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Abstract

Multimodal intent recognition (MIR) aims to perceive
the human intent polarity via language, visual, and acous-
tic modalities. The inherent intent ambiguity makes it chal-
lenging to recognize in multimodal scenarios. Existing MIR
methods tend to model the individual video independently,
ignoring global contextual information across videos. This
learning manner inevitably introduces perception biases,
exacerbated by the inconsistencies of the multimodal rep-
resentation, amplifying the intent uncertainty. This chal-
lenge motivates us to explore effective global context mod-
eling. Thus, we propose a context-augmented global con-
trast (CAGC) method to capture rich global context fea-
tures by mining both intra-and cross-video context interac-
tions for MIR. Concretely, we design a context-augmented
transformer module to extract global context dependencies
across videos. To further alleviate error accumulation and
interference, we develop a cross-video bank that retrieves
effective video sources by considering both intentional ten-
dency and video similarity. Furthermore, we introduce
a global context-guided contrastive learning scheme, de-
signed to mitigate inconsistencies arising from global con-
text and individual modalities in different feature spaces.
This scheme incorporates global cues as the supervision to
capture robust the multimodal intent representation. Exper-
iments demonstrate CAGC obtains superior performance
than state-of-the-art MIR methods. We also generalize our
approach to a closely related task, multimodal sentiment
analysis, achieving the comparable performance.

1. Introduction

Intent recognition (IR) techniques [6, 38] have exhibited
remarkable performance in text [6, 26, 63] and visual intent
[1, 23, 42]. However, these techniques are primarily tai-
lored for single-modal scenarios and not effectively tackle
the challenges of real-world multimodal language.
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Figure 1. Illustration of multimodal intent recognition for the
video sample. Absorbing global context information from videos
that share highly similar scenes, as depicted cross-video in the fig-
ure, is essential to mitigate perception biases caused by the inten-
tional ambiguity and improve the precise intent recognition.

Multimodal intent recognition (MIR) [61], an emerging
research area, aims to solve this challenge by aligning in-
tent cues from both the natural language and the non-verbal
data. Related cross-modality reasoning studies [15, 40, 43]
have been explored to tackle the modality discrepancies in
MIR. Nevertheless, these methods struggle to handle the
distributional discrepancies arising from the heterogeneity
of modality signals. As an alternative, Hazarika et al. [15]
propose the projection of two complementary distinct sub-
spaces to reduce the distributional discrepancies. However,
these methods model the individual video independently,
neglecting the contextual information across the videos.
Models are inevitably prone to introducing the perception
biases in the intent understanding, intensifying the uncer-
tainty in the intent recognition.

Inspired by the global inter-video representation learn-
ing in object segmentation [3 1], the approaches [13, 27, 29,
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30, 47, 49] based on inter-video modeling have achieved
success on various visual tasks. Specifically, the intra-
and inter-video feature associations are focused on visual
correspondence learning in multiple studies [27, 47]. In
a broad scenario, the cross-video relation has been exten-
sively studied in visual representation learning [51], audio-
visual video parsing [30], medical surgical scenes [22] and
group video captioning [29]. Although these cross-video
techniques have made significant progress, the extracted
cross-video contextual feature still remains coarse due to
the lack of meticulous filtering in the video sources. Conse-
quently, the model becomes vulnerable to interference from
irrelevant videos during the learning process. In MIR, the
refining cross-video context dependency is essential to mit-
igate biases in intent understanding. Specifically, it not only
provides effective and precise global context information
but also reveals the robust consistent and discriminative fea-
ture cues in the dataset. For example, as illustrated in Fig. 1,
we might infer that the speaker is complaining about some-
thing based on the text “you guys, I am dying right now”
when acoustic and visual information fail to provide clear
intent cues. If the model incorporates global contextual de-
pendencies from cross-videos to comprehend the context of
the current video scene, it is more likely to interpret the in-
tent as “joke” rather than “complaint” in this example. This
is because the speaker is situated in an excited rather than
an angry context. By exploiting refining cross-video con-
text prior knowledge, we can gain a deep context learning
of the current video, thereby reducing biases in intent un-
derstanding and alleviating the intent ambiguity. Therefore,
1) how to capture refined cross-video context dependency is
the first challenge for MIR.

MIR also benefits from robust cross-modality alignment.
Existing methods for cross-modality alignment primarily
focusing on developing various attention-based algorithms
[19, 50, 52]. To alleviate alignment bias arising from the
simple concatenation of each modality, enhancements such
as multimodal co-attention [52], a cross-attention multi-
modal encoder [19], and transformer-based multimodal to-
ken fusion [50] have been designed to boost multimodal
alignment. However, these algorithms primarily empha-
size fusion on target-relevant features, neglecting poten-
tially valuable information from irrelevant ones. In re-
sponse to this limitation, contrastive learning [4, 17, 48] is
introduced to mine valuable discriminative features form ir-
relevant information for multimodality alignment [18, 34].
Although these methods have made progress, they ignore
modality-specific information, resulting in limited discrim-
inative ability. As an alternative, Yang et al. [53] de-
compose each modality into similar and dissimilarity fea-
tures based on modality-specific information, leveraging
contrastive learning between samples to enhance both con-
sistency and inconsistency learning. The aforementioned

‘ ¢ ¢ w: Y
! Sample i i i Samplej | | Samplei | | Global feature || Sample j |
LS 1. || g

{ T T ]

|

(a) Within Mini-batch Contrast
Figure 2. Different contrastive learning schemes. (a) Exploring
the alignment between different modalities at the sample-level or
within mini-batch (e.g.,[18, 53]). (b) Our designed GCCL algo-
rithm aims to improve alignment across the entire dataset by intro-
ducing global features as supervisory signals.

(b) Our Designed Contrast

methods are supervised by local modal alignment schemes,
as illustrated in Fig. 2(a), which are insufficient for address-
ing modality discrepancies. Therefore, 2) how to incorpo-
rate with the intra-and cross- video contexts globally to re-
duce the modality discrepancies is the second challenge.
To address the above two challenges, we propose a con-
textual augmented global contrast (CAGC) method. CAGC
includes two main components: a context-augmented trans-
former (CAT) module and a global context-guided con-

trastive learning (GCCL) scheme, as depicted in Fig. 2(b).

Our main idea is to explore rich and comprehensive contex-

tual features to address the uncertainty in intent recognition.

CAT aims to learn refined global context dependent fea-

tures by simultaneously mining contextual relations from

both intra-and cross-video to mitigate biases in intent un-
derstanding. To ensure effective cross-video sources, we
further design a cross-video bank that considers both inten-
tional tendency and similarity between videos. The bank
can help the model avoid and mitigate the accumulation of
errors from irrelevant videos, ensuring more precise cross-
video contextual feature learning. GCCL aims to capture
robust consistent and discriminative cross-modality feature
and reduce the modality discrepancies. This scheme in-

corporates global context information as supervision to im-

prove the cross-modality alignment. The contributions of

this work are summarized as:

* We propose a context-augmented global contrast (CAGC)
learning method to mine rich global contextual cues from
both intra-and cross-video to enhance intent understand-
ing for MIR.

* We design a context-augmented transformer module to
learn cross-video context dependent features to reduce bi-
ases in intent understanding. Furthermore, we introduce
a global context-guided contrastive learning scheme to
capture the robust consistency and discriminative cross-
modality feature and reduce the modality discrepancies.

* We conducted extensive experiments on public bench-
mark MIR dataset and obtain superior performance than
state-of-the-arts. Furthermore, we also achieve a com-
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parable performance on a widely used multimodal senti-
ment dataset. Validation results verify the effectiveness
of CAGC.

2. Related work

Single-Modality Intent Recognition. Traditional intent
recognition comprises both text [6, 26, 63] and visual intent
recognition [1, 23, 42]. For text intent, an open-text recog-
nition platform has been developed to discover the intent
[59]. Zhou et al. [62] propose a k-nearest neighbors method
for the out-of-domain intent classification, while Sadat et al.
[36] study the intent behind questions and introduce a new
dataset. Text intent analysis is also applied to the suicide
risk assessment to delve into human psychological states
[20]. Moreover, the text intent reasoning also plays a piv-
otal role in enhancing the text revision [0, 8, 12], the dialog
systems [32, 60], and the text semantic matching [9, 46, 63].
As multimedia technology advances, the exploration of vi-
sual intent becomes an inevitable necessity. Joo et al. [23]
emphasize the importance of recognizing intent in images,
particularly for the political decision-making, and introduce
the communicative visual intent. Simultaneously, collabo-
ration between visual and text intent contributes to the ad-
vancement of intent recognition. The research [54] delves
into hierarchical relations between visual content and text
intent labels, aiming to enhance the global understanding of
visual intent. Additionally, Wang et al. [45] introduce the
prototype learning to address the semantic ambiguity in vi-
sual intent perception. Despite the impressive achievements
in text and visual intent understanding mentioned above,
they predominantly focus on single-modality studies and
cannot effectively address challenges in complicated mul-
timodal scenarios.

Multimodal Intent Recognition. Multimodal intent
recognition aims to mine intent in scenarios involving mul-
tiple modalities. The understanding of intent through the in-
tegration of text and acoustic modalities has been explored
in speech interaction systems [37]. Exploring intent from
both visual and text modalities can enrich the varied expres-
sions in the image caption task [1]. Moreover, intents de-
rived from both visual and text modalities contribute to ad-
vancements in video summaries and recommendations [33].
Despite the exploration of intent in different modalities, ad-
dressing the challenge of multimodal scenes involving vi-
sual, textual, and acoustic modalities remains an existing re-
search gap. To bridge this gap, Zhang et al. [61] propose the
novel MIR task, aiming to recognize the intent by integrat-
ing visual, textual, and acoustic modalities. Several cross-
modal reasoning methods have been utilized to tackle intent
understanding in MIR. Early work involves the design of a
multimodal transformer that facilitates cross-modal interac-
tion through cross-modal attention [43]. Later works delve
into specific challenges such as modality mismatch and dis-

tributional modality discrepancies. Rahman et al. [40] pro-
pose a multimodal adaptation gate framework, capable of
incorporating nonverbal data during fine-tuning. Hazarika
et al. [15] project each modality into two distinct modality-
invariant and modality-specific subspaces to reduce distri-
butional modality discrepancies.

Our work is fundamentally different from these available
works. We not only focus on feature modeling within the in-
dividual videos but also emphasize the importance of learn-
ing the global contextual information across the videos.
The global cross-video contextual information implies ro-
bust cross-modality consistent and discriminative semantic
feature cues in the dataset. This is suitable for MIR due to
the inconsistency in multimodal intent expressions. CAGC
is effective in capturing the rich global contextual features
through the intra-and cross-video learning manner, thereby
enhancing the intent understanding.

Contrastive Representation Learning. Contrastive
learning (CL) is a widely used learning method that involves
contrasting positive pairs against negative ones [3, 5, 21].
CL is initially proposed to address the absence of super-
vised signals in self-supervised learning [4, 17, 25]. The
further study proposes the supervised CL [24], which com-
bines with class information to learn class distribution of
samples. Recent studies have extended CL to multimodal
tasks for improved the modality alignment. Hu et al. [18]
propose a inter-modal CL to minimize intra-class variance
and maximize inter-class variance. CL is also introduced
to align the global acoustic information and multimodal fu-
sion features to enhance the global sentiment understand-
ing [28]. Further study, Yang et al. [53] design a unified
contrastive learning scheme at both intra-sample and inter-
sample levels to enhance the multimodal representation. Al-
though the aforementioned CL methods improve the perfor-
mance of multimodal tasks from various perspectives, they
are limited by the sample-level contrast within a mini-batch
and ignore the global contrast of the entire training dataset.
This leads to fewer robust discriminative features, making
the difficult in the multimodal alignment. In contrast, we
design a GCCL scheme that utilizes global contextual cues
as the contrasting guidance to reduce the modality discrep-
ancies and enhance the modality alignment.

3. Proposed Method
3.1. Overall Architecture

The framework of our CAGC is illustrated in Fig. 3. It
mainly consists of four parts: the multimodality encoder,
the cross-video context learning, the multimodal intent de-
coder, and the global context-guided contrastive learning.
Considering each modality originally resides in different
feature spaces, we create the unified modality representa-
tions through a multimodality encoder that is introduced
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Figure 3. The architecture of CAGC. CAGC mainly consists of a Context-Augmented Transformer module, a cross-video bank, a mul-
timodal intent decoder and a global context-guided contrastive learning scheme. The CAT module integrates scene information from
cross-videos with the current video to obtain refined global context features from effective cross-videos based on the cross-video bank.
Following this, the multimodal intent decoder employs both local and global multimodal fusion for intent decoding. Simultaneously, the
global fused context feature is introduced as supervisory signal in GCCL to enhance the modality alignment.

in Sec. 3.2. To obtain the refined long-range context de-
pendent features, we design a cross-video context learning,
which includes a cross-video bank and a context-augmented
transformer module in Sec. 3.3. Then, we fuse features from
both local and global perspectives to capture the compre-
hensive multimodal representation and conduct the decod-
ing of intents in Sec. 3.4. Furthermore, to reduce the modal-
ity discrepancies and enhance the cross-modality align-
ment, we propose a global context-guided contrastive learn-
ing scheme in Sec. 3.5. Finally, the training objective for the
robust MIR is presented in Sec. 3.6. Below, we present the
detail of the four components of CAGC.

3.2. Multimodality Encoder

Given a source input m={L,V, A}, where L, V, and A
denote different modalities: language, visual, and acous-
tic. We encode the input m into respective shallow modal-
ity feature representations. Following prior work [61],
we utilize pre-trained BERT [7] to initialize an input text
and extract the token embedding from the output of the
final layer. For acoustic and visual inputs, we employ
pre-trained wav2vec [2] and ResNet [16] models to obtain
signal-level acoustic and frame-level visual feature repre-

sentations. Specifically, formulas are as follows:

my = TextEmbed(L), (1)
m, = AudioEmbed(A), 2)
my, = VideoEmbed(V), 3)

where m; € R!X% m, € RleXde apnd m, € Rlxd
are the extracted feature representations of each modality.
lt,a,» and d; 4, are respective sequence lengths and feature
dimensions. To form a unified multimodality feature repre-
sentation, the Connectionist Temporal Classification (CTC)
[10] module is utilized to align on the word-level sequence.
The formula is as follows:

hiy ha, hy = SeqAligned(my, meg, my), )

where hy € R>*? ph, € R*>4 and h, € R*? are uni-
fied modality feature representations for language, acous-
tic, and visual modalities. [ and d respectively indicates
unit-length and unit-dimension. SegqAligned(-) indicates
the CTC module.

3.3. Cross-video Context Learning

Cross-video context learning includes the cross-video
bank and the context-augmented transformer module. The
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cross-video bank aims to retrieve effective video sources
and alleviate the interference of irrelevant videos. The
context-augmented transformer module aims to capture re-
fine global context dependencies based on the bank.

Cross-video Bank Construction. The construction of
the cross-video bank consists of two stages: the initial es-
tablishment process in stagel and the denoising process in
stage2. The bank is denoted as C in stagel. It stores each
video along with videos that share highly similar scene in-
formation, which are screened across the entire training
dataset. The scene similarity is defined based on the video-
level feature, which are regarded as latent scene informa-
tion. Specifically, given a video v; that consists of a series
of frames vi={v,lfmm(3) }E_ 1. We define:

1 :
= "), 5)
j=1

where v; indicates the video-level feature. F' denotes the
number of frames.

Then cross-video set 2(7;) is obtained according to the
scene similar score, which is defined as £, distance. The
formula is as follows:

vl € Qv;) == [Z(vg—@f] : (6)
k

t=1

where [-]; denotes top-k videos with lowest scores. T in-
dicates the dimension of T;. Q(vi)={vi(1), vi(z), ey vé(k)}
represents the cross-video set corresponding to v;.

The denoising process for cross-video bank C is con-
ducted during stage 2. It aims to alleviate error accu-
mulation and interference. Specifically, we obtain videos
with consistent intentional tendencies via adopting a vot-
ing principle to select videos from set (v;) that have
same intents. The final cross-video set is denoted as
Q*(vi)z{vé(l) A )}(1 < k* < k), which may
share similar mtent tendenmes with video v;. Then the
Q*(v;) is sequentially stored in bank C.

Context-augmented Transformer. The context-
augmented transformer is designed to capture global long-
range context dependent features to alleviate the ambiguity
in the intent understanding. Compared to the typical trans-
former [44], the context-augmented attention mechanism is
designed based on the cross-video bank C, as described in
Algorithm 1. It utilizes an enhanced learning manner to
progressively strengthen long-range context learning. The
formula is as follows:

hm = CAtt(hva h07 hc)7 (N

where CAtt(-) indicates the context-augmented attention
mechanism. hc:{hf:}j\;l, hi € {hi(l),hi@),...,hi(k )}

Algorithm 1 CAtt

Input: Matrix Q: visual feature h,;
Matrices K, V': cross-video visual feature h;
Output: Long-range context dependent feature Ay, ;
1: Set vcz{vi}i
batch.
2: Set he={hi} 7
3: Initialize the Q hv K,V=h¢;
4: Initialize the long-range dependent context feature M
S:forj <« 1,...,k* do
6.
7
8

is the cross-video set for the video within a mini-

1 is the visual feature set for the cross-video Q* (v;).

Update Ke=h( 7Y € () 0P, n)};
Update K, V=K_;

T
Obtain the context-augmented feature M j=o( Qf/% WV

9:  Apply M =mean(M;);

10: Store the context feature M ; to M;
11: end for

12: return Update h,, < M;

denotes the visual feature representation of cross-video set
0*(v;)(1<i <N). N indicates the batch size.

v:fn(hm+hv)7 (8

v — fn(f(hmv) + hmv); (9)

where h.,, is the captured long-range context dependent
feature. f,(-) indicates the normalization layer and f(-)
represents the linear fusion layer.

3.4. Multimodal Intent Decoder

We perform multimodality fusion from local and global
perspectives to capture rich and diverse multimodal feature
representations. In the local multimodality fusion, we inte-
grate the text modality feature with the visual and acoustic
modality feature. The formulas are as follows:

hip = (fw([he, ho]) o f (ho) + fuw([ht, hal) o f(ha)), (10)
hy = f'(he, huy) o hug, (11)

where h; indicates the local multimodality fusion feature.
fw(+) represents a gate function. f’(-) denotes a non-linear
function. o represents element-wise multiplication.

In the global multimodality fusion, the text modality fea-
ture is integrated with the cross-video visual and acoustic
modality features. The formulas are as follows:

hgr = (fuw([ht, heol)of (hew) +fuw([hes heal)of (Rea)), (12)

hg = f/(htahgf)ohgf’ (13)

where hg is the global multimodality fusion feature. h.,
denotes the acoustic feature that is calculated as h., in Eq.9.
Finally, an intent decoder is performed on both local and
global multimodality fusion features. The formula is as fol-

lows:
hout = TRM(fn(hl + hg))7 (14)

where TRM (-) indicates an intent decoder.
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3.5. Global Context-guided Contrastive Learning

Contrastive learning has made remarkable advancements
in representation learning by considering samples from var-
ious perspectives [11, 35, 39]. The idea of contrastive learn-
ing is to pull an anchor and its positive instances closer
while pushing the anchor and negative instances apart in the
feature space. Existing methods mostly focus on inter-class
separation, by pulling fusion features of a specific class to
be close and pushing fusion features away from the differ-
ent ones. They either operate between individual samples
or within a designed mini-batche, which belong to the lo-
cal contrast learning strategy and fail to capture the global
contrast across the entire training dataset. In our work, we
not only perform the local inter-modality but also the global
context-guided contrasts to learn robust discriminative fea-
tures for strong inter-class separation and intra-class com-
pactness.

The text modality has been proven greater significance
than visual and acoustic modalities [14]. Therefore, we take
text modality as an anchor while the other two modalities
are treated as its augmented versions. For the local contrast,
we align the text modality feature with other two modality
features. For the global contrast, we align the text modality
feature with the global multimodality fusion feature.

For the local contrast, positive and negative sample pairs
are constructed from videos within mini-batch. In detail,
given a text modality feature h; as an anchor, its positive
sample set P; includes: 1) acoustic modality features from
other videos with the same intent label; 2) visual modality
features from other videos with the same intent label; Its
negative sample A consists of: 1) acoustic modality fea-
tures from other videos with different intent label; 2) visual
modality features from other videos with different intent la-
bel. We can formulate the local contrast that employs the
InfoNCE [17] loss as:

Yonrep, explhe - hi/T)
the?luj\/l exp(hy - hg/T)’

Zhj;ep, exp(hy - hf /7)
Zh}gplu/\/’l eXp(ht ' h%/T)

For the global contrast, positive and negative sample
pairs are constructed from cross-videos across the entire
dataset. In detail, given a text modality feature h; as an an-
chor, its positive sample set P, includes global multimodal
fusion features from cross-videos with the same intent label.
Its negative sample /N, contains global multimadal features
from cross-videos with the different intent label. Similarly,
our global contrast can be formulated as follows:

s e, explhe - b /7)
og : .
S epon, bl - 1 /7)

Liqg = —log (15)

Ly = —log (16)

Ly=-1 (17)

3.6. Training Objective

The overall training objective of our modal are:

q= .fc(hout)a (18)
N
Liask = — »_ (p(i) olog(q(i))), (19)
i=1
where p(i) is the distribution of ground-truth intents. L
indicates a loss for the intent prediction. f.(-) represents a
linear function for classification.

£total = £task + a(‘cta + ‘ctv) + /8[/97 (20)

where L;,tq; indicates the overall training loss. a and 3 are
weight parameters corresponding to a local contrast loss £;
and a global contrast loss £,.

4. Experiment

Datasets. We evaluate CAGC on two multimodal bench-
marks: MIntRec [61] for the intent recognition and CMU-
MOSI [56] for the sentiment analysis. MIntRec comprises
2,224 high-quality samples, with 1,334, 445, and 445 sam-
ples allocated for training, validation, and testing sets, re-
spectively. The dataset is structured for two intent cate-
gories: coarse-grained with binary intent labels and fine-
grained with twenty intent labels. Coarse-grained intents
encompass expressing emotions or attitudes and achieving
goals. Finer-grained intents further elaborate on the coarse-
grained categories, consisting of 11 express emotions or at-
titudes and 9 achieve goals intentions, respectively. CMU-
MOSI comprises 2,199 short monologue video samples,
distributed with 1,284, 229, and 686 samples assigned to
the training, validation, and testing sets, respectively. In
CMU-MOSI, each sample is annotated with a sentiment
score ranging from -3 to 3, encompassing highly negative,
negative, weakly negative, neutral, weakly positive, posi-
tive, and highly positive sentiments.

Evaluation Metric. For MIntRec, we follow the stan-
dard protocol from the previous work [61] to report the
results. We evaluate the results via the following metrics:
Accuracy (ACC), Fl-score (F1), Precision (P), and Recall
(R) for the intent recognition. For CMU-MOSI, we follow
the previous works [15, 43] to evaluate CAGC by using the
metrics: Mean-absolute Error (MAE), Pearson Correlation
(Corr), Binary Accuracy (ACC-2), 7-class Accuracy (ACC-
7), and F1-score (F1).

Implementation Details. On the MIntRec dataset, we
represent the text feature as 768 dimensions, visual feature
as 256 dimensions, and acoustic feature as 768 dimensions.
On the CMU-MOSI dataset, we represent the text feature as
768 dimensions, visual feature as 47 dimensions, and acous-
tic feature as 74 dimensions. Specifically, we utilized the
Adam optimizer with a learning rate of 2e-5, a dropout rate
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Table 1. Comparative experimental results of the intent analysis
models on the public MIntRec test-std set. Underlined results in-
dicate the best performance among previous methods. The top 1
results are highlighted by bold. 1 indicates higher is better.

Twenty-class Binary

ACCt FI1+ P+ R7|ACCT FI4 Pt Rt

Method

MAG-BERT [40]| 72.65 68.64 69.08 69.28| 89.24 89.10 89.10 89.13
MulT [43] 72.52 69.25 70.25 69.24| 89.19 89.07 89.02 89.18
MISA [15] 7229 69.32 70.85 69.24| 89.21 89.06 89.12 89.06

CAGC (Ours) | 73.39 70.09 71.21 70.39| 90.11 90.01 89.92 90.14

Table 2. Comparative experimental results of the sentiment analy-
sis models on the public CMU-MOSI test-std set.

Method CMU-MOSI
MAE | Corrt ACC-21 Fl-Score 1 ACC-71
TFN [57] 0.970  0.633 73.9 73.4 32.1
MEFN [58] 0.965  0.632 774 77.3 34.1
ICCN [41] 0.862 0.714 83.0 83.0 39.0
MulT [43] 0.871  0.698 83.0 82.8 40.0
MISA [15] 0.817 0.748 82.10 82.0 41.4
HyCon [34] 0.713  0.790  85.20 85.1 46.60
Self-MM [55] | 0.708 0.796  85.46 85.43 46.67
ConFEDE [53] | 0.742 0.784  85.52 85.52 42.27
CAGC (Ours) | 0.775 0.774  85.70 85.60 44.80

of 0.5, and «, 8 to be {0.02, 0.02} for the training loss. The
temperature value is fixed at 0.7 and the number of cross-
videos for top-k* is set to 7. Furthermore, the mini-batch
size is set to 16, the maximum length of sentences in the
text modality is set to 30, and the number of frames in the
video is set to 230. The maximum length of audio is set to
180, while the hidden dimension and attention heads are set
to 768 and 8, respectively.

4.1. Comparison to State-of-the-Art Models

Results on the MIntRec Dataset. We compare CAGC
with the state-of-the-art MIR methods on the MIntRec
dataset, including MAG-BERT [40], MulT [43], and MISA
[15]. Tab. I illustrates the experimental results. Compar-
ing with the existing MIR methods, our model achieves
the superior performance in the metrics. It is worth not-
ing that CAGC demonstrates the significant improvement
in ACC, with the performance improvements of 1.1% over
MISA [15] (73.39% vs. 72.29%) and 0.92% over MulT
[43] (90.11% vs. 89.19%) in twenty-class and binary-class
respectively. Likewise, other metrics also exhibit different
degrees of improvement, such as the F1 score increasing
by 0.77% from 70.09% to 69.32%. Compare with these
state-of-the-art methods that focus only on learning frame-

Table 3. Abalation study of the proposed model on the public
MIntRec test-std set.

Twenty-class Binary
ACCt F1T Pt R1T|ACCT FIT PT R?T
CAGC (Ours)| 73.39 70.09 71.21 70.39| 90.11 90.01 89.92 90.14

Method

w/o CAT 71.31 67.08 68.28 67.78| 87.84 87.71 87.69 87.83
wio Ly 72.22 68.07 68.30 69.09| 88.25 88.09 88.13 88.11
wilo L; 72.31 68.33 68.82 69.28| 89.12 88.97 89.04 88.98

wlo Lg& L) 71.66 67.12 67.64 67.79| 87.82 87.65 87.71 87.66

to-frame context interactions within a video, the proposed
CAGC efficiently extracts the refined cross-video context
feature and integrates it with each modality, capturing the
global context fusion feature. Further, a global contrastive
learning scheme was designed, which leverages global con-
text features as supervisory signals to learn more robust
multimodal features with enhanced consistency and dis-
criminability from a global perspective. Due to these ad-
vantages, our method outperforms MAG-BERT [40] and
achieves superior performance.

Results on the CMU-MOSI dataset. To further vali-
date the performance of CAGC, we evaluate the effective-
ness on the CMU-MOSI dataset and report the results in
Tab. 2. Compare with the state-of-the-art method Con-
FEDE [53], the CAGC achieves the top performance in
ACC-2 and F1 score. Specifically, the ACC-2 improves
from 85.52% to 85.70% and F1 improves from 85.43% to
85.60%. Compared to methods [34, 53] that emphasize
contrastive learning within the mini-batch, our designed
global context-guided contrastive learning scheme indeed
improves the performance of the model. The experimental
results demonstrate the remarkable effectiveness of our pro-
posed method compared to existing methods. This can be
attributed to the previous methods being confused by con-
founding factors in multimodal representations, resulting in
biased modal alignment and limited learning capability.

4.2. Ablation Studies

We evaluate the effects of CAGC’s key components, in-
cluding CAT, local contrast loss £;, and global contrast loss
L, in GCCL. The results are illustrated in Tab. 3. The incor-
poration of the cross-video context feature extractor CAT
into CAGC results in a significant improvement, with the
ACC increasing to 73.39%. This phenomenon indicates
that refined cross-video visual interaction enhances contex-
tual connections in the relevant visual content, assisting the
model in capturing the global context for precise intent pre-
diction.

Furthermore, we observe that eliminating global contrast
L4 from the GCCL resulted in a decrease of 1.17% in ACC
for the twenty-class setting. Likewise, the removal of local
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T Text: you guys are the best. i love you all.

=

TILT

_ (loud, exciting)

E1  True Label: praise (positive) Predicted Label: praise

T  Text: ugh. good luck, jerry.

<

E2  True Label: taunt (negative)  Predicted Label: taunt Guidance

Cross Videos

Text: absolutely not.

Label: oppose (negative)

Text: engagement party is not a maid of
honor duty.

Label: oppose (negative)

Figure 4. Two cases E1 and E2 from the test set. E1 is a case of an
explicit intent. E2 is a case with ambiguous intent.

contrast £; while maintaining global contrast £, in GCCL
resulted in a decrease of 1.08% in ACC. This observation
indicates the crucial role of the global contrast in enhanc-
ing the robust consistency and discriminative features by
introducing global contextual features as supervision. Si-
multaneously, we consider that global contrast £, and lo-
cal contrast £; in GCCL complement each other. Ultiliz-
ing solely the global context CAT module, CAGC achieves
an ACC of 71.66%. This is due to the absence of super-
vision from both global and local contrast, leading to the
extraction of less discriminative multimodal features for in-
tent recognition. However, utilizing both the CAT module
and the GCCL scheme enables CAGC to achieve optimal
performance.

4.3. Case Study

In Fig. 4, we present some examples where CAGC ad-
justed the understanding of the current scene properly by
taking into account cross-video information. These exam-
ples demonstrate that CAGC can successfully incorporate
cross-video information to complement the current scene.
Specifically, two examples are given in Fig. 4, where blue
words with underlines potentially express intent polarity,
and red boxes are marked as the visual feature of the
speaker. From the Fig. 4, we can find that in E1, the textual,
visual and audio modalities all provide strong guidance for
intentional polarity. Specifically, words “best” and “love”
are appeared in the textual modality. The visual modality

tends to be positive because of the laughing and open lips
on facial features. And aucoustic signals are loud and excit-
ing. It is sufficient to determine the positive intent polarity
for the sample as “Praise”.

In E2, the textual modality explicitly expresses a strong
positive intent polarity such as words “good” and “luck”,
while the facial visual feature and the acoustic signal are
gentle and do not provide a strong intent guidance. In this
situation, the model is influenced by the textual modality
strongly and tends to infer this sample as positive intent
with labels such as “Agree”, “Praise” and “Comfort” efc.
However, in fact, the true label for this sample is “Taunt”,
which belongs to the negative intent category. Therefore,
in such samples with ambiguous intent, it is really hard to
determine the true intent polarity. It’s evidently insufficient
for the model to rely merely on its own video features with-
out considering the context where the speaker is situated. To
explore the contextual environment for the speaker, our pro-
posed method first establishes connections between the cur-
rent video and cross-videos that share strong similar scenes.
Subsequently, it captures global cross-video context interac-
tions to to aid the model in accurately inferring intentions.
Specifically, we can find that in E2, cross-video and the cur-
rent video share highly similar scenes, and their intent is
“Oppose”, which belongs to the negative intent tendency.
This information provides a clue to the model that indicates
the speaker is probably in a negative contextual situation.
It makes the model prone to infer this sample as a negative
intent, such as “Taunt.”

5. Conclusion

We propose a context-augmented global contrast
(CAGC) network for MIR. CAGC is innovative in two as-
pects: its CAT component utilizes global contextual de-
pendencies across videos to enhance comprehensive con-
text understanding, thereby alleviating intent ambiguity.
To ensure the precision of global context, we further de-
velop a cross-video bank that simultaneously considers in-
tent tendencies and inter-video similarity to ensure effec-
tive cross-video source, mitigating error accumulation and
interference. GCCL component relieves modality discrep-
ancies and enhances cross-modality alignment by introduc-
ing global contextual cues as the supervision. Our proposed
method is mainly evaluated on the MIntRec. The results
demonstrate that the proposed method significantly outper-
forms state-of-the-art MIR methods. We also conduct an
extensive experiments on CMU-MOSI to evaluate the effec-
tiveness of CAGC, and our approach achieves comparable
performances to state-of-the-art methods.
Acknowledgement. This work is supported by Na-

tional Natural Science Foundation of China under Grant
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