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(a) Unseen objects with known categories (e.g., laptop). (b) Unseen objects with unknown categories (e.g., banana).

Figure 1. Given a 3D point cloud stream and the language-3D captions, our method achieves real-time, causal 6-DoF pose tracking while
reconstructing the 3D shape in the current observation. We demonstrate that: (a) our method not only enables zero-shot inference for
unseen objects with known categories, (b) but also perfectly showcases the zero-shot capabilities for unseen objects with unknown classes.

Abstract

3D visual language multi-modal modeling plays an
important role in actual human-computer interaction.
However, the inaccessibility of large-scale 3D-language
pairs restricts their applicability in real-world scenarios.
In this paper, we aim to handle a real-time multi-task for
6-DoF pose tracking of unknown objects, leveraging 3D-
language pre-training scheme from a series of 3D point
cloud video streams, while simultaneously performing 3D
shape reconstruction in current observation. To this end,
we present a generic Language-to-4D modeling paradigm
termed L4D-Track, that tackles zero-shot 6-DoF Tracking
and shape reconstruction by learning pairwise implicit 3D
representation and multi-level multi-modal alignment. Our
method constitutes two core parts. 1) Pairwise Implicit
3D Space Representation, that establishes spatial-temporal
to language coherence descriptions across continuous 3D
point cloud video. 2) Language-to-4D Association and
Contrastive Alignment, enables multi-modality semantic
connections between 3D point cloud video and language.
Our method trained exclusively on public NOCS-REAL275
dataset, achieves promising results on both two publicly
benchmarks. This not only shows powerful generalization
performance, but also proves its remarkable capability in
zero-shot inference. The project is released at L4D-Track.

*Corresponding Author

1. Introduction

The integration of the 3D physical world with coherent
natural language constitutes a pivotal advancement in field
of 3D computer vision and robotics, playing a crucial role in
the domains of embodied artificial intelligence [14]. Recent
research endeavors have increasingly focused on the task of
3D vision-language (3D-VL) learning. These tasks contain
a wide array of objectives, e.g., 3D visual grounding [30],
dense captioning [56] and question answering [1], often
employing task-specific model designs.

However, the absence of large-scale human-annotated
3D-text pairs has led to the prevalent adoption of an
alternative approach [53, 61], that involves pre-training
a generic 3D model leveraging large scale image-text
paired data, alongside 2D-3D back-projection. Despite the
existing approaches have made the promising progress in
terms of handling 3D visual understanding, this line of
methods suffers from several major challenges. Firstly, the
paradigm of mapping 3D data into 2D modalities utilizing
the vision-language (VL) foundation models, leads to lose
the vital information in 3D space and renders heavier
computational and memory costs. Secondly, given the
irregular and unstructured nature of 3D point cloud data,
a complete 3D-language foundation that learns a unified 3D
representation emerges as a more viable option compared
to the indirect VL-based approach. Futhermore, existing
methods are only capable of understanding concrete
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instances with known classes in single-frame 3D data, thus
exhibiting limited performance in real-world scenes with
unseen objects. Moreover, few studies have delved into the
modeling from language-to-3D video (point cloud stream)
in the existing literatures [8, 20]. On the other hand, 6-
DoF pose tracking and 3D reconstruction from a 3D video
are also the fundamental open problems, and the intra-class
shape variation restricts their ability for category-level pose
predictions. While these category-level methods [43, 49,
50] enable generalization to new objects within the same
category, they face difficulties when confronted with out-
of-distribution unseen instances with unknown categories.

Thus, we wondered if it was possible to establish an
unified paradigm bridging 3D video and language for
zero-shot simultaneous 6-DoF pose tracking and 3D shape
reconstructing in a real-time manner. In this work, our
core idea is to discover and construct a model linking
3D video and language descriptions to distill semantic-rich
language captions and compensate for lack of language-3D
data pairs in the 3D domain. In the end, we introduce a
language-to-4D modeling paradigm that seeks to establish
fine-grained interactions between 3D point cloud steam
and their corresponding language captions. This enables
learning of universal multi-modal inter-frame feature pairs
for zero-shot tasks involving 6-DoF pose tracking and 3D
shape reconsrtuction. As depicted in Fig. 1, given the point
cloud stream, we first propose a Pairwise Implicit 3D Space
Representation module (Sec. 3.2) to construct an implicit
distribution for the change of 6-DoF pose and 3D shape field
between consecutive frames. We futher propose a GPT-
assisted Language-to-4D Association module (Sec. 3.3)
that bridges the modal association between 3D point cloud
video and language semantics. To align 3D geometric
feature pairs with language features from spatial semantics
to temporal perspectives, we propose to build multi-level
contrastive alignment (Sec. 3.4) to make our approach more
generalizable. Through experiments on two public datasets,
we demonstrate the effectiveness of our proposed method.
In conclusion, our main contributions are:

• We introduce a language-4D modeling paradigm that
learns multi-modal characteristics to achieve object 6-
DoF pose tracking and the corresponding 3D shape
reconstruction in a real-tme manner.

• We propose a pairwise pose/shape 3D space implicit
representation strategy, ensuring that the learned multi-
modal feature pairs are both language-aligned and
spatio-temporally coherent for every frame.

• We propose a GPT-assisted 3D point cloud video-
language association and alignment scheme to tackle
the limitations of lack of language-to-3D paired data,
while guaranteeing the zero-shot generalization to
unseen instances with known or unknown classes.

2. Related Work

Object 6-DoF Pose Estimation and Tracking. The
existing studies related to 6-DoF pose estimation have
primarily focused on either the instance-level [3, 12]
or the category-level [7, 17, 21, 22, 54, 60, 62]. These
methods operate under the assumption of the availability
or unavailability of precise CAD models. Several recent
works conducted the Normalized Object Coordinate Space
(NOCS) [45] for all instances within the same category.
Aside from single-frame pose estimation, researchers
have exploited pose tracking techniques that leverage
temporal information to estimate inter-frame change of
poses across 2D video, i.e., 6-PACK [43], CAPTRA [50],
BundleTrack [47], ICK-Track [39], CatTrack [55], and
BundleSDF [49]. Our objective is to address the zero-shot
tasks of categorical pose tracking and shape reconstruction
from 3D point cloud stream (3D video). This entails the
ability to generalize from annotated (seen) object classes to
other (unseen) categories, with guidance from languages.

3D Vision-Language Pre-training. Recently, Vision-
Language Pre-training (VLP) has received significant
attention in the 2D domain [15, 25, 36, 38, 57]. Thanks to
the vast repositories of publicly available datasets, which
comprise billions of web-crawled images with semantic-
rich annotations, VLP methods have made it possible
to establish meaningful image-text embeddings. Notable
examples include VinVL [59] and VILLA [10]. However,
the domain of 3D vision-language pre-training (3D-VLP)
focused on directly learning a unified embedding space
has not yet been explored in the current literatures [8, 20].
Initial attempts by Pointclip [61], CLIP2 [58] and ULIP [53]
aimed to project 3D data into 2D modalities (e.g., RGB(D)
or depth) using the 2D-VLP foundations. In our work, we
also focus on addressing 3D understanding challenges by
learning the pairwise modeling of 3D video, encompassing
spatio-temporal consistency and language descriptions.

Neural Implicit Representation. Neural implicit
representation functions have found extensive application
in various domains, addressing challenging problem
statements such as View Synthesis [40], 3D Rendering [33].
NeRF [31] introduced the concept of a neural radiance field,
representing a static scene as a 5D function that provides
radiance information in terms of direction, point, and
density. NeRF and it variants [9,11,26,28,51] have achieved
remarkable generalization ability across a wide range of
tasks, particularly in dynamic scene synthesis studies. With
such great advances in existing NeRF-related technologies,
researchers have recently delved into utilizing NeRFs for
3D locialization [13, 19], 3D semantic segmentation [63]
and applications in robotics [27]. Our work leverages the
power of neural implicit fields to model the continuous
spatio-temporal consistency within dynamic 3D video.
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Figure 2. Illustration of the pipeline of proposed methodology. Given input point cloud stream along with the corresponding segmented
mask, we first encode them with both 2D/3D backbone separately and a cross-coupled fusion module to obtain inter-frame embeddings
ft−1, ft. These paired embeddings are then used to model the energy-based hypothesis about changes in pose and learn a neural pose-
aligned field that generates shape query while aligning its pose for an arbitrary object. Meanwhile, these embeddings will be aligned
with the extra input multi-level language captions using proposed GPT-assisted assocaition and alignment modules to achieve zero-shot
inference. It’s noteworthy that the caption embeddings fc are added into ft−1, ft to enhance its performance during the inference stage.

3. Methodology
3.1. Preliminary

Problem Formulation. In this paper, we address a
challenging zero-shot task: the simultaneous tracking
of categorical 6-DoF poses and the corresponding 3D
shape reconstruction for previously unseen instances in a
point cloud video. This is accomplished by leveraging
natural language instructions and a Vision-Language (VL)
foundation model. Formally, given a point cloud video
P = {pt} along with its segmentation masks, and a natural
language instuction list XL, our objective is to estimate and
track the 6-DoF pose and 3D shape of the observable objects
descirbed from the language instructions XL. The 6-DoF
pose, denoted as P = {T,R} ∈ SE(3), encompasses
the translation vector T ∈ R3 and the rotation matrix
R ∈ SO(3). We aim to track the change of pose ∆Pt and
subsequently reconsrtuct the corresponding 3D shape p

(q)
t

of previously unseen object in the online manner. Given
the estimated pose from previous frame Pt−1, our method
needs to estimate Pt:

Pt = ∆Pt · Pt−1 = ∆Pt ·∆Pt−1 · · · P0. (1)

An overview of our method is depicted in Fig. 2. Given
the inter-frame pairs of observable inputs (pt−1, pt) from
a 3D video, along with the segmented mask (st−1, st) of
arbitrary object of interest, we first extract spatial features
by a 3D backbone (PointNet [35]). Meanwhile, the masks
are converted into image features by a 2D backbone, which

are back-projected and added to spatial features. To build
the pairwise connection between continous frames, the pairs
of these features f̄t−1, f̄t are then fed into a cross-attention
based cross-coupled fusion module to construct the pair of
inter-frame embeddings ft−1, ft ∈ RK :

ft−1 =
∑
i∈Ωt

α((Γ(f̄t−1) + ∆) · Γ(f̄ i
t )/

√
K) · Γ(f̄ i

t )

ft =
∑

i∈Ωt−1

α((Γ(f̄t)−∆) · Γ(f̄ i
t−1)/

√
K) · Γ(f̄ i

t−1)

∆ = linear(f̄t − f̄t−1)

, (2)

where Γ are the linear projection layer, α denotes softmax
operation and Ω is feature space. ∆ represents the inter-
frame point feature difference, which is used to offset data
drifting between consecutive frames.

3.2. Pairwise Implicit 3D Space Representation

Energy-based Pose Hypothesis. Due to there may be
ambiguities when inferring the 6-DoF pose’s change given
two 3D views, we introduce an energy-based formulation
that can model these uncertainty. Given a pair of inter-
frame embeddings depicting an arbitrary object, we wish
to recover a pose hypothesis distribution over the relative
change of pose between two consecutive timesteps t − 1
and t. Inspired by the idea of implicitly representing the
distribution using a neural network in recent work [32], we
propose modelling this conditional distribution of 6-DoF
pose hypotheses P (∆P(h)

t |ft−1, ft) as the unnormalized
joint log-probability (w.r.t., energy):

P (∆P(h)
t , ft−1, ft) = σ · exp(Fη(∆P(h)

t , ft−1, ft)). (3)
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To this end, we aim to predict this energy via training a
network Fη parameterised by η. Where σ is the constant
of integration. From the product rule, these distribution can
also be represented as:

P (∆P(h)
t |ft−1, ft) =

P (∆P(h)
t , ft−1, ft)

P (ft−1, ft)

=
exp · Fη(∆P(h)

t , ft−1, ft)∑
i

exp · Fη((∆P(h)
t )i, ft−1, ft)

,
(4)

according to the Eq. (4), we compute these conditional
distribution ∆P

(h)
t of 6-DoF pose change by sampling

multiple homogeneous pose transformation matrices over
SO(3) and R3, and the number of pose sampling matrices
should be large for accurate approximation. Ultimately, we
recover the optimal change of pose from frame t− 1 to t by
optimizing Fη over the 6D space of implicit hypothesis:

∆P∗
t = argmax

∆P(h)
t ∈SE(3)

P (∆P(h)
t |ft−1, ft)

= argmax
∆P(h)

t ∈SE(3)

Fη(∆P(h)
t , ft−1, ft),

(5)

we train above network Fη by minimizing the negative log-
likelihood:

Lpose = − logP (P̃t · P̃−1
t−1|ft−1, ft), (6)

where P̃t and P̃t−1 are the ground-truth pose of the targeted
object in frame t− 1 and t. P̃t · P̃−1

t−1 denotes the pose
change from frame t− 1 to t.

Neural Pose-aligned Fields (NPFs). The key to our
approach is learning a pairwise implicit field that learns
inter-frame consistent 3D query shape with pose alignment
properties, that is related to the current observation. This
correspondences are established using NPF defined as
a mapping from the pairwise feature ft and the pose
hypothesis feature f (h) to the corresponding point y(q)pt in
3D query shape p

(q)
t in mentioned implict 3D space, and its

signed distance s:

FNPF (ft, f
(h); θ) = (y(q)pt

, s), (7)

FNPF : RK × RK 7→ R3 × R, (8)

where FNPF denotes a full-connected neural network
parameterised by θ. As shown in Fig. 2, the pose hypothesis
feature f (h) is extracted from the encoder of the network
Fη , as shown in Fig. 2. y(q)pt denotes the point of generated
shape query. Owing to the 3D query shape is sampled in the
same coordinate frame with the corresponding shape prior,
the signed distance s is defined as the distance between y

(q)
pt

and the surface of shape prior pr, which is generated using
the Shape Auto-Encoder proposed in [17] and the number
of its point is set to Np. With these field, we can then
calculate shape regress loss as Eq. (10) and L1 loss for s
similar to [13]:

Ls =
1

N

∑
i

|clamp(φ(ỹi), δ)− clamp(s, δ)|, (9)

Lshape =
1

Np

∑
xi∈pr

min
xj∈p

(q)
t

||xi − xj ||22

+
1

N

∑
xi∈p

(q)
t

min
xj∈pr

||xj − xi||22,
(10)

where ỹi is the corresponding ground-truth 3D point and δ is
a clamping parameter to maintain a metric SDF, as in [33].
We jointly train the energy-based model and NPFs model
by the following objective:

η∗, θ∗ = argmin
η,θ

(Lpose + Lshape + Ls). (11)

3.3. GPT-assisted Language-to-4D Association

The primary goal of this module is to enable meaningful
bidirectional interaction between language and 3D point
cloud stream and expect to extablish a universal 3D video-
language association to address the inaccessibility of large-
scale 3D-language data pairs. Following the statement
in [29], a general-purpose assistant that follows the
multi-modal vision-and-language instructions, which can
effectively improve the zero- and few-shot generalization
abilities. To this end, we introduce a GPT-assisted
association manner to link the language supervision to all
frames in the given 3D video clips (see in Fig. 3 (a)).
This module play a crucial role in enhancing the zero-
shot inference for pose tracking and shape reconstruction.
Here, we first back-project each 3D video clip P =
{p0, p1, . . . , pT−1} to the corresponding image space V
using the depth information and produce a series of
consecutive image frames. Given the image clips V =
{v0, v1, . . . , vT−1} with T frames, we adopt BLIP-2 [24],
a ViT backbone coupled with Q-Former, as the pre-
trained visual encoder to provide the visual feature F i

v

for per-image frame, and F i
v is also concatnated with the

corresponding object-aware embeddings, which generated
from all image crops in each frame. And then, a shared
linear layer is considered as the trainable projection to
convert these visual features into video embedding tokens
T i
v ∈ RT×Hi×W i×300, individually, which have the same

dimensionality of the language embedding space from the
language encoder. Moreover, we encode the input language
instruction XL with GloVe [34] to obtain the language
embedding token Tl ∈ RL×300, where L is the number
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Figure 3. Illustration of GPT-assisted association module (Sec. 3.3). (a) It mainly consists of a vision encoder, a language encoder, the
shared linear projection layer, and an large language model. (b) We present multi-level language instructions with video-, scene- and
object-level association manners to assign 3D video with mixed caption supervision.

of words in a language instruction. Finally, we choose
LLaMA [42] as our basic language model parameterized by
Φ, that predicts the corresponding response caption XC :

Xc = FΦ(T
i
v, Tl), with T i

v = W · vi, (12)

Though we can obtain a acceptable language-to-4D
association tool with the functions in Eq. (12), it is actually
just a generic way, incapable of enabling the former 6-DoF
tracking backbone to access abundant language features
with the rich and detailed object-centric descriptions. In
this regard, we hope to build a multi-level instruction-
caption pairs, including the level of video, scene and
object. As depicted in Fig. 3 (b), these multi-level
instruction-caption pairs (X

(V,S,O)
L ∼ X

(V,S,O)
C ) can

offer adequate captions from video content, spatial scene
relationships to the details of instances (e,g., shape, texture
and colour). Besides, in order to generate available
instruction-following ground-truth caption pairs in the used
datasets, we propose to leverage ChatGPT/GPT-4 to semi-
automatically collect these instruction-caption pairs for the
following pre-training. Finally, we only keep the LLM
weight frozen in LLaMA and continue to update the weights
of linear layer, language and visual encoder, and finetune
our association model with these instruction-following data.

3.4. Contrastive Multi-Level Language Alignment

With the multi-level captions X
(V,S,O)
C , we are now

ready to guide our core network to align with diverse
language-instructions. Since the inter-frame feature pairs
ft−1, ft and language captions XC are generated separately
in their own spaces and directly aligning them will lead to
ambiguities. Meanwhile, unlike the conventional language-
video 2D image-based modeling and aligning [16], a 3D
video stream requires more complex spatial propagation.
To this end, we introduce a 3D video-language constrastive

alignment strategy that aligns inter-frame feature pairs and
corresponding languange instructions from spatial-temporal
perspectives. We first obtain the caption embeddings fc
with a pre-trained text-encoder Ftext (ViT-L/14 in [58])
and leverage global average pooling to merge pairwise
embeddings ft−1, ft as follows,

fc = Ftext(Xc), (∆ft−1,∆ft) = Pool(ft−1, ft). (13)

We pool ft−1 and ft separately. For the purpose of refining
the zero-shot generalization of our method, we add the fc
into inter-frame embeddings ft−1, ft at the test stage, and
then adopt the contrastive loss [36] on both fc and ∆f to
achieve the single-level cross-modality alignment:

Lcap = − 1

2Nbs

t∑
j=t−1

Nbs∑
i=1

[
log

exp(fc ·∆f i
j/τ)∑Nbs

n=1 exp(fc ·∆fn
j /τ)

]
, (14)

where Nbs is the number of the training batch size and τ is
a learnable temperature. With Eq. (13) and Eq. (14), we can
compute the multi-level caption aligning loss from video-,
scene- to object-level, and the final constrastive loss can be
combined as follows,

L̂cap = λv · L(V )
cap + λs · L(S)

cap + λo · L(O)
cap . (15)

4. Experiments
We present several experiments using model trained only

on NOCS-REAL275 dataset to support the claims that
our method is able to: (i) cover the novel categories not
annotated in training set; (ii) achieve zero-shot inference for
unseen instances with unknown (known) classes.

4.1. Experimental Setup

Datasets. To evaluate our L4D-Track, we consider
both two public benchmarks of real-world datasets: NOCS-
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Table 1. Quantitative comparison of category-level 6-DoF pose estimation on the pubilc NOCS-REAL275 dataset. Note that the best
results and second best results are highlighted in bold and underlined, respectively. The results are averaged over all six categories. The
comparison results of current state-of-the-art baselines are all summarized from their original papers, and empty entries either could not be
evaluated or were not reported in the original paper.

# Method Publication Input Outputs Evaluation Metrics
IoU25 ↑ IoU50 ↑ IoU75 ↑ 5◦2cm ↑ 5◦5cm ↑ 10◦2cm ↑ 10◦5cm ↑

1 NOCS [45] CVPR2019 RGB Pose 82.2 78.0 30.1 7.2 9.5 13.8 25.2
2 CASS [2] CVPR2020 RGB-D Shape+Pose 84.2 77.7 - - 23.5 - 58.0
3 SDP [41] ECCV2020 RGB-D Shape+Pose 83.4 77.3 53.2 19.3 21.4 43.2 54.1
4 SGPA [4] ICCV2021 RGB-D Shape+Pose - 80.1 61.9 35.9 39.6 61.3 70.7
5 FS-Net [5] CVPR2021 RGB-D Pose 84.0 81.1 63.5 19.9 33.9 - 69.1
6 GPV-Pose [7] CVPR2022 D Pose 84.2 83.0 64.4 32.0 42.9 - 73.3
7 RBP-Pose [60] ECCV2022 RGB-D Pose - - 67.8 38.2 48.1 63.1 79.2
8 TTA-COPE [22] CVPR2023 RGB-D Pose - 69.1 39.7 30.2 35.9 61.7 73.2
9 HS-Pose [62] CVPR2023 3D Points Pose 84.2 82.1 74.7 46.5 55.2 68.6 82.7

Ours w/o seg. - 3D Points Shape+Pose 84.5 83.1 69.2 42.3 55.4 64.8 83.1
Ours - 3D Points Shape+Pose 86.6 83.4 76.0 47.7 56.2 68.7 85.5

Table 2. Quantitative comparison of category-level 6-DoF pose
tracking on the pubilc NOCS-REAL275 dataset.

Method Input Init. 5◦5cm ↑ IoU25 ↑ Rerr ↓ Terr ↓
ICP Depth GT. 16.9 47.0 48.1 10.5
Oracle ICP [50] Depth GT. 0.65 14.7 40.3 7.7
6-PACK [43] RGB-D GT. 28.9 55.4 19.3 3.3
6-PACK w/o temporal RGB-D Pert. 22.1 53.6 19.7 3.6
CAPTRA [50] Depth Pert. 62.2 64.1 5.9 7.9
CAPTRA +RGB seg. RGB-D Pert. 63.6 69.2 6.4 4.2
Mask Fusion [37] RGB-D GT. 26.5 64.9 28.5 8.3
Ours 3D points GT. 56.2 86.6 5.6 3.3

REAL275 [45] and YCB-Video dataset [52]. The NOCS-
REAL275 dataset includes six categories, i.e., bottle, bowl,
camera, laptop, can and mug and and comprises 7 training
videos and 6 testing videos captured in real-world settings.
This data contains 8K images that are collected in 18
defferent scenes. The YCB-Video dataset comprises both
real-world and synthetic images (21 objects) and the real
images include 92 videos captured in various scenes using
an RGB-D camera.

Metrics. Following the evaluation metrics in [17], [50],
we use five aspects of metrics respectively: 1) 3D-IoU,
that measures the average percision for various IoU-overlap
thresholds and we use 25%, 50% and 75% for this metric.
2) a◦b cm, measures the average precision of objects for
which the error is less than a◦ for rotation and b cm for
translation and we adopt 5◦2 cm, 5◦5 cm, 10◦2 cm and
10◦5 cm for this metric. 3) Rerr and Terr, average error
of rotation and translation. 4) ADD (S), average distance
(synmetric) for instance-level pose estimation. 5) the CD
(Chamfer Distance) is used for shape reconstruction.

Implementation Details. Our method is only trained on
the NOCS-REAL275 dataset and validated on each test sets.
The experiments are conducted on Ubuntu 20.04 system
with four NVIDIA RTX A6000 GPUs. We use a batch-
size of 32 and trained the network for 30 epochs with early-
stopping based on the performance of the model on the held
out validation set and set the learning rate to be 1e− 7. We
implement the number of hypothesis matrices as 5 × 104.
Shape priors are obtained by sampling Np = 2048 points.

Figure 4. Comparison of mAP on NOCS-REAL275 dataset. Our
method and typical baselines for 3D IoU, rotation and translation.

4.2. Comparison with State-of-the-Art Methods

Category-level 6-DoF Pose Tracking. We first conduct
category-level 6-DoF pose estimation on the testing set
of the NOCS-REAL275 dataset summarized in Tab. 1.
To demonstrate the performance evaluation of our L4D-
Track, we compared it with the nine main state-of-the-art
estimation-based baselines. It’s worth noting that most
available methods such as GPV-Pose [7] only focus on
single pose estimation using RGB-D/RGB whereas we
focus on both dynamically tracking and reconstructing
objects from 3D video. Notably, we report the results
of our method using only point cloud and using both
points and segmented mask, our method achieves the
better performance compared with previous state-of-the-
art baselines. Our approach achieves the most significant
gains on metrics of IoU75 (+45.9%), 5◦2 cm (+40.5%)
and 10◦5 cm (+60.3%) compared to NOCS, respectively,
which indicates the effectiveness of our language-to-4D
modeling. Tab. 2 and Fig. 4 summarize the additional
comparisons with other related category-level 6-DoF pose
tracking methods on the NOCS-REAL275 dataset. To make
the comparison fair, we follow the assumption in [43], that
the ground-truth values of the pose and size are known
in initial frame. It can be concluded that L4D-Track also
outperforms most state-of-the-art track-based baselines.
Visualization results are shown in the left of Fig. 5.
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Table 3. Quantitative comparison of instance-level 6-DoF pose tracking on the pubilc YCB-Video dataset. Note that the best results and
second best results are highlighted in bold and underlined, respectively.

Object PoseCNN [52] DenseFusion [44] se(3)-TrackNet [48] PoseRBF [6] CatTrack [55] Ours
ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

002 master chef can 50.9 84.0 - 96.4 93.8 95.9 49.2 62.6 82.5 86.3 96.2 96.4
003 cracker box 51.7 76.9 - 95.5 96.4 97.1 74.4 85.2 86.2 91.7 86.3 91.8
004 sugar box 68.6 84.3 - 97.5 97.6 98.1 74.6 86.1 83.6 92.0 90.6 92.2
005 tomato soup can 66.0 80.9 - 94.6 94.8 97.1 75.0 84.5 84.3 88.6 95.6 97.8
006 mustard bottle 79.9 90.2 - 97.2 95.7 97.4 75.7 87.3 85.9 90.2 96.1 98.7
007 tuna fish can 70.4 87.9 - 96.6 86.5 91.1 70.8 86.6 84.7 91.5 90.4 97.1
008 pudding box 92.9 79.0 - 96.5 97.9 98.4 62.1 76.6 73.4 85.8 80.3 87.4
009 gelatin box 75.2 87.1 - 98.1 97.7 98.5 88.3 92.4 90.8 93.9 82.7 84.6
010 potted meat can 59.6 78.5 - 91.3 74.2 82.4 43.7 55.2 66.7 75.9 87.2 92.6
011 banana 72.3 85.9 - 96.6 84.6 95.2 40.3 59.7 76.8 82.4 62.5 70.3
019 pitcher base 52.5 76.8 - 97.1 96.7 97.4 74.9 87.5 84.1 92.8 84.3 89.2
021 bleach cleanser 50.5 71.9 - 95.8 95.9 97.2 52.7 67.8 73.4 80.5 70.6 75.8
024 bowl 6.5 69.7 - 88.2 39.1 95.6 24.9 87.6 33.6 89.8 87.4 96.2
025 mug 57.7 78.0 - 97.1 91.6 96.9 64.4 82.1 72.1 83.9 91.8 96.9
035 power drill 55.1 72.8 - 96.0 96.4 97.4 60.0 77.1 71.3 86.0 70.1 73.3
036 wood block 31.8 65.8 - 89.7 33.9 95.9 7.7 18.4 28.6 62.3 50.2 64.3
037 scissors 35.8 56.2 - 95.2 95.7 97.5 28.5 43.7 64.9 74.3 70.3 77.8
040 large marker 58.0 71.4 - 97.5 89.0 94.2 51.3 60.1 70.8 83.4 72.3 79.2
051 large clamp 25.0 49.9 - 72.9 71.6 96.9 55.6 73.7 66.8 78.1 80.9 89.1
052 extra large clamp 15.8 47.0 - 69.8 64.6 95.8 51.2 71.4 49.8 77.2 64.3 68.7
061 foam brick 40.4 87.8 - 92.5 40.7 94.7 77.7 88.9 86.0 93.4 78.6 89.4

Average 53.7 75.9 - 93.1 87.8 95.5 60.4 75.4 72.2 84.8 80.4 86.1

Table 4. Quantitative comparison of 3D shape reconstruction on
the pubilc NOCS-REAL275 dataset: Evaluated with CD (10−2).

Method Bottle Bowl Camera Can Laptop Mug Average
6D-ViT [64] 0.24 0.11 0.61 0.16 0.14 0.11 0.21
CASS [2] 0.17 0.09 0.53 0.18 0.19 0.24 0.23
C3R-Net [46] 0.30 0.10 0.76 0.13 0.13 0.12 0.26
ShAPO [18] 0.10 0.08 0.40 0.07 0.08 0.06 0.13
SPD [41] 0.34 0.12 0.89 0.15 0.29 0.10 0.32
SGPA [4] 0.29 0.09 0.55 0.17 0.16 0.11 0.23
CenterSnap [17] 0.13 0.10 0.43 0.09 0.07 0.06 0.15
GCASP [23] 0.21 0.16 0.11 0.16 0.21 0.29 0.19
Ours w/o seg. 0.10 0.12 0.15 0.14 0.09 0.10 0.13
Ours 0.09 0.08 0.10 0.07 0.07 0.06 0.08

Table 5. Comparison of tracking speed (FPS) for typical methods
on the both NOCS-REAL275 and YCB-Video datasets.

Dataset NOCS
[45]

6-PACK
[43]

SGPA
[4]

CAPTRA
[50] Ours

NOCS-REAL275 5.24 4.03 14.12 10.35 20.45
YCB-Video 6.39 5.01 16.52 12.44 19.28

Instance-level 6-DoF Pose Tracking. Our method has
already shown the excellent potential ability in solving the
category-level pose estimation task for unseen objects with
unknown class shifts. However, it’s limited to certain six
categories and the transferable zero-shot learners across
different categories and datasets also merit exploration. In
this regard, we then conduct zero-shot instance-level 6-DoF
pose estimation experiments that only train the model on
NOCS-REAL275’s base classes and test it on the YCB-
Video’s classes without fine-tuning. As depicted in Tab. 3,
it can be observed that our L4D-Track performs well in
generalizing to unknown categories and can accurately
etimate the pose of the unseen objects with seen classes.
Note that we use the model without segmention head and
2D backbone during the inference stage. Specifically, our
method consistently outperforms CatTrack [55], the latest

instance-level method, by 20.0% ∼ 30.0% for the metric
of ADD and 5.0% ∼ 15.0% for ADD-S in response to
unseen objects with the seen category before: ”002 master
chef can”, ”005 tomato soup can”, ”006 mustard bottle” and
so on (marked in gray in Tab. 3), respectively. It further
illustrates the zero-shot capability of our approach. Since
our model was trained with 6 specific categories on NOCS-
REAL275, its performance to other categories is weaker
than the current best method se(3)-TrackNet [48].

3D Shape Reconstruction. We further test our
approach’s ability of reconstructing complete 3D shapes
by comparing against RGB-D based and depth-based state-
of-the-art baselines on the NOCS-REAL275 dataset, i.e.,
6D-ViT [64], SPD [41], SGPA [4], CenterSnap [17] and
so on. The results are reported in Tab. 4, it is observed
that the 3D shapes reconstructed by our complete model
and it variant (without segmented head) obtain average CD
metrics of 0.13 and 0.08, respectively, compared to the
0.13 of the current best baseline ShAPO [18], meanwhile
our consistently lower CD compared to other baselines. It
indicates that the pairwise implicit 3D field representation
proposed in our network can greatly improve the quality
of 3D model reconstruction. We also show a qualitative
comparison in the Fig. 5. For more comparative results in
the YCB-Video dataset, please refer to the appendix.

Runtime Analysis. We analyze the inference time of
pose tracking performance, as summarized in Tab. 5. Our
L4D-Track achieves an average speed of approximately 20
FPS on the NOCS-REAL275 dataset and 19 FPS on the
YCB-Video dataset, respectively. For a fair evaluation, we
compared the runtime with four available methods using
their officially released codes and all method are tested on
the same device, i.e., an NVIDIA RTX A6000 GPU.
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Figure 5. Visual comparison with competitive baseline on NOCA-REAL275 dataset. Left: the qualitative comparison of 6-DoF pose
tracking. For a clearer comparison, we have expressed the results in RGB images. Yellow and green represent the results from SGPA [4],
ours and ground-truth label, respectively. Right: the output of final reconstructed 3D shape, that are rendered from the same viewpoint.

Table 6. Ablation studies on different configurations of network structure and loss terms on both two public datasets. CCF refers to Cross-
coupled Fusion. EPH refers to Energy-based Pose Hypothesis. Without this module, we recover pose with a simple MLP. NPFs refers to
Neural Pose-aligned Fields. Without this module, we directly reconstruct the 3D shape. The loss Lbase contains Lpose, Lshape and Ls.

Method Network Loss Terms NOCS-REAL275 YCB-Video
CCF EPH NPFs Lbase L

(V )
cap L

(S)
cap L

(O)
cap IoU25 ↑ 5◦5cm ↑ 10◦5cm ↑ Rerr ↓ Terr ↓ CD ↓ ADD ↑ ADD-S ↑

① 66.3 32.1 48.5 24.3 17.9 0.45 58.6 62.3
② 86.0 54.3 84.9 5.8 4.0 0.10 75.0 84.9
③ 68.4 39.2 55.1 12.3 10.8 0.08 64.5 70.3
④ 86.6 56.2 85.5 5.6 3.3 0.36 76.0 85.9
⑤ 86.2 55.8 84.2 4.1 4.3 0.11 72.6 84.0
⑥ 85.7 55.4 84.1 6.6 4.5 0.11 74.3 85.0
⑦ 86.0 54.3 83.2 5.9 4.9 0.12 75.0 84.6

Ours 86.6 56.2 85.5 5.6 3.3 0.08 80.4 86.1

4.3. Ablation Study

Effect of the pairwise implicit representation. As
depicted in Tab. 6, we evaluate the performance of our
method’s variants, w.r.t., different configurations of network
architectures and the choice of loss terms. We examine
key components of our model through in-depth ablation
studies, as shown from #① to #④ in Tab. 6. We investigate
the effectiiveness of proposed fusion module and two core
network module, and the overall performance shows a
significant leap forward from 0.08 to 0.36 referring to
CD metric, idicating designed NPFs is needed to enable
shape reconstruction performance. Our model without pose
hypothesis under-performs the complete one also indicates
that implict space leads to more robust pose.

Impact of the multi-level caption supervision. We also
reduce each constrastive loss from video-level to object-
level in order (see from #⑤ to #⑦), as can be served that all
ablated versions exhibit their poorer performance on both
two datasets when corresponding loss were removed. It
not only indicates the effectiveness of the supervision from
the multi-level captions but also indirectly shows that our
designed language-to-4D association module improved the
performance of our complete model (Please check out the
appendix for more ablation analyses).

5. Conclusion

In this work, we present a zero-shot language-to-4D
modeling framework to learn universal representation that
can achieve spatio-temporal model across the entire raw
point cloud video by aligning the embedded pairwise
features and language features from multi-level contextual
perspectives. Our method jointly trains a pairise implict 3D
space representation and a pre-training language association
with multi-level instructions to achieve simultaneously 6-
DoF pose tracking and 3D shape reconstruction for unseen
objects in a 3D video. Extensive experiments demonstrate
the effectiveness of our L4D-Track on modeling between
point cloud video and language, and the zero-shot inference
for pose estimation and shape reconstruction. With the
development of large language model, we will explore the
deeper potiential of our approach in the future research.
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