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Abstract

The human ability to easily solve multimodal tasks in
context (i.e., with only a few demonstrations or simple in-
structions), is what current multimodal systems have largely
struggled to imitate. In this work, we demonstrate that the
task-agnostic in-context learning capabilities of large mul-
timodal models can be significantly enhanced by effective
scaling-up. We introduce Emu2, a generative multimodal
model with 37 billion parameters, trained on large-scale
multimodal sequences with a unified autoregressive objec-
tive. Emu2 exhibits strong multimodal in-context learning
abilities, even emerging to solve tasks that require on-the-fly
reasoning, such as visual prompting and object-grounded
generation. The model sets a new record on multiple mul-
timodal understanding tasks in few-shot settings. When
instruction-tuned to follow specific instructions, Emu2 fur-
ther achieves new state-of-the-art on challenging tasks such
as question answering benchmarks for large multimodal
models and open-ended subject-driven generation. These
achievements demonstrate that Emu2 can serve as a base
model and general-purpose interface for a wide range of
multimodal tasks. Code and models are publicly available
to facilitate future research.

1. Introduction
Multimodal tasks [25, 41] encompass anything involving
understanding and generation in single or multiple modal-
ities [5, 19, 58], which can be highly diverse and long-
tail. Previous multimodal systems largely rely on design-
ing task-specific architecture and collecting a sizable super-
vised training set, both of which are difficult to scale, partic-
ularly when this process needs to be repeated for each new
task encountered. By contrast, humans can solve a new task
in context, i.e., with only a few demonstrations or simple
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instructions – a capability that current multimodal models
have yet to learn.

Recently, generative pretrained language models have
demonstrated strong in-context learning abilities [11, 21,
73]. By training a 37-billion-parameter model Emu2 and
thoroughly evaluating it on diverse multimodal tasks, we
demonstrate that a scaled-up multimodal generative pre-
trained model can harness similar in-context learning abil-
ities and effectively generalize to unseen multimodal tasks.
Emu2 is trained with a unified autoregressive objective:
predict-the-next-multimodal-element (either visual embed-
dings or textual tokens). In this unified generative pretrain-
ing process, large-scale multimodal sequences (e.g., text,
image-text pairs, and interleaved image-text-video) are used
for model training.

We measure Emu2’s capabilities of learning from a few
examples or instructions on standard multimodal datasets,
as well as new tasks unseen in the training set. Specifically,
Emu2 is evaluated under two scenarios: (a) few-shot set-
ting, where we allow as many examples as possible to fit
the context window of the model; and (b) instruction tun-
ing, where the model is tuned to follow specific instructions.

Emu2 achieves promising results in the few-shot setting
on a wide range of vision-language tasks. For example, it
demonstrates state-of-the-art few-shot performance on mul-
tiple visual question-answering datasets. We observe a per-
formance improvement when the number of examples in
context increases. Figure 1 illustrates Emu2’s strong mul-
timodal reasoning capabilities for tasks in the wild, e.g.,
recognition and counting in a specific format. Emu2 also
learns to follow visual prompting in context (e.g., the circles
laid on the images in Figure 1), even although it struggles
at a smaller scale or at zero shot.

As Emu2 is inherently equipped to handle interleaved
text-image-video at both input and output, it serves as
a powerful and versatile base model for diverse multi-
modal tasks, by following specific task instructions. For
example, after instruct tuning with conversational data,
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[dog: 1, frisbee: 1]. [cat: 3]. [beer: 3, banana: 2].

The text in the red 
circle: 'Rights'.

The text in the red 
circle: 'Ave'.

The text in the red 
circle: 'Do Not'. The text in the red circle: ‘Lynn’.

motorcycle's wheel. woman's feet. car's license plate. motorcycle's headlight.
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<a man> is riding <a big  horse> on the <water> in front of <mountain>
impressionist painting of an 

astronaut in a jungle An image of <emu> wearing a big sunglasses on the beach

[burger: 1, glass: 1, bottle: 1].

                    

and <a dog> An anime draw of   <a baby emu>
 

, in the style of 

a photo of 
a yellow 

backpack:

a photo of 
a blue

backpack:

a photo of 
a red

backpack:

a photo of 
a brown

backpack:

a photo of 
a blue and red 

backpack:

The subject A 
with a city in the 

background:

The subject A wearing a 
santa hat:

The subject A in a 
purple wizard outfit:

The subject A 
wearing a 

rainbow hat:

 <a dog>  <a dog>and

running 
on the 
city 
street
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Look at this sequence of three 
shapes. What shape should come 
as the fourth shape? Explain your 
reasoning with detailed 
descriptions of the first shapes.

The first shape is a triangle, the 
second shape is a square, and 
the third shape is a pentagon. 
To find the next shape in the 
sequence, we need to identify a 
pattern. In this case, the pattern 
is that each shape has one more 
side than the previous shape. 
Therefore, the next shape in the 
sequence should have six sides, 
which is a hexagon.

What is funny about this image?

。

The funny aspect of this image is that 
a squirrel is holding a camera and 
appears to be taking a picture of a 
bird. This is amusing because 
animals, such as squirrels and birds, 
do not typically use cameras or 
engage in human-like activities like 
photography. The scene is set up in a 
way that makes it look like the 
squirrel is intentionally capturing the 
bird's image, which adds a humorous 
twist to the scene. Additionally, the 
bird is perched on a mushroom, 
further enhancing the whimsical and 
playful nature of the image.

Figure 1. Emu2 is a large generative multimodal model that serves as a foundation and a general-purpose interface for a broad range of
multimodal tasks across understanding and generation, with remarkable in-context learning abilities.
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Generative Multimodal Model

…
Classification

An[/IMG][IMG] egg that will </s><s> emu hatch into a emubaby [/IMG][IMG]

…egg that willemu hatch into a emubabyAn </s>[IMG][IMG]
Regression

… …

Decoder

Encoder

Decoder

…

Figure 2. Overview of Emu2 architecture. Emu2 learns with a predict-the-next-element objective in multimodality. Each image in the
multimodal sequence is tokenized into embeddings via a visual encoder, and then interleaved with text tokens for autoregressive modeling.
The regressed visual embeddings will be decoded into an image or a video by a visual decoder.

Emu2 achieves state-of-the-art results on visual question-
answering tasks, and surpasses previous models of more
complex designs. In addition, Emu2 can be fine-tuned to
function as a controllable visual generation model of high
quality. It is capable of accepting a mixture of text, loca-
tions and images as conditions, and generating images that
are grounded as specified.

Given the broad spectrum of capabilities displayed by
Emu2, we conduct a thorough analysis of its potential so-
cietal implications and discuss in detail potential concerns
over misuse. By identifying further tasks where Emu2’s
in-context learning can further improve, we highlight the
necessity for continuous enhancement of the model and the
importance of deploying Emu2 responsibly.

2. Approach
2.1. Model Architecture

Emu2 is a generative multimodal model that learns with
a predict-the-next-element objective in multimodal context.
As illustrated in 2, the architecture of Emu2 consists of
three components: Visual Encoder, Multimodal Model-
ing, and Visual Decoder. Each image in the input multi-
modal sequence is tokenized into continuous embeddings
via the Visual Encoder and then interleaved with text tokens
for autoregressive Multimodal Modeling. The regressed
visual embeddings are then decoded into an image or a
video by the Visual Decoder. Specifically, we leverage pre-
trained EVA-02-CLIP-E-plus [70], LLaMA-33B [73] and
SDXL [58] to initialize the Visual Encoder, Multimodal
Modeling, and Visual Decoder, respectively. Compared to
Emu [71], Emu2 embraces a simpler framework which con-
nects the Visual Encoder and Multimodal Modeling through
mean pooling each image to 8× 8 image patches, followed

by a linear projection, instead of using an additional C-
Former [71].

2.2. Pretraining

2.2.1 Data

The pretraining data for Emu2 comprises several pub-
licly accessible datasets, including image-text pairs from
LAION-2B [65] and CapsFusion-120M [87], video-text
pairs from WebVid-10M [8], interleaved image-text data
from Multimodal-C4 (MMC4) [95], interleaved video-
text data from YT-Storyboard-1B [71], grounded image-
text pairs from GRIT-20M introduced by Kosmos-2 [57]
and CapsFusion-grounded-100M curated by CapsFusion-
120M. Additionally, language-only data from Pile [26] is
included to retain textual reasoning capability.

2.2.2 Training

Similar to Emu [71], Emu2 learns with the predict-the-next-
element objective within a multimodal sequence. Each im-
age is encoded into N = 64 dimension-fixed visual embed-
dings and then interleaved with text tokens to construct a
multimodal sequence. The interleaved sequence is then fed
into a Transformer decoder for autoregressive modeling.

Emu2 is first pretrained on image-text and video-text
pair data with only captioning loss on the text tokens. The
input images are resized to 224×224. We adopt the AdamW
optimizer [50] with β1 = 0.9, β2 = 0.95, ϵ = 1×10−6. The
maximum learning rate is 1×10−4 for the linear projection
layer, 3×10−5 for Multimodel Modeling, and 5×10−5 for
Visual Encoder. We pretrain Emu2 on 162 million image-
text samples and 7 million video-text samples for 35,200
iterations. The global batch size is 6,144 for the image-text
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pairs and 768 for video-text pairs. The training process is
then restarted at a higher 448-pixel resolution for an addi-
tional 4,000 iterations.

Then, we freeze the Visual Encoder and only opti-
mize the linear projection layer and Multimodel Modeling
with both text classification loss and image regression loss.
Additional datasets including image-text interleaved data,
video-text interleaved data, grounded image-text pair data,
and language-only data are used in the training. All im-
ages are resized to 448 × 448, and the maximum learning
rate is 1 × 10−5. We use a global batch size of 12,800 for
image-text pair data, 6,400 for video-text pair data, 3,200
for image-text and video-text interleaved data, and 800 for
language-only data. The training process spans 20,350 iter-
ations and consumes about 160 million samples of image-
text data and 3.8B tokens of language-only data.

2.2.3 Visual Decoding

We train the Visual Decoder to directly decode visual em-
beddings generated by the Visual Encoder into image. We
use SDXL-base[58] as the initialization of our Visual De-
coder, which is fully trained to solve the new task of au-
toencoding. Specifically, we use N visual embeddings as
the condition input to the Visual Decoder and adjust the di-
mension of the projection layers in cross-attention modules
to match the dimension of visual embeddings.

Unlike Emu [71] where each optimization step of its Vi-
sual Decoder requires an autoregressive inference of the
language model, Emu2’s visual decoding can be considered
as training a detokenizer, which can be trained off-the-shelf
without the language model. Once trained, the Visual De-
coder together with the Visual Encoder works as an image
autoencoder that can tokenize an image into embeddings
and detokenize back. During Emu2 inference, it generates
N image embeddings and decodes to an image on the fly.

For the decoding of video data, we train a diffusion-
based decoder [67]. Similar to [46, 74], we adapt a 2D
denoising U-Net to 3D style by inserting a 1D temporal
convolution following each 2D spatial convolutional layer
and extending the spatial attention to spatial-temporal at-
tention. This video decoder is initialized via Stable Diffu-
sion 2.1 [62] and fully trained to generate video clips con-
ditioned on visual embeddings from Emu2.
Training Setup. We use the images in LAION-COCO [2]
and LAION-Aesthetics [1] to train the Visual Decoder un-
der the task of image autoencoding. The Visual Encoder
and VAE in SDXL are frozen, and only the U-Net is up-
dated during training. We adopt AdamW optimizer [50]
with β1 = 0.9, β2 = 0.999 and the weight decay of 0.01.
We use log learning rate warm-up and linear learning rate
decay with a peak learning rate of 1 × 10−4 for 2,000 and
6,000 steps, respectively. We filter out images whose res-

real image SEED Emu Emu2

Figure 3. Comparison of autoencoding results among different
methods [27, 71]. Emu2’s Visual Encoder and Visual Decoder in
the architecture of CLIP-Diffusers form a strong autoencoder.

olution is lower than 512 × 512. The input to the Visual
Encoder is set to 448 × 448, while the output of the Vi-
sual Decoder is set to 1024 × 1024. We also employ the
classifier-free guidance [30], which randomly discards im-
age embeddings with the probability of 10%. The batch size
is set to 2,048 in total.

2.3. Instruction Tuning

Emu2 can be efficiently aligned to follow specific task in-
structions. We fine-tune the base model with conversational
data to yield Emu2-Chat, which is capable of following
multimodal questions and making responses in dialogue.
Similarly, we derive a controllable visual generation model
Emu2-Gen, which is capable of accepting a mix of text,
locations, and images as conditions, and generating images
that are grounded in the specified text or subject.

2.3.1 Instruction-Following Chat

Training Data. We adopt a uniform approach to train
on both academic-task-oriented datasets and multimodal
chat data to empower Emu2-Chat with the instruction-
following ability while retaining rich visual knowledge. As
academic-task-oriented datasets have brief annotations that
limit the model’s capacity to provide more comprehensive
and helpful responses, we distinguish between these two
data categories by employing different system messages
and including instructions with output-format control in-
formation as used in [48]. A summary of data used is
as follows: (a) Academic-task-oriented data: image cap-
tioning [18, 66], visual question answering [28, 32, 68],
knowledgeable question answering [51, 53], multimodal
classification [45], and referring expression comprehen-
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sion [34, 52]. (b) Multimodal chat data: GPT-assisted vi-
sual instruction [49, 93], language instruction [4, 72], clock
reading [83], and video chat [44].
Training Objective. In instruction tuning of Emu2-
Chat, two special tokens, [USER] and [ASSISTANT],
are incorporated into the model to denote roles. These
tokens help organize different data types in the follow-
ing format: “<Sys.Msg.> [USER]: <Instruction>

[ASSISTANT]: <Answer>”. Here <Sys.Msg.> repre-
sents system message and varies between the two major task
categories (academic-task-oriented and multimodal chat).
The <Instruction> section comprises multimodal to-
kens, including images, videos, and text. Only tokens in
the <Answer> section will be supervised by cross-entropy
loss during training.
Training Setup. We use a global batch size of 768 and
train for 8k steps. The learning rate linearly warms up to
1×10−5 in the first 100 steps, then decays to zero with a co-
sine schedule. The model is trained using the AdamW opti-
mizer with β1 = 0.9, β2 = 0.98, ϵ = 1×10−6, and a gradi-
ent clipping of 5.0. The sequence length during training is
limited to 2048, and any excess beyond that is truncated di-
rectly. We consistently employed an input image/video res-
olution of 448 × 448. For video data, we uniformly sample
frames in time as input to the model. The number of sam-
pled frames for each video is randomly chosen from 8, 12,
and 16. To capture more intricate spatial details, following
the visual encoder stage, we apply mean-pooling to each
static image, dividing it into 16 × 16 tokens during instruc-
tion fine-tuning. This differs from the pre-training phase,
where 8 × 8 tokens were utilized.

2.3.2 Controllable Visual Generation

Training Data. We leverage a mix of high-quality
datasets to unleash the potential of controllable generation
in context. We use a grounded image-text pair dataset
CapsFusion-grounded-100M and GRIT [57] for grounded
text-to-image generation. To mitigate the impact of image
backgrounds on the effectiveness of multi-entity subject-
driven generation, we employ SAM [36] to preprocess the
grounding data, yielding a subset of approximately 5 mil-
lion samples with segmentation results. Additionally, we
leverage InstructPix2Pix constructed by [10] for image edit-
ing tasks. For the text-to-image task, we use a filtered sub-
set of CapsFusion [87], LAION-Aesthetics [1], SA-1B [36],
and LAION-High-Resolution [3].

We also collect data from premium sources (e.g., Un-
splash [20]) and outputs from advanced text-to-image sys-
tems (e.g., Midjourney-V5 [54] and DALL-E-3 [9]) for
quality fine-tuning. This diverse dataset includes around
500k high-quality image-text pairs. For all the data above,
during the training, only samples with image resolutions

higher than 448 × 448 were retained to ensure generation
quality. More details can be found in the supplementary.

Model Shot VQAv2 OKVQA VizWiz TextVQA
Hateful
Memes

Kosmos-1 (1.6B)
0 51.0 - 29.2 - -
4 51.8 - 35.3 - -
8 51.4 - 39.0 - -

Flamingo (9B)

0∗ 51.8 44.7 28.8 31.8 57.0
4 56.3 49.3 34.9 33.6 62.7
8 58.0 50.0 39.4 33.6 63.9
16 59.4 50.8 43.0 33.5 64.5

Flamingo (80B)

0∗ 56.3 50.6 31.6 35.0 46.4
4 63.1 57.4 39.6 36.5 68.6
8 65.6 57.5 44.8 37.3 70.0
16 66.8 57.8 48.4 37.6 70.0

IDEFICS (80B)

0∗ 60.0 45.2 36.0 30.9 60.6
4 63.6 52.4 40.4 34.4 57.8
8 64.8 55.1 46.1 35.7 58.2
16 65.4 56.8 48.3 36.3 57.8

Emu (14B)

0∗ 52.9 42.8 34.4 - -
4 58.4 - 41.3 - -
8 59.0 - 43.9 - -
16 - - - - -

Emu2 (37B)

0 33.5 26.7 40.4 26.4 52.2
4 67.0 53.2 54.6 48.2 62.4
8 67.8 54.1 54.7 49.3 65.8
16 68.8 57.1 57.0 50.3 66.0

Table 1. Zero-shot and few-shot evaluations of Emu2. 0∗ denotes
text two-shot and image zero-shot results following Flamingo [5].
The best results are in bold and the second best are underlined.

Training Objective. We use the same unified gen-
erative pretraining objective to adapt to diverse gen-
eration tasks in context. Specifically, a training sam-
ple for generation is formulated as: “<s>A photo

of <p>a man</p><coor>image embedding of

object localization image</coor>[IMG]image

embedding of man[/IMG]sitting next to

<p>a dog</p><coor>image embedding of

object localization image</coor>[IMG]image

embedding of dog[/IMG][IMG]image embedding

of the whole image[/IMG]</s>”. We represent
the coordinates of each object directly in image form by
drawing the bounding box of each object at its specified
location on a black image. Our Emu2-Gen conducts
unified multimodal modeling of the text, object image, and
corresponding object localization image. The regression
loss only applies to the visual embeddings of the last
image. We freeze the Visual Encoder during fine-tuning.
We randomly drop tokens of entities and object localization
image to enhance model adaptability and robustness. Addi-
tionally, we apply data augmentation to each object image,
incorporating random background variations and random
crop, aiming to reduce the reliance on image backgrounds.
Training Setup. We use a global batch size of 4,096 and
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Model
Visual Question Answer LMM Benchmarks

VQAv2
[28]

OKVQA
[53]

GQA
[32]

VizWiz
[29]

TextVQA
[68]

MSVD
[82]

MSRVTT
[82]

SEED
[39]

MM-Vet
[88]

TS
[7]

MMMU
[89]

Flamingo-9B [5] 51.8 44.7 - 28.8 - 30.2 13.7 - - - -
Flamingo-80B [5] 56.3 50.6 - 31.6 - 35.6 17.4 - - - -
Kosmos-1 [31] 51.0 - - 29.2 - - - - - - -
Kosmos-2 [57] 51.1 - - - - - - 50.0 - - 26.6
BLIP-2-13B [42] - - 41.0 19.6 42.5 20.3 10.3 46.4 22.4 - -
InstructBLIP-13B [22] - - 49.5 33.4 50.7 41.2 24.8 - 25.6 552.4 -
IDEFICS-9B [38] 50.9 38.4 - 35.5 25.9 - - - - - -
IDEFICS-80B [38] 60.0 45.2 - 36.0 30.9 - - - - - -
Shikra-13B [15] 77.4* 47.2 - - - - - - - - -
Qwen-VL-13B-Chat [6] 78.2* 56.6* 57.5* 38.9 61.5* - - 58.2 - 645.2 -
LLaVA-1.5-13B [48] 80.0* - 63.3* 53.6 61.3 - - 61.6 35.4 - 33.6
CogVLM [77] 83.4* 58.9* - - 68.1* - - - - 662.6 30.1
Emu-I [71] 62.0 49.2 46.0 38.3 - 37.0 21.2 - 36.3 - -
Emu2-Chat 84.9* 64.8* 65.1* 54.9 66.6* 49.0 31.4 62.8 48.5 703.8 34.1

Table 2. Results on visual question answering and LMM benchmarks. * indicates that samples from this task’s training set have been
trained. SEED and TS respectively represent SEED-Bench [39] and TouchStone [7]. For MM-Vet, we present the average result of five
scoring runs.

train for 3k steps. The learning rate linearly warms up to
5 × 10−5 in the first 100 steps, then decays to zero with a
cosine schedule. We further fine-tune for 900 steps using
the 500k high-quality pairs with a batch size of 2048.

3. Evaluation
3.1. Pretrained Base Model

We evaluate zero-shot and few-shot abilities of Emu2 on
OKVQA [53], VQAv2 [28], VizWiz [29], TextVQA [68],
and HatefulMemes [35] tasks. Details of the datasets and
prompts can be found in supplementary materials. The
results are presented in Table 1. Emu2 demonstrates re-
markable in-context ability, showcasing improved perfor-
mance with more in-context samples seen. Specifically,
on VQAv2, VizWiz and TextVQA datasets, Emu2 outper-
forms Flamingo-80B and IDEFICS-80B under all few-shot
settings with a much smaller model scale (37B).

Figure 1 demonstrates Emu2’s few-shot capabilities in
the wild. For example, the model learns to classify and
count simultaneously in a specific format via a few exam-
ples (row 1). Additionally, Emu2 is capable of following
visual prompts in context, e.g., the red circles laid on the
images (row 2 and 3).

3.2. Instruction-Following Chat

Our Emu2-Chat is evaluated on academic-task-oriented
benchmarks including image question-answering datasets
(VQAv2 [28], OKVQA [53], GQA [32], VizWiz [29],
TextVQA [68]) and video question-answering datasets
(MSVD [82] and MSRVTT [82]). The evaluation also en-
compassed recent benchmarks for large multimodal models,

including SEED-Bench [39], MM-Vet [88], TouchStone [7]
and MMMU [89]. When evaluated on SEED-Bench, we
followed the setup of LLaVa-1.5 [48] by presenting options
to the model for completing multiple-choice tasks.

As shown in Table 2, Emu2-Chat consistently outper-
forms other models in image question-answering tasks,
encompassing well-established benchmarks like VQAv2
and GQA. Notably, it shows a noticeable improvement
in the OKVQA task, which requires the utilization of
external knowledge, showcasing the advantage of our
model for mastering real-world knowledge. For video
question-answering, Emu2-Chat demonstrated advantages
even though it did not use video question-answering data
for training. It achieved an accuracy of 49.0 and 31.4 on
the MSVD-QA and MSRVTT-QA tasks, respectively, sur-
passing InstructBLIP and the larger Flamingo-80B. More
importantly, our model has also achieved better results on
LMM benchmarks. LMM benchmarks such as MM-Vet
provide a more comprehensive evaluation of model abil-
ities, including solving complicated tasks. Emu2-Chat
achieves a score of 48.5 in MM-Vet and 703.8 in Touch-
Stone, confirming its superior capability in understanding
and solving multimodal problems.

In addition, we demonstrated the visual grounding capa-
bility of our model using the refer expression comprehen-
sion benchmarks. In Table 3, Emu2-Chat achieved the best
results among generalist models on RefCOCO [34], Ref-
COCO+ [52] and RefCOCOg [52]. Its most notable ad-
vantage was observed in RefCOCO+, which focused solely
on purely appearance-based descriptions without allowing
the use of position references. This highlights our model’s
powerful perceptual abilities in capturing intricate details.
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A photo of <the first dog>, 
<the second dog>,  <the third 

dog> on the grass

A photo of <the first dog>, 
<the second dog>,  <the third 

dog> on the beach

 a bear and  a sunflower

An oil painting of <the first 
dog>, <the second dog>,  <the 

third dog>

<a bear>            and  <a sunflower> <a bear>                     and <a sunflower>

as an oil painting 
by Monet  in a dark forest in 3D

<a dog>                           in <A  clock> is on the table

Figure 4. Visualization of Emu2-Gen’s controllable generation capability. The model is capable of accepting a mix of text, locations and
images as input, and generating images in context. The presented examples include text- and subject-grounded generation, stylization,
multi-entity composition, subject-driven editing, and text-to-image generation.

Model
RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

OFA-L [75] 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58
Shikra-7B [15] 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19
Shikra-13B [15] 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16
Qwen-VL-7B [6] 89.36 92.26 85.34 83.12 88.25 77.21 85.58 85.48
Emu2-Chat 90.40 93.88 85.97 87.05 91.43 80.47 87.64 88.11

CogVLM [77] 92.51 93.95 88.73 87.52 91.81 81.43 89.46 90.09

Table 3. Results on referring expression comprehension. We
grayed out CogVLM because its generalist grounding-enhanced
model was specialist trained on high-quality grounding data.

3.3. Controllable Visual Generation

Qualitative Results. Figure 3 presents a visualization of
Emu2’s autoencoding results. With Emu2’s Visual En-
coder and Visual Decoder, we can tokenize an image into
visual embeddings and detokenize them back. Compared
with SEED [27] and Emu [71], Emu2 shows significantly
superior results. We also evaluate our image autoencod-
ing results on MS-COCO [47] and achieve a strong 0.907
CLIP-I [59] score. More results are in the supplementary.

As depicted in Figure 4, Emu2-Gen is capable of ac-
cepting a mixture of text, locations and images as input,
and generating images in context. The model skillfully
engages in various controllable visual generation tasks in

a zero-shot setting, capitalizing on the in-context learn-
ing capabilities in multimodality. Examples in Figure 4
show generated images of three dogs conditioned on differ-
ent subjects, locations and scenarios. The presented visual
samples demonstrate the model’s proficiency in tasks such
as re-contextualization, stylization, modification, region-
controllable generation, and multi-entity composition.
Zero-shot Text-to-image Generation. We evaluate the
zero-shot text-to-image generation capability on 30k ran-
domly sampled data from the MS-COCO [47] validation
set. We employ CLIP-ViT-B [60], following the approach
in DALL-E 3[9], to calculate the CLIP-T score to assess
prompt-following ability. Additionally, we utilize CLIP-
ViT-L, as in GILL[37], to compute the CLIP-I score for
measuring image similarity. A higher score means the gen-
erated image is more similar to the prompt or the real image.
Table 4 shows that Emu2-Gen achieves the state-of-the-art
performance in terms of both CLIP-I and CLIP-T scores
compared to various unimodal generation models and mul-
timodal models. More text-to-image generation cases can
be found in supplementary.
Zero-shot Subject-driven Generation. Following
Kosmos-G [56], we also evaluate our model’s subject-
driven image editing ability on DreamBench [63]. We
generate four images for each prompt, resulting in a total of
3,000 images for a comprehensive evaluation. We employ
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Models CLIP-I ↑ CLIP-T ↑

unimodal generation models

MUSE [13] - 0.320
Imagen [64] - 0.270
DALL-E 2 † [61] - 0.314
DALL-E 3 † [9] - 0.320
SDv1.5 [62] 0.667 0.302
SDXL [58] 0.674 0.310

multimodal generation models

GILL [37] 0.684 -
SEED [27] 0.682 -
Emu [71] 0.656 0.286
Emu2-Gen 0.686 0.297

Table 4. Quantitative comparison of zero-shot text-to-image gen-
eration on MS-COCO [47] validation set. 30k samples are ran-
domly sampled. †CLIP-T score is calculated on 4,096 samples.
We also evaluate our image autoencoding results on MS-COCO
which achieves a strong 0.907 CLIP-I score.

Methods DINO ↑ CLIP-I ↑ CLIP-T ↑

Real Images (Oracle) 0.774 0.885 -

Fine-Tuning

Textual Inversion [24] 0.569 0.780 0.255
DreamBooth [63] 0.668 0.803 0.305
BLIP-Diffusion [42] 0.670 0.805 0.302

Test Time Tuning Free

Re-Imagen* [16] 0.600 0.740 0.270
SuTI [17] 0.741 0.819 0.304
BLIP-Diffusion* [42] 0.594 0.779 0.300
Kosmos-G* (single image input) 0.694 0.847 0.287
Emu2-Gen * (single image input) 0.766 0.850 0.287

Table 5. Quantitative comparison of zero-shot single-entity
subject-driven generation on DreamBench. * denotes zero-shot
methods.

DINO [12] and CLIP-I [59] to evaluate subject fidelity,
and CLIP-T [59] to evaluate text fidelity, aligning with the
methodology established by DreamBooth. Notably, Emu2-
Gen excels in subject fidelity, as evidenced by its superior
performance on DINO and CLIP-I metrics compared to
methods like BLIP-Diffusion and Kosmos-G. Emu2-Gen
impressively reconstructs subjects with just one image
input in zero-shot setting, demonstrating superior subject
fidelity through powerful visual decoding. Further illustra-
tive cases are provided in the supplementary, showcasing
Emu2-Gen’s proficiency in multi-entity generation.

4. Related Work

Large Multimodal Models. Recent years have witnessed
the rapid growth of large multimodal models [5, 19, 31,

71]. CLIP [59] pioneered the learning of LMMs with a
contrastive learning objective on massive image-text pair
data. Flamingo [5] and Kosmos [31, 57] exhibit promis-
ing zero-shot and few-shot multi-modal understanding per-
formance by training on large-scale image-text interleaved
data. With the remarkable progress in open-sourced LLMs,
[42, 43, 49, 94] show promising results by connecting vi-
sion encoders and LLMs with a small intermediate model.
A school of successive efforts [69, 76, 84, 90, 91] further
improves visual instruction tuning with better overall train-
ing pipelines [6, 40], grounding annotations [14, 15, 85, 92],
and extra tasks [6]. There are early studies on training more
unified large multimodal models [23, 27, 71, 86] that are
capable of performing visual understanding and generation
simultaneously. In this paper, we further explore the distinct
solution proposed in Emu [71]: learning large multimodal
models with generative objectives on both texts and images.

In-Context Learning. Recent advancements in large
language models [11, 21] underscore their capacity for in-
context learning [11]. This phenomenon, particularly ev-
ident as LLMs scale up in size and data, has been ex-
ploited for complex challenges such as mathematical rea-
soning [81], signaling new emergent ability in model behav-
ior [80]. Flamingo [5] integrates visual inputs to LLMs, en-
abling the in-context learning of visual-linguistic tasks such
as image captioning and OCR through language-based in-
terfacing. Painter [78] and SegGPT [79] conduct an early
study of visual in-context learning. Inspired by the emerg-
ing abilities of large language models, in this work we study
the problem of multimodal in-context learning by scaling
up generative multimodal models and demonstrating strong
results in broad understanding and generation tasks.

5. Conclusion

We present a 37 billion-parameter generative multimodal
model Emu2 that shows strong performance and versatil-
ity on many multimodal tasks in the in-context settings.
Emu2 serves as a base model and a general-purpose in-
terface for a variety of multimodal tasks. We demonstrate
state-of-the-art results on a broad range of benchmarks of
multimodal understanding and generation. Specifically, our
model largely surpasses prior work on the lately proposed
LMM benchmarks that require more advanced capability
compared to classic academic benchmarks. Emu2 also
shows remarkable capability of controllable visual gener-
ation in multimodal context, e.g., subject-/text-grounded
generation. Additionally, we review the limitations and
broader social impact of Emu2. Despite discussed weak-
nesses, these results suggest that generative multimodal
model at scale may be an important step towards the de-
velopment of adaptable, general multimodal systems.
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