more re-

lated to its content details. This assumption allows CSD-

MT to decouple the content and makeup style informa-

tion in each face image through the frequency decomposi-

tion. After that, CSD-MT realizes makeup transfer by max-

imizing the consistency of these two types of information

between the transferred result and input images, respec-

tively. Two newly designed loss functions are also intro-

duced to further improve the transfer performance. Exten-

sive quantitative and qualitative analyses show the effec-

tiveness of our CSD-MT method. Our code is available at

https://github.com/Snowfallingplum/CSD-MT.

1. Introduction

Given a pair of source and reference face images, the main

goal of makeup transfer is to generate an image that simul-

taneously satisfies the following conditions: (1) Contain-

ing the makeup styles transferred from the reference image,

such as lipstick, eye shadow and powder blush. (2) Preserv-

ing the content details of the source image, including iden-

†Corresponding author.

tity, facial structure and background. This technique has

been widely studied and is attracting increasing attentions

from the computer vision and artificial intelligence com-

munities, due to its great economic potential in the fields

of e-commerce, entertainment and beauty industries. How-

ever, considering the diversity and complexity of different

makeup styles, makeup transfer remains a challenging task.

One of the major problems with the makeup transfer task

is its unsupervised nature, which means that there is no real

transferred image that can be used as a target ground truth to

guide the model training. To address this problem, most ex-

isting methods [3, 7, 9, 13, 17, 21, 23, 27, 30, 32] propose to

synthesize a pseudo ground truth (PGT) image, from each

input source-reference image pair, as an alternative supervi-

sion target. After that, the model parameters are optimized

by minimizing the difference between each generated trans-

ferred output and its corresponding PGT (see Figure 1(a)).

As illustrated in Figure 2, according to the PGT gener-

ation strategy used, previous makeup transfer approaches

can be roughly divided into two categories: (1) Histogram-

matching-based methods [3, 9, 13, 15, 32] attempt to align

the color distribution of each facial region (e.g., lip, eye and

face areas) in the source image with that of the same region

in the reference face. However, the PGT produced by this

strategy discards all spatial information of makeup styles,

and usually suffers from the large color difference (e.g., eye

shadow and powder blusher) between the source and ref-

erence images. (2) Geometric-distortion-based methods

[7, 21] synthesize the PGT by warping the reference face

so that its shape (typically represented by some facial land-

marks) is matched to that of the source one. But such pro-

cess often introduces undesired artifacts and also leads to

the loss of source content information. As a result, these

low-quality PGTs will consequently degrade the transfer

performance of all above-mentioned methods. Although a

recent effort [27] has been made to create more effective

PGTs through a hybrid strategy, the generated PGTs are

still sub-optimal and their imprecision will severely affect

the final transferred results.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. The comparison of different training strategies.
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Figure 2. The PGTs and transferred results generated by different categories of makeup transfer methods.

To eliminate these negative effects of the PGT, in this

paper, we propose a new Content-Style Decoupled Makeup

Transfer (CSD-MT) method, which works in a purely unsu-

pervised manner without generating any PGT. To achieve

this, one important observation is that the main differ-

ences of the same face image before and after makeup are

concentrated in its low-frequency (LF) component, while

the high-frequency (HF) component remains almost un-

changed. Therefore, we can assume that the LF component

of a face image is more associated with its makeup style

information, and the HF component is more related to its

content details. With this assumption, CSD-MT first pre-

forms frequency decomposition on each input and output

image to decouple their contents and makeup styles. Then,

for model training, CSD-MT simultaneously maximizes the

content and makeup consistencies of the transferred result

with the source and reference images based on their HF and

LF components, respectively, as shown in Figure 1(b). Ad-

ditionally, we introduce two novel loss functions to enhance

the transfer of the spatial and color information in makeup.

The effectiveness of our proposed CSD-MT method is eval-

uated on three publicly available datasets, covering various

makeup styles as well as different pose and expression vari-

ations. Our main contributions are summarized as follows:

• We propose a novel Content-Style Decoupled Makeup

Transfer (CSD-MT) method, which works in a purely un-

supervised manner. Based on frequency decomposition,

CSD-MT for the first time eliminates the requirement of

generating pseudo ground truth.

• Two newly designed loss functions, namely the self-

augmented reconstructive loss and the color contrastive

loss, are introduced to facilitate a better transfer of the

spatial and color information in makeup.

• Extensive quantitative and qualitative comparisons on

three datasets indicate that CSD-MT outperforms seven

state-of-the-art makeup transfer methods. In addition, the

ablation study validates the superiority of our proposed

unsupervised learning strategy over PGT-guided training.

2. Related Works

2.1. Makeup Transfer

During the past decade, makeup transfer has attracted in-

creasing attention from the computer vision community.

According to the PGT generation strategy, the previous

methods can be roughly divided into two categories. (1) For

histogram-matching-based methods, BeautyGAN [13]

pioneers a histogram matching loss and designs a dual in-

put/output GAN to perform makeup transfer and removal

simultaneously. To handle misaligned head poses and facial

expressions, SCGAN [3] encodes component-wise makeup

regions into spatially-invariant style codes, while PSGAN
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Figure 3. Visualization of the frequency components decom-

posed from the source image and the transferred results. The low-

frequency components are resized for better visualization. The

mean square errors of the different components between source

images and transferred results are marked in the lower left corner.

[9, 15] utilizes an attention mechanism to adaptively deform

the makeup feature maps based on source images. CPM

[17] bypasses semantic alignment by converting the images

to UV [5] space, where each pixel corresponds to a specific

semantic point on the face. RamGAN [26] and SpMT [32]

explore local attention to eliminate potential associations

between different makeup components. (2) For geometric-

distortion-based methods, PairedCycleGAN [2] trains a

style discriminator to measure the makeup consistency be-

tween the results and the reference images. For instances

of extreme makeup, LADN [7] employs multiple overlap-

ping local makeup style discriminators. To ensure color fi-

delity, FAT [23] and SSAT [21] utilize cross-attention [22]

to calculate semantic correspondence between the two in-

put images. In addition, the recent EleGANt [27] achieves

a more effective PGT using a hybrid strategy that integrates

the advantages of these two PGTs by dynamically assigning

different weights.

Different from all the above methods, whose transfer

performance is heavily influenced by the quality of PGTs,

the goal of our CSD-MT is to investigate a PGT-free

makeup transfer approach to eliminate the negative effects

of generating PGTs.

2.2. Frequency Decomposition

Frequency decomposition has shown its effectiveness in

various tasks, including classification [6, 25], image synthe-

sis [4, 11], and image translation [12, 14, 28]. For instance,

LRR [6] utilizes the Laplacian pyramid [1] to refine the

boundary details of semantic segmentation. LapSRN [11]

consists of multiple generators that progressively recon-

struct the HF residuals of high-resolution images. WTC2

[28] employs wavelet transform to accelerate the stylization

process of high-resolution images. For makeup transfer, we

observe that the main differences of the same face image

before and after makeup are concentrated in its LF compo-

nent, while the HF component remains almost unchanged.

Therefore, unlike the methods mentioned above, our goal

of frequency decomposition is to decouple the content in-

formation and makeup style from a face image.

3. Methodology

3.1. Problem Statement

Let X and Y denote the non-makeup source domain and

the makeup reference domain, respectively. In general, the

image samples in X and Y are unpaired, which means that

the source and reference images are collected from different

persons with distinct identity information, and each refer-

ence face showcases a unique makeup style. Given a pair

of source and reference images {(x, y)|x ∈ X , y ∈ Y}
as input, the main goal of makeup transfer is to generate a

transferred result x̂, which maximally preserves the content

information in x and contains the same makeup style as y.

Such task can be considered as a cross-domain image-to-

image translation problem with specific conditions, while

its unsupervised nature makes it even more challenging.

3.2. Content and Makeup Style Decoupling

In order to solve the makeup transfer task without generat-

ing PGT, we attempt to seek the content and makeup style

supervision signals from the input images (x, y) themselves

to accurately control the corresponding information in x̂.

We approach this purpose by investigating the frequency

characteristics of these two types of information. To do

this, we randomly select 500 pairs of test images from the

MT dataset [13], and perform frequency decomposition on

each source image and its corresponding transferred results

generated by different methods. More specifically, given

an arbitrary image x ∈ R
H×W×3 where H and W de-

note its height and width, we first remove its background

region xbg through a face parsing technique [29]. After that,

by applying a fixed Gaussian kernel on the remaining fore-

ground face image xfg , we calculate a low-pass prediction

xl ∈ R
H

d
×W

d
×3, where d represents a downsampling factor.

Based on this, the high-frequency residual xh ∈ R
H×W×3

is finally obtained by xh = xfg − up(xl), where up(·) is a

bilinear interpolation upsampling operation.

We measure the mean squared errors (MSE) of these

decomposed LF and HF components between source and

transferred images in Figure 3. It can be observed that the

MSE values calculated on the LF components are much

larger than those obtained on the HF components. This sug-

gests that the main differences of the same face images be-

fore and after makeup are primarily concentrated in their LF

components, while the HF components remain almost un-

changed. Additionally, the visual comparisons displayed in

Figure 3 also support this claim. Therefore, we can assume
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Figure 4. Illustration of the proposed CSD-MT framework. (a) Given a source image x and a reference image y, the semantic corre-

spondence module first constructs a pixel-wise correlation matrix M between them. Next, by performing face parsing and frequency

decomposition, the makeup rendering module Gmr obtains the background area xbg and the HF component xh that contain the content

information of x, as well as the LF component yl comprising the makeup style of y. Then, each pixel in ŷl aggregates the information

from the corresponding pixels in yl according to the correlation matrix M . Finally, the final transferred result x̂ = Gmr([xbg , xh], ŷl)
is generated using xbg , xh and ŷl. Furthermore, we introduce a self-augmented reconstructive loss (b) and a color contrastive loss (c) to

enhance the transfer of the spatial and color information in makeup, respectively.

that the LF component of a face image is more associated

with its makeup style information, and the HF component

is more related to its content details. Such assumption al-

lows us to appropriately decouple the content information

and makeup style contained in each face image by using the

frequency decomposition process described above.

3.3. The Proposed CSD-MT Method

To highlight that the improvement of transfer performance

mainly comes from our proposed unsupervised learning

strategy, we design a relative concise architecture for the

proposed CSD-MT method. As illustrated in Figure 4, the

generator G of CSD-MT contains a semantic correspon-

dence module and a makeup rendering module, which are

presented in detail in the following subsections.

Semantic Correspondence Module. Generally, due to the

differences in head pose and facial expression, the same fa-

cial parts in the input source image x and reference image

y often appear at different spatial locations [9, 21, 27], and

such semantic misalignment will eventually lead to perfor-

mance degradation. To alleviate this problem, our semantic

correspondence module constructs a pixel-wise correlation

matrix M by calculating the cosine similarity as:

M(i, j) =
fx(i)

T fy(j)

‖fx(i)‖2‖fy(j)‖2
. (1)

Here, fx = Esc(x), fy = Esc(y) denote the semantic fea-

tures extracted by a convolutional encoder Esc(·). Both fx

and fy have the same spatial resolution as the LF compo-

nent of input images, i.e., H
d
× W

d
. f(i) represents the fea-

ture vector of the i-th pixel in f and M(i, j) indicates the

element at the (i, j)-th location of M . We consider the cor-

relation matrix M as a deformation mapping function, and

use it to achieve semantic alignment between the source and

reference images in our makeup rendering module.

Makeup Rendering Module. By performing face parsing

and frequency decomposition on the input images, we can

obtain the background area xbg and the HF component xh

that contain the content information of the source image x,

as well as the LF component yl comprising the makeup style

of the reference image y. Then, the correlation matrix M in

Eq. (1) is used to spatially deform yl as follow:

ŷl(i) =
∑

j
Softmax(M(i, j)/τ) · yl(j), (2)

where Softmax(·) denotes a softmax computation along

the column dimension, which normalizes the element val-

ues in each row of M , and τ > 0 is a temperature param-

eter. Based on M , each pixel in ŷl aggregates the informa-

tion from the corresponding pixels in yl according to the

semantic correspondence between x and y. Therefore, the

deformed ŷl is semantically aligned with the source image.

Finally, the makeup rendering module generates the final

transferred result x̂ based on xbg , xh and ŷl as:

x̂ = Gmr([xbg, xh], ŷl). (3)

Here, [·, ·] denotes a channel-wise concatenation operation.

Gmr(·, ·) is an encoder-decoder network implemented with
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Figure 5. Qualitative comparison with several state-of-the-art methods on different makeup styles. The proposed CSD-MT produces the

most precise transferred results with desired makeup information and high-quality content details. Please zoom in for better comparison.

the U-Net structure. In Gmr(·, ·), the conditional makeup

information is introduced through the SPADE modules [18],

whose modulation parameters are generated from ŷl.

3.4. Training Objectives

Transfer Loss. Similar to the input images, the transferred

result x̂ produced by our generator G can also be decom-

posed into the LF component x̂l and the HF component x̂h.

By employing the transposed correlation matrix MT as in

Eq. (2), we re-deform x̂l into x̄l to make it semantically

aligned with the reference image. According to our assump-

tion, x̄l is expected to be consistent with yl, such that the

makeup style can be faithfully transferred. And meanwhile,

x̂h is required to preserve the content information of the

source image and thus should be consistent with xh. There-

fore, the following transfer loss is defined to simultaneously

promote the makeup and content consistencies:

Ltrans =Lmakeup + αLcont,

Lmakeup = ‖x̄l − yl‖1, Lcont = GP (x̂h, xh),
(4)

where α > 0 balances the importance of the two terms.

Lmakeup is defined as the L1 distance between x̄l and yl.
Lcont calculates the Gradient Profile loss [19] GP (·, ·) be-

tween x̂h and xh, which is computed in the image gradients

space and thus is more powerful in distilling HF details.

Cycle Consistency Loss. Inspired by CycleGAN [31], we

feed ybg, yh and x̄l into the makeup rendering network in

Eq. (3) once again. We expect the produced transferred

result ȳ = Gmr([ybg, yh], x̄l) can be as close as possible to

the original reference image y, which can be formulated as:

Lcycle = ‖ȳ − y‖1. (5)

Adversarial Loss. To make the transferred results more

realistic, we construct a multi-scale discriminator D [24]

to distinguish the face images generated by CSD-MT from

the reference images containing real makeup information.

Based on objective function of LSGAN [16], our adversar-

ial loss Ladv is defined as follow:

Ladv = Ey[(D(y)− 1)2] + Ex̂[(D(x̂))2]. (6)

Self-Augmented Reconstructive Loss. To further enhance

the robustness to different head poses and facial expres-

sions, we develop a self-augmented reconstruction process

that facilitates a better transfer of the spatial information in

makeup, as shown in Figure 4(b). Specifically, given an im-

age x with makeup, we impose a random spatial transforma-

tion Ts(·) on it and obtain a transformed image y = Ts(x).
This image has the same makeup style as x, but the spatial

information in the original x (e.g., facial structure and per-

son identity) is completely destroyed. Considering x as the
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Methods

MT Wild-MT LADN

FID
Self-Aug PSNR/SSIM

FID
Self-Aug PSNR/SSIM

FID
Self-Aug PSNR/SSIM

Crop Rotate Crop Rotate Crop Rotate

BeautyGAN [13] 48.24 21.70/0.848 21.58/0.847 99.62 21.67/0.875 21.33/0.862 69.50 19.73/0.719 20.39/0.731

PSGAN [9] 45.02 23.46/0.886 22.68/0.875 89.92 22.56/0.879 21.89/0.870 57.80 22.97/0.824 22.16/0.815

SCGAN [3] 39.20 23.92/0.887 24.05/0.888 79.54 24.02/0.902 24.24/0.905 51.39 22.42/0.839 22.44/0.838

SpMT [32] 46.10 24.36/0.891 23.79/0.887 77.04 24.30/0.909 23.77/0.904 48.18 23.31/0.817 22.89/0.815

LADN [7] 73.91 19.27/0.759 19.02/0.755 104.91 19.22/0.790 19.09/0.786 65.87 18.61/0.727 18.39/0.723

SSAT [21] 38.01 24.01/0.894 23.93/0.893 70.53 23.57/0.905 23.80/0.907 53.84 22.81/0.848 22.95/0.846

EleGANt [27] 54.06 25.15/0.885 24.60/0.875 86.19 24.82/0.893 24.49/0.877 61.40 24.64/0.838 24.31/0.848

CSD-MT (Ours) 37.56 27.28/0.920 26.68/0.915 60.82 27.83/0.934 26.70/0.923 40.87 25.19/0.868 25.23/0.868

Table 1. Quantitative comparison of FID and Self-augmented PSNR/SSIM on the MT, Wild-MT and LADN datasets.

source image and y as the reference image, the generator G
of CSD-MT takes (x, y) as input and outputs a transferred

result x̂. Based on this process, x̂ should faithfully recon-

struct x, since it contains the same content and makeup style

(distilled from y) information as in x. Therefore, we define

the following self-augmented reconstructive loss:

Laug = ‖x̂− x‖1. (7)

Color Contrastive Loss. To promote the color fidelity, as

shown in Figure 4(c), we propose a color contrastive loss

which can be formulated as follow:

Lcts = −log(1−
ℓ(x̂fg, y

+)
∑N

i=1
ℓ(x̂fg, y

−
i )

), (8)

where x̂fg is the foreground face area separated from the

transferred result x̂. For this anchor, y+ and y− denote the

positive and negative samples, respectively. In our imple-

mentation, the face area yfg of the input reference image is

used as the only positive sample. And each negative sample

y−i is obtained by performing a random appearance trans-

formation Ta(·) on yfg , i.e., y−i = Ta(yfg), N is the total

number of negative samples. Based on the perceptual loss

[10], the distance function ℓ(·, ·) is defined as:

ℓ(x, y) =
∑

l
‖Gram(φl(x))−Gram(φl(y))‖1, (9)

where φl(·) represents the feature map extracted from the

l-th layer of the pre-trained VGG19 [20] model. Gram(·)
calculates the gram matrix of a feature map. By minimizing

the color contrastive loss in Eq. (8), x̂fg and yfg with sim-

ilar color distributions are pulled closer, while x̂fg and y−i
with different color distributions are pushed away.

Overall Loss. In summary, the overall loss function for the

generator G and discriminator D of the proposed CSD-MT

method is defined as:

min
G

max
D

L = λtransLtrans + λcycleLcycle

+ λadvLadv + λaugLaug + λctsLcts.
(10)

Methods Simple Complex Extreme

SCGAN [3] 5.4% 1.7% 1.1%

SpMT [32] 11.1% 2.6% 1.5%

SSAT [21] 13.3% 9.8% 7.4%

EleGANt [27] 14.3% 15.4% 13.2%

CSD-MT (Ours) 55.9% 70.4% 76.7%

Table 2. The ratio selected as best (%) on different types of

makeup styles. We classify ”Simple”, ”Complex” and ”Extreme”

makeup based on our subjective experience.

4. Experiments

4.1. Datasets

MT Dataset [13] contains 1,115 non-makeup and 2,719

makeup images, which are mostly well-aligned and have

plenty of makeup styles. We split the training and testing

sets by following the strategy in [9, 13].

Wild-MT Dataset [9] consists of 369 non-makeup and 403

makeup images. Most of them contain large variations in

head pose and facial expression.

LADN Dataset [7] has 333 non-makeup and 302 makeup

images, including 155 extreme makeup images with great

variances on makeup color, style and region coverage.

4.2. Baselines

We compare our proposed CSD-MT approach with seven

state-of-the-art makeup transfer methods, including four

histogram-matching-based methods (BeautyGAN [13], PS-

GAN [9], SCGAN [3], and SpMT [32]), two geometric-

distortion-based methods (LADN [7], SSAT [21]), and one

hybrid method (EleGANt [27]).

All these methods are trained by only using the training

set of the MT dataset. And their performance and general-

ization ability are evaluated on the test set of the MT dataset,

as well as on the Wild-MT and LADN datasets. See supple-

mentary materials for the training details of CSD-MT.
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Reference Source PSGAN CSD-MT

(PSGAN’s PGT)

CSD-MT

(SSAT’s PGT) 

SSAT CSD-MT

(Our Unsupervised)

Figure 6. Transferred results produced by the CSD-MT models trained with different learning strategies.

Ground Truth

Source

Reference

BeautyGAN PSGAN SCGAN

SpMT LADN SSAT

EleGANt CSD-MT

Makeup 

Removal

Figure 7. Reconstruction results obtained by rendering the de-

makeup source image using a randomly rotated reference image.

4.3. Qualitative Comparison

Figure 5 displays the transferred results of all competing

methods on various makeup styles. It can be seen that the

histogram-matching-based methods all fail to work when

there are large color differences between the source and

reference images. For geometric-distortion-based methods,

LADN generates unrealistic results with undesired artifacts,

while SSAT cannot effectively transfer the makeup details

such as the eye shadow and lipstick. The hybrid method El-

eGANt achieves better results than other baselines, but still

struggles with transferring extreme makeup styles that dis-

tributed throughout the entire facial area. In contrast, for all

types of makeup styles, our unsupervised CSD-MT method

produces the most precise transferred results with desired

makeup information and high-quality content details.

4.4. Quantitative Comparison

Fréchet Inception Distance (FID). Following [15], we cal-

culate the FID score [8] (lower is better) between the refer-

ence images and the transferred results generated by differ-

ent methods, which are reported in Table 1. The lowest FID

scores achieved by our CSD-MT method indicate that its

outputs are more realistic.

Methods
Self-Aug PSNR/SSIM

Crop Rotate

CSD-MT with PSGAN’s PGT 22.22/0.881 22.37/0.883

CSD-MT with SSAT’s PGT 23.23/0.893 23.37/0.891

PSGAN with Laug and Lcts 23.17/0.883 22.42/0.874

SSAT with Laug and Lcts 23.78/0.894 23.64/0.891

(Setting A) Ladv + Lcont 19.97/0.866 20.01/0.867

(Setting B) A+Lmakeup 23.01/0.872 22.77/0.871

(Setting C) B+Lcycle 24.92/0.883 24.61/0.882

(Setting D) C+Laug 26.45/0.914 25.61/0.907

(Setting E) D+Lcts 27.28/0.920 26.68/0.915

Table 3. Quantitative results of ablation studies on the MT dataset.

Inputs Setting A Setting B Setting C Setting D Setting E

Figure 8. Transferred results produced by the CSD-MT models

trained with different loss functions.

Self-Augmented PSNR/SSIM. A major challenge in the

performance evaluation for makeup transfer tasks is the lack

of ground truth images. We utilize a similar self-augmented

reconstruction process mentioned in section 3.4 to address

this issue. As shown in Figure 7, given a makeup sample,

we randomly crop or rotate it to obtain a pseudo reference

image whose content information has been corrupted. We

also generate a de-makeup pseudo source image using the

makeup removal function of SSAT. With these pseudo in-

puts, we treat the original makeup image as the ground-

truth, and compute the PSNR and SSIM (higher is better)

for model evaluation. Both the quantitative and qualitative

results in Table 1 and Figure 7 show that CSD-MT outper-

forms other state-of-the-art methods, demonstrating its ef-

fectiveness in generating high-quality results.
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Figure 9. Robustness of CSD-MT in various complex scenarios.

User Study. We also conduct a user study to quantitatively

evaluate the performance of different models. We randomly

select 20 pairs of images with different types of makeup

styles and generate the transferred results using different

methods. Then, totally 23 participants are asked to choose

the most satisfactory result based on the image quality and

makeup similarity. For a fair comparison, the transferred

results are shown simultaneously in a random order. The

results of user study are shown in Table 2.

4.5. Ablation Study

PGT-guided vs. Unsupervised. To intuitively compare

these two strategies, we keep the network architecture of

CSD-MT unchanged and train this model by using the PGT-

guided training process as in PSGAN and SSAT, respec-

tively. From Table 3 and Figure 6, we can see that the out-

puts produced by the resulted models are very similar to

those of PSGAN and SSAT. This suggests that the trans-

fer performance is heavily influenced by the synthesized

PGTs rather than the network structure. It can be also found

that the original CSD-MT significantly outperforms these

two models, demonstrating the superiority of our proposed

unsupervised strategy over PGT-guided training. Addition-

ally, we integrate the losses Laug and Lcts into PSGAN and

SSAT. As shown in Table 3, the influence of Laug and Lcts

on previous methods is slight, indicating that our unsuper-

vised strategy fits better with these two losses.

Loss Functions. As shown in Table 3, to analyze the effect

of different losses defined in section 3.4, we gradually add

each loss into a basic setting (Ladv + Lcont), resulting in

5 different loss combinations (Setting A-E). The quantita-

tive and qualitative results of the CSD-MT models trained

with these settings are displayed in Table 3 and Figure 8,

respectively. We can observed that the model trained with

only Ladv + Lcont can already preserve the content details

effectively. This is mainly attributed to the content-style de-

coupling operation and the content consistency loss Lcont.

By adding Lmakeup and Lcycle, the makeup style informa-

tion is transferred but some complex details are still miss-

Source

R
ef

e
re

n
ce

Figure 10. Generalization of CSD-MT in unseen anime makeup.

ing. Further equipped with Laug facilitates the transfer of

spatial information, so the makeup can appear at the correct

location on the face. Finally, Lcts ensures the color fidelity.

Robustness. As shown in Figure 9, capturing the semantic

correspondence between the source and reference images

makes our CSD-MT model insensitive to age, pose and ex-

pression variations. In addition, separating the foreground

and background areas through the face parsing allows our

method to be unaffected by image occlusions.

Generalization. To evaluate the generalization ability of

our method, we collect some anime makeup examples

which have a significant domain gap with the training sam-

ples in the MT dataset and have never been encountered by

the model before. The results are displayed in Figure 10.

Limitation. In CSD-MT, we assume that the HF compo-

nent is more closely associated with the content details of

face images. This assumption may result in CSD-MT being

unable to handle cases with patterns.

5. Conclusion

In this paper, we propose an unsupervised makeup transfer

method called CSD-MT to eliminate the negative effects

of generating PGTs. Inspired by the observed frequency

characteristics, CSD-MT decouples the content and makeup

style information through frequency decomposition and re-

alizes makeup transfer by maximizing the consistency of

these two types of information between the transferred re-

sult and input images, respectively. Experiments demon-

strate that our CSD-MT method significantly outperforms

existing state-of-the-art methods in quantitative and quali-

tative analyses.
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