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Abstract

In this work we focus on learning facial representations
that can be adapted to train effective face recognition mod-
els, particularly in the absence of labels. Firstly, com-
pared with existing labelled face datasets, a vastly larger
magnitude of unlabeled faces exists in the real world. We
explore the learning strategy of these unlabeled facial im-
ages through self-supervised pretraining to transfer gener-
alized face recognition performance. Moreover, motivated
by one recent finding, that is, the face saliency area is crit-
ical for face recognition, in contrast to utilizing random
cropped blocks of images for constructing augmentations in
pretraining, we utilize patches localized by extracted facial
landmarks. This enables our method - namely LAndmark-
based Facial Self-supervised learning (LAFS), to learn
key representation that is more critical for face recogni-
tion. We also incorporate two landmark-specific augmen-
tations which introduce more diversity of landmark infor-
mation to further regularize the learning. With learned
landmark-based facial representations, we further adapt
the representation for face recognition with regularization
mitigating variations in landmark positions. Our method
achieves significant improvement over the state-of-the-art
on multiple face recognition benchmarks, especially on
more challenging few-shot scenarios. The code is available
at https://github.com/szlbiubiubiu/LAFS CVPR2024.

1. Introduction

In recent years, face recognition has witnessed significant
advancements, owing to the emerging techniques such as
advanced loss functions [10, 16, 42, 50, 58, 61, 62] and
specialized network structures [7, 9, 17, 32, 33, 40, 55, 60,
64, 66, 70], and the large-scale annotated datasets such as
Webface42M [71] and MS1M [24]. However, most of the
works have overlooked the impact of initial parameters for
supervised training, noted as facial representation, which
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Figure 1. Illustration of our pretraining and finetuning pipeline for
face recognition. First, a landmark CNN is learnt using Part fViT
framework [55]. We adopt the landmark CNN to provide facial
landmarks for constructing our LAFS pretaining. In this frame-
work, the ‘Teacher’ processes the entire set of provided landmarks,
while the ‘Student’ operates on subsets of these landmarks. Then,
we transfer the ‘Teacher’ for finetuning with an additional regular-
ization that penalizes landmark predictions from huge variations.

is commonly proven to be effective. For example, trans-
ferring from a good pretrained model derived by either su-
pervised or self-supervised pretraining can yield better re-
sults on tasks such as Face Reconstruction [4], Face Anti-
spoofing [57] and ImageNet Classification [6, 65]. A re-
cent empirical facial comparison research [4] further reveals
that self-supervised learning is able to bring much improve-
ment compared to supervised learning, particularly, in data-
limited scenarios. However, self-supervised learning with
ResNet yields suboptimal results compared to supervised
training under large-scale settings [4]. This observation
suggests that previous self-supervised pre-training methods
may not effectively scale from limited datasets to scenarios
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with abundant identity information.
Moreover, another challenge for real-world face recog-

nition is that large-scale datasets are not always available,
due to issues such as non-commercial licenses and pri-
vacy concerns. Collecting new datasets often ensues in a
challenging situation where only a few images are anno-
tated for each novel identity [67]. Hence researches under
insufficient labelling situation(i.e. few-shot face recogni-
tion, especially 1-shot) are worth consideration. Current re-
search on few-shot face recognition focuses primarily on
improving accuracy with meta-learning [28, 67, 69], ignor-
ing that a good initial model (facial representation) is also
crucial for few-shot face recognition. A potential solution
towards maintaining generalized few-shot accuracy is self-
supervised learning [44].

Motivated by the above concerns, we are interested in
three fundamental questions:
• With a vast number of unlabelled facial images in the real

world, how can we take advantage of those data to train
a face recognition model?

• With only a limited number of samples for each iden-
tity (few-shot learning), how well can a face recognition
model perform and to what extent self-supervised learn-
ing can be of improvement over straightforward super-
vised training?

• What causes the failure of self-supervised learning when
scaling from limited data to large-scale data?
Our paper aims to address the challenge of learning fa-

cial representation that can be effectively adapted to face
recognition in few-shot and large-scale scenarios. To solve
the problems outlined above, we offer 3 contributions:

• We conduct a series of experiments to answer the ques-
tion of how well self-supervised learning could behave
on few-shot face recognition. We propose a pipeline de-
signed explicitly for few-shot evaluation where we adopt
self-supervised methods on an unlabelled(1-shot) pre-
training dataset with 1M images which simulate the sit-
uation of unlabelled data in real-world applications, then
we finetune on a few-shot(including 1-shot) datasets and
evaluate on the classical test sets(e.g. IJB-C).

• Part fViT [55] has shown superior localization perfor-
mance on facial images, indicating that it is feasible to
combine a part-based model with self-supervised learn-
ing. Inspired by this, We propose a novel landmark-based
self-supervised framework for face recognition that per-
tains entirely to facial parts, where dense landmarks are
trained to produce similar representations of sparse land-
marks. This facilitates a shift from standard grid learning
to landmark-based learning. Fig 1 shows the pipeline for
our LAFS pretraining and fine-tuning. Furthermore, we
investigate the properties of landmarks and propose two
landmark-related augmentations to enhance the represen-
tation of self-supervised learning.

• A series of studies are conducted for LAFS, we demon-
strate the effectiveness of standard evaluation on large-
scale datasets as well as few-shot evaluations, which have
never been explored in previous works.

Our main findings are: (a) Without explicit label informa-
tion, our pipeline, which comprises unlabeled(1-shot) pre-
training followed by 1-shot fine-tuning, can deliver accurate
face recognition performance. We demonstrate that intra-
sample pretraining (self-supervised learning loss) and inter-
sample learning (1-shot supervised loss, e.g. CosFace [58])
are both necessary for learning generalized 1-shot face
recognition in our pipeline. (b) We find that distinction from
the facial research [4], self-supervised learning with Vision
Transformer can break the limits for self-supervised learn-
ing with ResNet, exceeding supervised training by a large
margin. (c) Our proposed LAFS, which works entirely on
facial landmarks, is capable of transferring to highly accu-
rate face recognition.

2. Related Work

It is out of scope to review the bulk of papers for face recog-
nition, we introduce the literature for Face Recognition in
few-shot and general situations, then Self-supervised Learn-
ing.

Face Recognition The goal of face recognition is to learn
discriminative feature embedding based on the combina-
tion of backbone and losses. To this end, some works [11,
36, 39, 41, 58, 62] concentrate on modifying the softmax
loss function which represents separability to counter the
discrimination as softmax loss could not handle the global
feature distribution especially when we using mini-batch.
CosFace [58] adds a margin on the cos(θ) to control the
distance between the normalized weight and feature em-
bedding, resulting in a more discriminative feature learn-
ing scheme. Following that, ArcFace [11] proposes that
defining the margin on the angle θ would provide more dis-
criminative results than defining on cos(θ). In addition,
AdaFace [36] proposes to learn to distinguish low-quality
samples and employs adaptive margin to learn more dis-
criminative features. To better extract discriminative repre-
sentation with loss function, the choice of a suitable back-
bone plays a pivotal role in computing face images to gen-
erate feature embedding. The to-go backbone during the
past few years is ResNet [7, 25, 37, 64, 66], recently Vi-
sion Transformer are investigated in [1, 9, 55, 70] for face
recognition while training ViT still requires a large amount
of data or heavy data augmentation. Part fViT [55] is the pi-
oneering study to integrate Vision Transformer with facial
parts to learn discriminative facial area which benefits the
accuracy. As for the limited data volume, methods for few-
shot face recognition [67, 68] mostly focus on exploring dis-
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criminative features combined with meta-learning training.

Self-Supervised Learning Self-supervised learning has
achieves great performance as an off-the-shelf representa-
tion techniques in various computer vision tasks [5, 6, 8,
21–23, 26, 27, 65]. Recently, contrastive learning [2, 5, 6,
8, 19, 20, 23, 26] has made significant strides in exploring
image representations based on the instance discrimination
task, by considering each sample itself as a unique class.
More specifically, two different views of a specific sam-
ple are treated as positive to each other while the rest of
the dataset is regarded as negative, making the batch size
a crucial factor. Large batch sizes are essential for effec-
tive training in SimCLR [8]. Instead of contrastive learning,
some other works try to avoid instance discrimination tasks.
Involving Vision Transformer into consideration, DINO[6]
proposes that global augmentation should have similar rep-
resentations to local augmentations and introduces a cen-
tring method to provide stable results. For face recognition
applications, Face-MAE[59] utilizes a masked strategy to
reconstruct the face and then minimize the embedding dis-
tance between the reconstructed face and the original face.
Sevastopolskiy et al. [52] proposes StyleGAN [34] is able
to boost FR by reconstructing the input image via taking
StyleGan as a self-supervised learning method.

3. Methodology
In Section 3.1, applying DINO [6] for face recognition pre-
training is introduced. Then, a novel self-supervised learn-
ing method(LAFS) for face recognition which focuses on
the representation between full landmarks and the subset of
landmarks is explained in Section 3.2. Furthermore, in Sec-
tion 3.3 we present two types of augmentations. Section 3.4
describes how we simulate using unlabelled data for pre-
training. And finally, we explain the finetune strategy for
the LAFS in Section 3.5. Details for baseline Part fViT [55]
is described in SUPPLEMENTARY MATERIAL 7.1

3.1. DINO for face recognition

We start by adopting the DINO [6] which provides strong
feature embedding through contrastive learning between
global views and local views. A facial image X is firstly
converted into a pair of views, denoted as (Xt,Xs). The
objective of the DINO is as follows:

minθsH(P(Cen(ϑt(Xt)), ϑs(Xs))) (1)

Where ϑ(∗) is the backbone, t and s represent the teacher
branch and student branch, P(∗) is a projection head with
softmax probability, Cen(∗) is centring operation which
minus the mean computed on the output and H(a,b) =
−alog(b) is the cross-entropy. DINO endeavours to in-
vestigate the interdependency between global and local fea-
tures in a given image, then the augmentation for the teacher

branch is treated as a global representation and the student
branch is expected to output a representation of local views.
We adopt DINO [6] as the baseline SSL method for our
pipeline.

3.2. Full-to-Subset Landmark Consistency Learn-
ing

In contrast to DINO’s approach which focuses on the
global-local relationship of images, our approach aims to
leverage the aggregation and structural characteristics of
faces by seeking similar representations between a full set
and a subset of facial parts (landmarks).

Algorithm 1 Pipeline of the proposed Landmark-based Fa-
cial self-supervised pretraining

1: Initialization: Input image X, teacher network ϑt, stu-
dent network ϑs, pretrained landmark CNN δ(), Land-
mark Augmentations σl(), DINO augmentations σd(),
moving mean l, n← 0, maximum iterations τ

2: repeat
3: n← n+ 1
4: Sample a batch Xn

5: Generate views Xn
t ,X

n
s ← σd(X

n), σd(X
n)

6: Ln
t ,L

n
s ← δ(Xn

t ),Sample(δ(Xn
s ))

7: L̂n
t , L̂

n
s ← σl(L

n
t ), σl(L

n
s )

8: L̂n
t ← L̂n

t .detach()
9: Update ϑn+1

s ← ϑn
s −∇ϑn

s
Eq 5

10: Update ϑn+1
t ← l ∗ ϑn

t + (1− l)ϑn
s

11: until converges or n = τ
Output: output model ϑτ

t and ϑτ
s

Previous landmark localization methods, such as
FAN [3], are unable to provide landmarks that are specif-
ically relevant for face recognition, thereby negatively af-
fecting the face recognition performance as shown in Part
fViT [55]. To address this issue, we opt for Part fViT [55]
for constructing our landmark-based self-supervised learn-
ing pipeline. Specifically, as illustrated in (A) part of Fig-
ure 2 and Algorithm 1, we utilize a landmark CNN δ(),
which is fixed and pre-trained on face recognition task with-
out any positional supervision, to generate a series of facial
landmarks before feeding them into the backbone.

Lt,Ls = δ(Xt), δ(Xs) (2)

This landmark CNN can provide stable and highly aggre-
gated image patches for face recognition. It is crucial to
note that if the parameters of this landmark CNN are not
fixed, it may converge to the standard ViT grids and nega-
tively impact recognition performance. To establish corre-
spondence between all landmarks and a random subset of
landmarks, we randomly sample a portion of landmarks on
the student network branch. In our case, we randomly sam-
ple 36 out of R=196 global landmarks, which corresponds
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Figure 2. (A)The pipeline of our proposed LAFS framework. Two views of a facial image are first processed by the landmark CNN to
provide landmark localization. Then we sample a certain subset of landmarks on the student branch. Following that, landmarks-based
augmentations are added before converting into embedding for processing by teacher and student backbones. The representations of the
two views are compared by the output of the backbones without label information. Gradients are backpropagated to the student network
and the teacher network is updated by the exponential moving average of student parameters. (B)Landmark Augmentations. The upper
part is shuffling where the order for sending to fViT is 1⃝, 2⃝, 3⃝, 4⃝, after shuffling the order changed. The bottom part explains the
coordinates variation given the perturbation, each position of the green point shifts to the red point after the perturbation.

to the resolution of local views in DINO.

Lt,Ls = Lt,Sample(Ls) (3)

Furthermore, the scale of random crops on the student
branch is the same as that of the teacher branch. We ap-
pend two landmark-based augmentations δl() on the learned
landmark to enhance the difficulties of the self-learning.

L̂t, L̂s = δl(Lt), δl(Ls) (4)

Where L̂t, L̂s are the full landmark views and subsets of
landmark views respectively which can be considered as
proprietary versions of the global and local views for face
recognition. Our proposed method can effectively explore
the representation of global facial landmarks and random
subset landmarks. The learning objective for LAFS is the
same as that of DINO [6]:

minϑs

∑
L̂t∈{L̂g

t1,L̂
g
t2}

∑
L̂t ̸=L̂s

H(Qt(L̂t),Qs(L̂s))) (5)

Where Qt and Qs are probability produced by the
teacher and student backbones, L̂g

t1 and L̂g
t2 are two global

landmark views. θs is the student network.

3.3. Landmark-based data augmentations

To further regularize the model, we design two landmark-
based data augmentations as shown in (B) part of Figure 2,

namely Landmark Coordinate Perturbation and Landmark
Shuffle.

Landmark Shuffle The landmark CNN, learned from the
face recognition task, is capable of finding the correspond-
ing positions of different faces. As a result, the positions
of the patches in the part-based model differ from those
in the standard ViT, which assumes sequential and non-
overlapping positions for patches. The landmarks produced
by the landmark CNN do not impose any order constraints,
particularly with regard to position, and adjacent landmarks
are overlapping as is described in [55]. However in vision
tasks, maintaining the order of patches preserves the over-
all structure and global information [48, 56]. In light of this,
we hypothesize that strict order is not necessary for the part-
based model and have adopted a shuffle operation to perturb
the model. Surprisingly, this perturbation significantly im-
proves recognition performance, which contradicts the neg-
ative impact of shuffle as observed in [48]. We posit that
this efficacy of shuffle on landmarks may be attributed to
the differences in position encoding between the Part fViT
and standard fViT.

Landmark Coordinate Perturbation Despite obtaining
relatively stable landmarks with the pre-trained and fixed
landmark CNN, we suspect that the landmark CNN may
not have the same localization performance for all faces,
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and that the adjacent image regions beyond the landmarks
are also worth exploring. Thus we design data augmenta-
tion to enable the model to explore the area surrounding the
landmarks. Specifically, for given landmarks r, we add a
coordinate perturbation vector to its coordinate according
to the following formula:

r = r+ α ∗ u (6)

Here, u is subject to standard normal distribution u ∼
N (0,1), and α controls the magnitude of the disturbance,
resulting in a normal distribution with N (0, α2).

It is important to note that these two augmentations only
show effectiveness in our proposed self-supervised learn-
ing method. Therefore, applying these augmentations to the
standard backbone, specifically perturbing the DINO+fViT
architecture by shuffling, results in a significant decrease in
performance. Further details such as appropriate perturba-
tion amplitude and results can be found in Section 4.2.2 and
Section 4.2.3.

3.4. Unlabeled Face Pretraining

We are curious about how well a face recognition model
can go with the situation in real-world where images are
available without identity information. To address this is-
sue, we simulate by regarding each unlabelled sample as a
novel class, resulting in 1-shot face recognition. As a tra-
ditional solution, straightforwardly applying classification-
based loss such as CosFace [58] will provide disastrous per-
formance as shown in Section 4.2.1. Inspired by Lu et al.
[44] that self-supervised can be a good few-shot learner, we
construct a pipeline for few-shot face recognition, where we
pretrain on a large-scale unlabelled facial dataset then fine-
tune on few-shot face datasets and finally evaluate the per-
formance on traditional testset. Our experiments make use
of the WebFace260M dataset [71], a clean dataset consist-
ing of 42 million images and 2 million identities, we are
able to sample a 1-shot dataset of 1 million classes for our
task to simulate the case of real-world application where
each image is treated as a new identity by Self-supervised
Contrastive Learning. Discussion regarding the difference
between 1-shot and unlabelled is available at SUPPLEMEN-
TARY MATERIAL 8.4.1

3.5. Finetune

Inter-sample Separability or Intra-sample Similarity
Self-supervised learning methods primarily focus on ex-
ploring the representation of different views of an input
image. This raises a pertinent question: When finetun-
ing in a 1-shot setting, which loss function, self-supervised
or classification-based, performs better? We address this
query through our experiments, wherein we examine ap-
plying DINO [6] loss (Intra-sample Similarity) and Cos-
face [58] (Inter-sample Separability) for finetuning on the

1-shot dataset in experiment 4.2.1. DINO loss could
not provide superior results compared with Cosface, and
it slightly benefits the model without fine-tuning. This
indicates that for 1-shot face recognition, simply apply-
ing classification loss or self-supervised loss would not
benefit the recognition performance, instead, the pipeline
unlabeled(1-shot) pretraining with intra-sample similar-
ity (self-supervised learning) and fine-tuning with inter-
sample separability (Supervised classification) is crucial for
addressing the 1-shot problem.

Landmark supervision We have 3 finetuning options for
LAFS finetuning: (a) Fix the landmark CNN and train fViT
only; (b) Finetune the whole backbone (landmark CNN and
fViT); (c) As shown in the bottom part of Figure 1, we
use an extra pre-trained and fixed landmark CNN to pro-
vide landmark localization coordinates as soft-label, and
the trainable landmark CNN could be either from the super-
vised pretraining or self-supervised(e.g. DINO) pretraining.
The overall finetuning loss is:

Ltotal = Lid + β||r̂, r||2 (7)

Where r̂ is the landmarks predicted by the fixed landmark
CNN, r is the predicted coordinates, and β controls the vari-
ation of landmarks. Lid is CosFace [58] to learn discrimi-
native embedding. We ablate the choice of the landmark
finetuning options in SUPPLEMENTARY MATERIAL 8.3.2.

4. Experiments
In this section, we examine the accuracy of models trans-
ferring from the proposed LAFS on several well-known
datasets as well as the few-shot evaluation, and conduct a
series of ablation studies to illustrate the effectiveness of
our proposed methods. Text in bold means the best results
obtained. We include pretraining, finetuning details as well
as the models opted in SUPPLEMENTARY MATERIAL 8.

4.1. Implementation details

To fairly compare with our other methods, for the self-
supervised pipeline, we randomly sample 1M images with
1 image per identity from the first 50% part of the Web-
face42M dataset for self-supervised pretraining, namely
Webface-1shot. As for supervised finetuning, we opt for
MS1MV3 [12] containing 93,431 identities and 10% of
Webface42M [71] dataset, coined as Webface4M, compris-
ing 4M images with 200K identities. We also test how the
unlabelled in-the-wild dataset behaves in SUPPLEMENTARY
MATERIAL 8.1.1.

4.2. Ablation Studies

A number of studies are conducted to demonstrate the effec-
tiveness of different parts of methods. For self-supervised
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pretraining, we adopt Part fViT-Tiny with patch number
196, size of 15.28M and 2.48G Flops. We put ablation stud-
ies for the number of shots, finetuning landmark supervi-
sion, comparison of global landmark view between global
view and impact of the in-the-wild dataset in SUPPLEMEN-
TARY MATERIAL 8.2.

4.2.1 Finetune with Similarity or Separability

We consider different loss options when transferring from
LAFS, specifically the Inter-sample Separability (Cos-
Face [58] loss) and Intra-sample Similarity (DINO [6] loss).
We report the results of simply adopting the pretrain model
for evaluation, then CosFace and DINO in Table 1. The ac-
curacy for directly training CosFace [58] on the Webface-
1M without pretraining is also included. We can conclude
that DINO improve the model without fine-tuning, and Cos-
Face can bring large benefits in terms of accuracy. Then
training 1-shot data from scratch leads to invalid results.

Finetune Loss LFW CFP-FP AgeDB

w/o Finetune 75.20 70.82 55.90
DINO 76.96 73.44 56.65
CosFace 88.58 76.04 65.84

CosFace, 1M 50.00 50.00 50.00

Table 1. Ablation studies for different types of finetune loss. W/o
Finetune means directly adopting pretrained model for evaluation.
CosFace, 1M means the model is trained from scratch on the 1M
1-shot training set. The backbone adopted is Part fViT-B

4.2.2 Effect of Landmark Shuffle

Herein we challenge the property of the negative impact of
shuffle for Vision Transformer which can be found in Ta-
ble 2 (middle part), as well as the performance of standard
fViT with shuffle operations. We can conclude that the shuf-
fling operation indeed disturbs the global information for
fViT, but it leads to better recognition performance for Part
fViT.

4.2.3 Effect of Landmark Coordinates Perturbation

We disturb the learned landmark by adding a noise sub-
jected to normal distribution. As listed in Table 2 (bottom
part), the magnitude with α = 2 performs the best towards
finetuning results. While too large perturbation would even
perform worse than without perturbation.

We also conduct experiments to test the impact of these
two augmentations on the standard grid (i.e. fViT). From
the results, the following conclusions are observed: (1)
Shuffling operation leads to worse results for the standard
fViT, which is consistent with previous findings [48]. (2)

Experiment Backbone Content 1% data 10% data

Baseline
Part fViT w/o ssl 6.91 90.87

LAFS w/o Aug 38.05 91.06

fViT w/o ssl 8.54 86.9

DINO 36.27 87.15

Landmark
Shuffle

Part fViT
(LAFS)

w/o shuffle 38.05 91.06

shuffle 40.01 91.53

fViT
(DINO)

w/o shuffle 36.27 87.15

shuffle 30.96 78.95

Landmark
Perturbation

Part fViT
(LAFS)

α =0 38.05 91.06

α=2 39.44 91.45

α =5 39.16 91.37

fViT
(DINO)

α =0 36.27 87.15

α =2 36.30 87.23

Table 2. Ablation studies for the effectiveness of Landmark aug-
mentations, the top parts are the results for without landmark aug-
mentations. We report IJB-B when TAR@FAR=1e-4. The x% in
Table 2 means using only x% labelled data from the whole Web-
Face4M dataset.

Perturbation augmentation could bring small benefits in in-
creasing the performance of the standard fViT.

4.3. Comparison with the State-of-the-Art

We experiment with ResNet-100, fViT-B and Part fViT-B
models to evaluate the performance transferring from the
self-supervised pipeline on well-known datasets to compare
with the recent state-of-the-art methods as well as the results
fine-tuned with few-shot samples.

The training (or fine-tuning) datasets we used for quan-
titative results are Webface4M [71], few-shot subsets of
Webface4M and MS1MV3 [24]. We achieve SOTA or near
SOTA results on the Webface4M and MS1MV3 dataset, and
our proposed LAFS pretraining outperforms other methods
for few-shot evaluation. Note that those results are fine-
tuned with (c) mentioned in Section 3.5.

4.3.1 Few-shot Evaluation

We report the performance few-shot evaluation on a few
subsets of Webface4M [71] in Table 3, specifically 1% la-
bels with randomly 1, 2, 4, 10 shots and all images per label,
and 10% labels with 1, 2, 4, 10 shots and 10% labels with
their available images. The evaluation is performed on three
backbones: ResNet-100, fViT-B, and Part fViT-B, consider-
ing both the supervised training and the self-supervised pre-
training settings. We also test the impact of the in-the-wild
dataset Flickr which is collected by us in SUPPLEMENTARY
MATERIAL 8.3. Results for Part fViT with fixed landmark
CNN under DINO training are also provided. Based on the
evaluation results, we can draw the following conclusions:
• Without self-supervised pretraining, we consistently ob-

serve that ResNet outperforms both fViT and Part fViT in

1644



Data Amount Pretrain Method Backbone IJB-B IJB-C

1 shot 2 shot 4 shot 10 shot all 1 shot 2 shot 4 shot 10 shot all

1%

Scratch
ResNet 14.13 19.69 30.58 22.19 58.66 15.39 22.15 33.56 25.01 63.16

fViT 1.67 3.79 6.6 16.91 27.22 1.84 4.03 7.36 19.03 29.19
Part fViT 0.64 0.89 1.46 3.47 6.22 0.58 0.97 1.59 3.73 5.99

DINO ResNet 13.98 22.70 36.85 52.72 72.38 15.96 26.79 41.87 57.19 77.3
fViT 33.48 41.67 56.10 66.20 74.42 37.49 46.93 60.13 70.44 78.95

Part fViT 18.51 23.41 35.19 49.19 69.37 21.40 27.23 39.38 53.70 75.82

LAFS Part fViT 33.97 42.80 57.32 68.76 75.67 37.89 47.03 61.09 72.57 79.66

10%

Scratch
ResNet 27.23 41.96 59.27 68.25 89.33 28.84 45.25 63.26 72.40 92.28
fViTB 7.53 13.32 19.85 45.45 81.37 7.63 14.21 22.11 52.80 84.62

Part fViT 3.11 3.97 14.66 54.47 84.47 3.32 4.25 17.21 58.75 88.09

DINO ResNet 27.63 48.97 76.83 87.58 90.99 27.91 59.58 81.29 90.26 92.28
fViT 46.99 66.61 81.56 88.35 91.35 51.35 70.73 85.02 91.42 93.85

Part fViT 29.82 47.48 75.92 85.39 90.37 33.87 52.45 74.60 89.07 91.44

LAFS Part fViT 48.56 66.71 81.67 88.70 92.16 51.97 71.10 85.09 91.56 94.32

Table 3. The comparison of the proposed methods on few-shot evaluation

few-shot evaluation scenarios. This gap can be attributed
to the overfitting property of Vision Transformer when
trained on limited amounts of data [54, 70].

• Part fViT can exceed fViT when a sufficient volume of
data is available under the supervised training setting,
specifically when the data amount is equal to or larger
than 10% label with 10 shots.

• Self-supervised learning consistently yields superior re-
sults compared to training without self-supervised train-
ing, except for the ResNet under 1% label with 1-shot
setting. Notably, the benefits of self-supervised learning
become more prominent when the volume of available
data decreases, which aligns with the observations from
the facial research [4].

• Consistent with the findings of DINO [6], we observe that
the improvement achieved through self-supervised learn-
ing for ResNet is not as significant as that observed for
fViT in most cases.

• Our proposed LAFS pretraining could always obtain
effective results compared with models pre-trained by
DINO. Particularly, when the number of shots reaches the
maximum available data, we observe significant improve-
ments over DINO which aligns with supervised finding,
implying that more diversity in each identity will help
with finding effective landmarks. However, DINO with
Part fViT would provide worse training results compared
to fViT with DINO, which illustrates the effectiveness of
our LAFS pipeline.

4.3.2 Webface4M

We present the results of the proposed self-supervised pre-
training on the 1-shot image set, then finetuning on Web-
face4M in Table 4. We also test the results of ResNet-100
with augmentations as well as ResNet-100 pretrained from
DINO. We also self-implement Part fViT on Webface4M

Method SSL LFW CFP-FP AgeDB IJB-B IJB-C

ArcFace w/o Aug [71] - 99.85 99.04 97.82 - 96.77
CosFace w/o Aug [71] - 99.80 99.25 97.45 - 96.86
QAFace [49] - 99.85 99.21 97.91 95.67 97.20
AdaFace [36] - 99.80 99.17 97.90 96.03 97.39
ArcFace PFC-0.3 [1] - 99.85 99.23 98.01 95.64 97.22

ResNet, w/ Aug - 99.83 99.16 97.89 95.94 97.34
ResNet, w/ Aug DINO 99.82 99.14 97.9 95.83 97.29
fViT [55] - 99.83 99.04 97.48 95.72 97.15
fViT DINO 99.83 99.10 97.77 95.91 97.33
Part fViT [55] - 99.83 99.13 97.73 96.05 97.4
Part fViT LAFS 99.83 99.18 97.90 96.28 97.55

fViT, w/o Aug DINO 99.85 99.05 97.70 95.64 97.12
Part fViT, w/o Aug LAFS 99.81 99.14 97.83 96.07 97.44

Table 4. Comparison with the state-of-the-art on Webface4m.
LAFS outperform other methods on several testsets.

with the same hyper-parameters of [55] for comparison as
it is not reported.

It can be observed on large pose evaluation provided
by the CFP-FP protocol, Part fViT boosts the fViT by
0.09 while producing similar results with ResNet-100 un-
der the same training augmentations. Self-supervised meth-
ods bring small improvement, such that LAFS outperforms
Part fViT by 0.05 and DINO with fViT improves supervised
fViT by 0.06. However, for age variation evaluation pro-
vided by the AgeDB-30 dataset, the self-supervised learn-
ing proves advantageous for all considered backbones, our
LAFS improves Part fViT by 0.17, fViT with DINO im-
proves fViT by 0.29, ResNet with DINO improves ResNet
by 0.01. And LAFS still surpasses baseline fViT with
DINO which is 0.13. On IJB-B and IJB-C datasets, base-
line fViT could produce competitive results compared with
AdaFace [36], and the proposed LAFS is able to achieve
much higher accuracy by 0.16 on IJB-C and 0.25 on IJB-B
than AdaFace. In terms of improvement of SSL, SSL could
generate promising improvement (i.e. DINO improves fViT
by 0.18 and LAFS boosts Part fViT by 0.15 on IJB-C).

Notably, our method achieves better performance even
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Method SSL Train Data LFW CFP-FP AgeDB IJB-B IJB-C MegaFace/id MegaFace/ver

CosFace[58] - MS1MV2 99.81 98.12 98.11 94.80 96.37 97.91 97.91
ArcFace[11] - MS1MV2 99.83 92.27 92.28 94.25 96.03 98.35 98.48
Sub-center ArcFace[13] - MS1MV2 99.80 98.80 98.31 94.94 96.28 98.16 98.36
FAN-Face[66] - MS1MV2 99.85 98.63 98.38 94.97 96.38 98.70 98.95
VirFace[38] - MS1MV2 99.56 97.15 - 88.90 90.54 - -
MagFace[46] - MS1MV2 99.83 98.46 96.15 94.51 95.97 - -
Face Transformer[70] - MS1MV2 99.83 96.19 97.82 - 95.96 - -

ArcFace-challenge[15] - MS1MV3 99.85 99.06 98.48 - 96.81 - -
VPL[16] - MS1MV3 99.83 99.11 98.60 95.56 96.76 98.80 98.97
AdaFace[36] - MS1MV3 99.83 99.03 98.17 95.84 97.09 - -

ResNet, w/ Aug - MS1MV3 99.85 99.14 98.16 96.03 97.22 98.78 98.67
ResNet, w/ Aug DINO MS1MV3 99.85 99.12 98.14 95.86 97.01 98.50 98.53
fViT [55] - MS1MV3 99.85 99.01 98.13 95.97 97.21 98.69 98.91
fViT, ours DINO MS1MV3 99.85 99.08 98.10 96.13 97.27 98.70 98.65
Part fViT [55] - MS1MV3 99.83 99.21 98.29 96.11 97.29 98.96 98.78
Part fViT, ours LAFS MS1MV3 99.86 99.15 98.33 96.24 97.48 98.66 98.95

fViT, w/o Aug, ours DINO MS1MV3 99.81 99.02 98.10 95.76 97.14 98.15 98.31
Part fViT, w/o Aug, ours LAFS MS1MV3 99.83 99.11 98.33 95.98 97.20 98.73 98.62

Table 5. Comparison with the state-of-the-art on MS1MV3 datasets. Our proposed LAFS achieve state-of-the-art results on most datasets.

without data augmentation compared to methods apply-
ing strong augmentations (AdaFace, QAFace and Part
fViT), further validating its superior performance. LAFS
without augmentations outperforms the SOTA method
AdaFace [36] by 0.04 on IJB-B and 0.05 on IJB-C. fViT
with DINO behaves slightly worse than ArcFace PFC-
0.3 [1] and QAFace [49] which is 95.64 on IJB-B and 97.12
on IJB-C, but still a large increase compared to supervised
CosFace [58]. Another observation is that SSL could only
provide marginal improvement or even worse for ResNet,
which is consistent with the facial research [4].

4.3.3 MS1MV3

As the original version of MS1MV*, MS-Celeb [24], is
abandoned by the creator, AdaFace [36] advocates for re-
searchers to transition towards using the Webface4M [71],
hence for the sake of reference, we report the results of the
models trained on MS1MV3, and test on various bench-
marks. The results are shown in Table 5.

As observed, fViT with DINO pretraining is able to boost
the accuracy, especially on IJB-B and IJB-C, by a large
margin over supervised fViT, e.g. 0.16 on IJB-B and 0.06
on IJB-C. Remarkably, the performance achieved by LAFS
for Part fViT considerably outweighs that of DINO, achiev-
ing the best performance on MS1MV3 which improves Part
fViT-B without self-supervised learning by 0.13 on IJB-B
and 0.19 on IJB-C. Also LAFS outperforms the state-of-
the-art method AdaFace [36] by 0.4 and 0.39 respectively.

In addition, regarding results without strong data aug-
mentation, our LAFS outperforms the SOTA method
AdaFace [36] by 0.14 on IJB-B and 0.11 on IJB-C. And
for ResNet-100 the same phenomenon is observed that with
100% of the dataset, SSL is not capable of bringing im-

provement when the data volume is large, it even results in
a reduction in accuracy, for instance, dropping from 97.22
with supervised training to 97.01 with SSL pretraining.

5. Conclusions

We propose landmark-based self-supervised learning
(LAFS) to learn generalized representations that can be
adapted to highly accurate face recognition. We offer sev-
eral key contributions: (A) A self-supervised pipeline uti-
lizing un-labelled data for training generalized represen-
tation, which can be adopted to evaluate the effectiveness
of self-supervised representation. (B) LAFS, a novel self-
supervised learning framework called landmark-based self-
supervised learning for face recognition, minimises the rep-
resentation of all landmarks and fewer landmarks to provide
promising improvement when transferring to face recog-
nition. (C) Two augmentations, namely Landmark Shuf-
fle and Landmark Coordinates Perturbation, are effective
and robust for learning more generalized representations
for LAFS. Overall, our approach achieves state-of-the-art
or near state-of-the-art performance on several face recog-
nition benchmarks including few-shot evaluation, demon-
strating the effectiveness of our proposed methods. How-
ever, the landmarks in LAFS are fixed and don’t benefit
from self-supervised training. In the future, we will ex-
plore more techniques to refine the landmarks during self-
supervised training stages. In addition, we will investigate
to what extent the LAFS can behave on other facial tasks
beyond face recognition.
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