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Abstract

Nowadays, leveraging 2D images and pre-trained mod-
els to guide 3D point cloud feature representation has
shown a remarkable potential to boost the performance of
3D fundamental models. While some works rely on addi-
tional data such as 2D real-world images and their corre-
sponding camera poses, recent studies target at using point
cloud exclusively by designing 3D-to-2D projection. How-
ever, in the indoor scene scenario, existing 3D-to-2D pro-
jection strategies suffer from severe occlusions and incoher-
ence, which fail to contain sufficient information for fine-
grained point cloud segmentation task. In this paper, we ar-
gue that the crux of the matter resides in the basic premise
of existing projection strategies that the medium is homo-
geneous, thereby projection rays propagate along straight
lines and behind objects are occluded by front ones. In-
spired by the phenomenon of mirage where the occluded
objects are exposed by distorted light rays due to heteroge-
neous medium refraction rate, we propose MirageRoom by
designing parametric mirage projection with heterogeneous
medium to obtain series of projected images with various
distorted degrees. We further develop a masked reprojec-
tion module across 2D and 3D latent space to bridge the
gap between pre-trained 2D backbone and 3D point-wise
features. Both quantitative and qualitative experimental re-
sults on S3DIS and ScanNet V2 demonstrate the effective-
ness of our method. 1

1. Introduction
Understanding indoor scene-level point clouds has become
a fundamental and crucial task for various applications, in-
cluding robotics [30], augmented reality [1] and virtual re-
ality [43]. Abundant methods [14, 20, 32, 33, 38, 45, 50]
have investigated point cloud architectures to fully explore
the potential of interactions between points. While these
methods have achieved outstanding performance in various
scene understanding tasks, a major bottleneck that hinders
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Figure 1. Comparison of straight-line projection under homoge-
neous medium and our mirage projection under heterogeneous
medium. In straight-line projection, rays propagate along straight
lines and objects behind are occluded (red and blue stars). In con-
trast, our mirage projection adopts a parameter κ to modify the dis-
tribution of medium where projection rays are distorted, thereby
previously occluded points can be exposed. With series of κ, we
can increase the occupancy of points in projection images. Best
viewed in color.

the researchers from moving forward is the lack of high-
quality annotated 3D scene data. Compared to 2D image
datasets [10], the scale of real-world datasets for 3D indoor
point cloud understanding is much smaller [3, 9]. Thus,
taking advantage from vast 2D image data and models to
guide 3D tasks has become a direct and trending approach
to compensate the lack of 3D data.

Recently, many studies have explored methods for un-
derstanding 3D point cloud based on 2D images and mod-
els. Some prevailing approaches aim to combine both 2D
and 3D architectures based on additional data, such as
high-quality real-world 2D images and their accurate cor-
responding camera poses [8, 16, 17, 41], which pose high
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requirement for point cloud datasets. More recently, another
branch strives for investigating 3D-to-2D projection from
3D points to 2D plane to obtain 2D features [2, 29, 48, 49],
and has been applied on object-level and LIDAR point
clouds. However, as shown in Figure 1, the straight-line
projection suffers from severe semantic occlusion and in-
coherence especially in indoor scenes where objects are
densely distributed, leading to insufficient information in
projection images for point-level feature learning. Despite
changing view-points mitigates the problem to a certain de-
gree on object-level point clouds [15], it is still hard to de-
velop a unified algorithm which generates appropriate view-
points for variable indoor scenes.

In this paper, we argue that the key factor leading to
occlusion is the basic premise of homogeneous medium,
thereby projection rays propagate along straight lines and
behind objects are occluded by front ones. Inspired by mi-
rage phenomenon where occluded objects are exposed by
distorted rays due to heterogeneous medium, we propose
mirage projection strategy so that the originally occluded
points can be exposed through distorted rays. As is shown
in Figure 1, we model the 3D space with heterogeneous
medium, where we design a parameter κ to modify the dis-
tribution of medium to consequently change the curvature
of projection rays. By selecting series of κ, projection im-
ages are able to cover more points, which increases the oc-
cupancy of points. Since straight-line projection is a degen-
erated case for mirage projection when κ = 0, our strategy
provides a more general form of projection.

Based on the projection strategy, we further develop a
point cloud architecture with 2D pre-trained models for
segmentation task, named MirageRoom. Specifically, we
first adopt group mirage projection over input point clouds,
where we employ a group of κs to generate multi-view pro-
jections to provide comprehensive information for 2D mod-
els. Then, a frozen pre-trained 2D image backbone is fol-
lowed to extract 2D features for transferring 2D knowledge
to enhance the semantic representing ability of 3D point-
wise features. In order to bridge the gap between 2D and
3D latent space in a precise way, we introduce a masked
reprojection module to mix accurate 2D features for each
point. We further construct a U-Net liked network for in-
door segmentation task.

To test the effectiveness of our method, we conducted
extensive experiments on two popular indoor point cloud
benchmarks, i.e., S3DIS [3] and ScanNet V2 [9]. We
find that our MirageRoom can truly benefit from 2D pre-
trained models with the help of mirage projection, which
achieves higher performance on S3DIS than state-of-the-
art methods [33, 45] with much fewer learnable parameters.
Meanwhile, our method outperforms other 2D-3D methods
without any additional real-world images on ScanNet V2
dataset. Further experiments verify that our design is cru-

cial for the improvement of performance.

2. Related Work

Point Cloud Segmentation. 3D scene segmentation task
has become a core task for scene-level point cloud un-
derstanding. Point cloud segmentation problems are typi-
cally solved via two streams: voxel-based and point-based.
Voxel-based methods [7, 12, 13, 21, 51] first divide 3D
spaces into regular cubics to sparsely voxelize the point
clouds, and then perform sparse operations over voxels. Al-
though voxel-based methods are highly efficient, most of
their performance are limited due to the positional geometry
inaccuracy introduced by the sparsely voxelization process.
As a result, voxel-based methods are mostly adopted in out-
door sparse point cloud segmentation. Meanwhile, Point-
based methods [8, 11, 14, 18, 20, 22, 24, 32, 33, 38, 45, 50]
take the dominant position in understanding indoor point
cloud segmentation based on various structures, such as
MLP-based [31–33], convolution-based [24, 38], graph-
based [22, 39] and transformer-based [14, 20, 45, 50].
Though effective, the limited scale of 3D dataset constrains
the further development of these methods.

2D Guided Point Cloud Understanding. Concurrent to
point-based and voxel-based methods, some other works
aim to understand point cloud with the help of plentiful 2D
networks. Some of these works combine both 2D and 3D ar-
chitectures based on additional data, such as real-world im-
ages and their corresponding camera poses [8, 16, 17, 41],
which pose high requirement for dataset. Another branch
strives in investigating 3D-to-2D projection from 3D points
to 2D plane to obtain 2D features, i.e., projection-based
methods [2, 15, 19, 29, 35, 42, 49]. MVCNN [35] and
MVTN [15] employ multi-view projection to generate 2D
maps of objects, with multi-view 2D networks followed to
extract features. However, it is hard to develop a unified al-
gorithm which generates appropriate multi-view points for
scenes, which limits their applications in object-level tasks.
The range projection achieves great success in LIDAR point
cloud segmentation [2, 19, 29], while it still fails to pro-
cess indoor point cloud due to severe occlusions caused by
densely distributed points.

3. Proposed Method

In this section, we first introduce mirage projection to han-
dle the occlusion and incoherence of conventional 3D-to-
2D straight-line projection (Section 3.1). Then we develop
a masked reprojection module to bridge the gap between 2D
and 3D domain (Section 3.2). The whole network architec-
ture, i.e., MirageRoom, is constructed based on our mirage
projection (Section 3.3).
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Figure 2. Physical model of our mirage projection. The hetero-
geneous medium refraction rate has a distribution of n(z), which
leads to the distorted projection ray. The curve function of the pro-
jection ray on y−z plane can be formulated according to physical
principles.

3.1. Mirage Projection

Review of Straight-line Projection. The conventional
straight-line projection simply squeezes the points along
axes [48, 49]. For each point p = (xp, yp, zp) ∈ R3, the
projection strategy omits one of the three axes and interpo-
lates the projected position under image coordinates from
the other two axes. Taking projection view which is parallel
with x− z plane as an example, the projected position of p
can be formulated as:

Hp =
zp − zmin

zmax − zmin
H, Wp =

xp − xmin

xmax − xmin
W, (1)

where H and W denotes the size of projected 2D image.
Simple as it is, there exists two major problems. On one
hand, the behind objects are permanently occluded by front
objects along the squeezed axis, which hinders the projected
images from covering sufficient points to generate effective
point-wise features. On the other hand, the simple scatter-
style figures have clear empty girds due to the sparsity of
point cloud, which makes it incoherent and different from
the real-world images for 2D pre-training process.

Physical Modeling. To tackle the occlusion caused by
straight-line projection, we refer to mirage phenomenon
where occluded objects can be viewed through distorted
rays. As is illustrated in Figure 2, this phenomenon arises
with the heterogeneous distribution of medium refraction
rate which can be formulated as [4, 5]:

n(z) = 1 + ρ0e
−kz, (2)

where n(z) denotes the refraction rate at height z above
the ground, and ρ0, k are constant coefficients, respectively.

The refraction rate declines along with the increase of z,
which causes the distortion. According to optical princi-
ples, the light ray will go through a distorted propagation,
with the angle θ in Figure 2 following Snell’s Law:

n(z) sin θ = C, (3)

where C is a constant number. The curve of light ray in
y − z plane can be formulated as:

dz

dy
=

1

tan θ
=

√
(1 + ρ0e−kz)2

C2
− 1. (4)

Given the boundary condition where light rays propagate
in parallel with ground near view plane, (4) can be further
simplified as:

z = z0 −
kρ0

2(1 + ρ20)
y2. (5)

In (5), z0 denotes the boundary height where the light ray
meets view plane, and y is the distance to view plane.
The equation verifies that the light rays propagate along
parabolic trajectories, and objects which are farther from
the view plane will have a higher position in final views.
Detailed derivation process of (5) is further provided in sup-
plementary pages.

Projection Implementation. Following the guidance of
physical modeling of mirage phenomenon, we implement
mirage projection through a simple way. Given a point p
that lies on the projection ray, (5) can be reorganized as:

z′p = zp +
kρ0

2(1 + ρ20)
y2p. (6)

Here, z′p represents the height of point p in projection im-
age, which is consistent with z0 in (5) where the projection
ray meets view plane. We can observe that the projected
height of point p is calculated by adding a certain offset to
its original height. In order to regulate the offset in a con-
venient and effective way, we define κ = kρ0/2(1 + ρ20) as
the coefficient, which is the only parameter in our projec-
tion strategy and has a clear physical interpretation. Similar
to (1), we can formulate the projected position of p under
image coordinates as following:

Hp =
zp + κy2p − zmin

zmax − zmin
H, Wp =

xp − xmin

xmax − xmin
W. (7)

With different choices of parameter κ, we can modify the
projection result flexibly. To be more specific, as we in-
crease κ, more previously occluded objects can be pre-
sented on the projection image at the expense of narrowed
view due to reduced height resolution H . It is noteworthy
that mirage projection will degenerate to straight-line pro-
jection when κ = 0, indicating that our projection strategy
acts as a superior substitute for straight-line projection.
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Figure 3. The pipeline of our MirageRoom for point cloud segmentation. We first generate multi-view projection images via group mirage
projection module. Then a pre-trained 2D backbone is followed to extract 2D feature maps, with an FPN [26] to further generate multi-
scale features. We design a U-Net liked architecture with encoder layers to aggregate point-wise 2D features and fuse with original 3D
features.

Densify. Besides the aforementioned strategy to mitigate
the occlusions, we also adopt a densify process over projec-
tion images via 2D neighbour pooling to handle the prob-
lem of empty grids caused by inherent sparsity of point
cloud. Instead of establishing a one-to-one correspondence
between points and pixels in projection images, we project
each point onto pixels which are adjacent to its original pro-
jection position. Likewise, when multiple points are pro-
jected onto the same pixel, we preserve the value of the
one closest to the projection plane. In this way, most va-
cant pixels can be filled without affecting local semantic
features, and thus the projection images are more similar
to real-world images.

3.2. Masked Reprojection Module

In this part, we mainly focus on generating precise and valid
3D point-wise features from 2D feature maps. Specifically,
we develop a masked reprojection module to bridge the gap
between 2D and 3D latent space. The module includes two
parts, i.e., mask generation and masked 2D-to-3D cross-
attention, which will be further discussed in the following
paragraphs.

Mask Generation. As a complement to 3D point-wise
features, the final extracted features from 2D maps must ex-
hibit a high degree of precision. Despite the mirage projec-
tion strategy can precisely calculate the corresponding po-
sition of each point, there still exists two types of mistakes.
For one thing, it is natural that the projection plane lies in-
side indoor scene, which indicates that points can have a

distribution on either side of the plane. However, a single
projection image can only include points from one side for
semantic coherence. For another, although the usage of mi-
rage projection with series of parameter κ significantly mit-
igates occlusion issues, there are still points occluded in a
single projection image. Thus, for each point p, we generate
its corresponding mask M(p) ∈ {0, 1}n of n projection im-
ages via reprojection. Specifically, we reproject p onto each
projection plane according to its corresponding mirage pro-
jection setting. The i-th value of M(p) is set to 0 if either of
the aforementioned mistakes occurs in i-th projected map,
otherwise the i-th value is set to 1. In this way, the mask
M(p) can help generate valid 2D features of point p from
projection maps.

Masked 2D-to-3D Cross-Attention Based on the mask
M(·), we further propose a masked 2D-to-3D cross-
attention. Taking N points P = {p1, p2, ..., pN} ∈ RN×3

and their corresponding feature F3D = {f1, f2, ..., fN} ∈
RN×C as input, we aim at fusing corresponding 2D fea-
tures from n 2D projected maps F2D ∈ Rn×H×W×C . We
take 3D point features as the queries of cross-attention, and
combine their corresponding 2D features from each image
as keys and values, respectively. Since local features sur-
rounding the corresponding 2D pixel are closely related,
we further take the features of k neighbours of correspond-
ing pixel as keys and values besides combining their ex-
act corresponding 2D features, which can be denoted as
F̂2D ∈ NN×nk×C . It is clear that each query vector is
assigned with nk key vectors, and the masked 2D-to-3D
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cross-attention operator can be formulated as:

q = F3DWq, k = F̂2DWk, v = F̂2DWv, (8)

where Wq , Wk and Wv are linear projections. For i-th
point, the output of masked 2D-to-3D cross-attention oper-
ation can be formulated as:

wij = δ(qi,kij),

F̂i =

nk∑
j=1

SoftMax(wi)jM(pi)[j/k]vj .
(9)

Here δ stands for a relation function between keys and
queries. Inspired by [50], δ is set to be a subtraction op-
erator. The subscripts under function SoftMax(·) and M(·)
represents the index of the elements, and [·] denotes floor
operation, respectively. Finally, we get the corresponding
valid and precise 2D feature for each point.

3.3. Network Architecture

Based on our mirage projection strategy and masked re-
projection module, we construct our network, i.e., Mirage-
Room, for indoor point cloud segmentation task. As is
shown in Figure 3, our network architecture takes only point
cloud as input, following with core modules: group mirage
projection, pre-trained 2D backbone, encoder layer, and is
finally combined with a U-Net liked structure.

Group Mirage Projection. For the purpose of generat-
ing sufficient projection images for point cloud, we adopt a
group mirage projection module. For each raw input point
cloud P ∈ R3 with corresponding color Fc ∈ RN×3, we
first set the center of the bounding box of P as the center of
view plane, where we generate projection images from nv

view planes. We choose nv = 4 for a unified setting, where
the normal directions of projection plane are front, back,
left and right, respectively. For each projection planes, we
set nκ different parameter κs as a group for mirage pro-
jection, which can generate series of projection images to
cover more points. Hence, we obtain n = nvnκ 2D projec-
tion images with RGB information from raw point cloud,
which can be denoted as I2D ∈ Rn×H×W×3.

Pre-trained 2D Backbone. To encode 2D features with
multi-scale semantic information, we then employ a pre-
trained 2D image backbone to transfer rich 2D knowl-
edge. We employ Swin Transformer [27] pre-trained on
ImageNet-1K [10] as our 2D backbone. We collect multi-
level 2D feature maps from different layers of 2D backbone.
Then a Feature Pyramid Network [26] is utilized to further
aggregate the multi-level features and provide meaningful
2D maps with different scales. In this way, the pre-trained

2D backbone takes I2D as input, and the final output fea-
tures can be formulated as F2D

1 ,F2D
2 ,F2D

3 with decreasing
resolutions in height and width, respectively.

Encoder Layer. Although we have already obtained
multi-scale 2D feature maps, it is crucial to generate cor-
responding 3D point-wise feature for segmentation task.
Hence, we design the main encoder layer of our network,
which takes both 3D point cloud features F3D

i and 2D fea-
ture maps F2D

i as input. As is shown in Figure 3, in each
encoder layer, we first downsample the point cloud, then
a self-attention block [45] is utilized over sampled point
cloud to provide more comprehensive point-wise features.
After that, we employ our masked reprojection module to
aggregate precise and valid 3D point-wise features from 2D
feature maps. Finally, the output features are concatenated
with the previous 3D point-wise features and mixed through
one MLP layer. Following the design of tranditional trans-
former backbones [20, 50], we repeat the whole process ex-
cept 3D downsampling for M times to deeply extract and
fuse features.

Whole Structure. As is illustrated in Figure 3, the whole
U-Net liked network begins with a point-wise embedding
layer, where points are embedded into 3D feature space.
Then the encoder layers further aggregate 2D and 3D fea-
tures with the parallel downsampling process of 3D points
and 2D maps. In the decoder part, we simply employ an fu-
sion and upsampling module, where 3D points are upsam-
pled and fused with the short-cut point-wise features from
corresponding encoder layer.

4. Experiments
4.1. Experimental Setting

Dataset. We use S3DIS [3] (Stanford Large-Scale 3D In-
door Spaces) and ScanNet V2 [9] for semantic segmen-
tation experiments. The S3DIS dataset is a challenging
benchmark which contains 6 large-scale indoor areas, 271
rooms and 13 semantic categories. Following the common
split protocol [37], area 5 (68 rooms) is picked out for test-
ing and others (203 rooms) are kept for training. ScanNet
V2 provides a comprehensive collection of RGB-D scans of
indoor environments, accompanied by semantic segmenta-
tion labels, camera poses, and other essential metadata. To-
tally 1,513 room scans in the dataset are divided into 1,201
scenes for training and 312 for validation.

Model Architecture. We adopt the same architecture on
both datasets. For the group mirage projection, we choose
κ = 0, 1, 2 as the group parameters of mirage projection.
For each κ, we choose 4 projection planes where the nor-
mal directions of projection plane are front, back, left and
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Table 1. Indoor semantic segmentation results on Area 5 of
S3DIS [3] dataset. Overall accuracy (OA), class-average accuracy
(mAcc) and classwise mean IoU (mIoU) are reported.

Method OA mAcc mIoU

PointNet [31] - 49.0 41.1
SegCloud [37] - 57.4 48.9
TangentConv [36] - 62.2 52.6
PointCNN [24] 85.9 63.9 57.3
SPGraph [22] 86.4 66.5 58.0
ParamConv [40] - 67.0 58.3
PAT [47] - 70.8 60.1
PCT [14] - 67.6 61.3
HPEIN [18] 87.2 68.3 61.9
GACNet [39] 87.8 - 62.9
SegGCN [23] 88.2 70.4 63.6
MinkUNet [6] - 71.7 65.4
KPConv [38] - 72.8 67.1
PTv1 [50] 90.8 76.5 70.4
PointNeXt [33] 90.6 76.8 70.5
PMeta [25] 90.8 - 71.3
PTv2 [45] 91.1 77.9 71.6

MirageRoom w/o 2D model 90.7 76.2 70.4
MirageRoom 91.3 78.2 72.0

right, respectively. Hence, we have n = nκnv = 12 projec-
tion images for each point cloud. For pre-trained 2D back-
bone, we choose the first 3 layers of Swin-Tiny [27] to ob-
tain multi-level 2D features. For encoder layers, we down-
sample the points with grid sampling strategy [50]. We set
the channel numbers of features in three encoder layers to
be 96, 192, 384, respectively.

Implementation Details. We train our MirageRoom on 4
RTX A40 GPUs for all experiments. For S3DIS dataset,
we use AdamW optimizer [28] with 0.05 weight decay and
0.006 learning rate to train for 100 epochs. The batch size
is set to 12. For ScanNet V2 dataset, we use AdamW opti-
mizer with a smaller weight decay 0.02 applied. The learn-
ing rate is scheduled by OneCycleLR [34], where where the
learning raises from 0.0005 to 0.005 in the first 5 epochs and
cosine annealing to 0 in the remaining 95 epochs. Other set-
tings remain consistent with the training process on S3DIS.

4.2. Results

Segmentation Results on S3DIS. Table 1 demonstrates
the results of recent state-of-the-art methods and the pro-
posed MirageRoom on the Area 5 of S3DIS. Clearly, our
MirageRoom achieves best performances on all three met-
rics including classwise mean IoU (%), class-average ac-
curacy (%), and overall accuracy (%). Specifically, our
method surpasses different kinds of methods including
MLP-based [31, 33], convolution-based [24, 36], graph-

Table 2. Indoor semantic segmentation results on validation set
of ScanNet V2 [9] dataset. The size of learnable parameters and
classwise mean IoU (mIoU) are reported.

Method Input Support 2D Learnable mIoUModality Guidance Params

PointNet++ [32] 3D % 1.0M 53.5
PointConv [44] 3D % - 61.0
PointASNL [46] 3D % - 63.5
KPConv [38] 3D % 15M 69.2
SparseCNN [13] 3D % - 69.3
PTv1 [50] 3D % 7.8M 70.6
PointNext [33] 3D % 41.6M 71.5
PMeta [25] 3D % 19.7M 72.8
MinkUNet [6] 3D % 37.9M 72.2
StraFormer [20] 3D % 8.0M 74.3
PTv2 [45] 3D % 12.8M 75.4

MVPNet [17] 2D+3D ! 0.98M 65.0
BPNet [16] 2D+3D ! - 73.9
MirageRoom 3D ! 5.8M 74.9

based [22, 39] and transformer-based [14, 45, 50] ap-
proaches, especially the PTv2 [45] method where more
point-wise transformer layers are adopted. It is worth notic-
ing that our method achieves a considerable improvement
over the baseline without the guidance from 2D features,
which demonstrates the effectiveness of our method to ben-
efit from 2D pre-trained models.

Segmentation Results on ScanNet V2. The mIoU results
on the validation set of ScanNet V2 is illustrated in Ta-
ble 2. Apparently, our MirageRoom achieve a better per-
formance than most of the recent state-of-the-art methods,
including an improvement over StraFormer [20] with fewer
learnable parameters. We also achieves a comparable re-
sults with PTv2 [45] based on about 60% fewer parameters.
Besides, compared with methods which support the guid-
ance from 2D models, our method takes only 3D points
as input without additional images and camera poses, yet
we still achieves better performance, i.e., 74.9% vs 73.9%
against BPNet [16].

Qualitative Results. Qualitative results of PTv2 [45] and
our method are shown in Figure 4. It is clear that the results
predicted by our model is highly close to groundtruth, es-
pecially objects which shares similar geometric structures
and are likely to be recognized as other labels. Further de-
tailed visual comparisons will be displayed in supplemen-
tary pages due to the space limitation.

4.3. Analysis of Mirage Projection

To verify the effectiveness of our mirage projection, we
have a comprehensive comparison over the projection re-
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Figure 4. Visualization results of semantic segmentation results of PTv2 [45] and MirageRoom on S3DIS [3] dataset. Best viewed in color.

Table 3. The occupancy (%) of 3D points via different projection
strategies in two datasets.

Strategy S3DIS ScanNet V2

Straight-line 20.0 47.9
Mirage 35.2 73.9

Relative ↑ +75.5% +54.4%

sults of our strategy with the ones of conventional straight-
line projection. Specifically, we evaluate our projection
strategy from two aspects, i.e. the visual comparisons of 2D
projection images and occupancy analysis of 3D points.

Visual Comparisons of 2D projection images. We gen-
erate the results of our projection images with different set-
tings of κ compared with conventional straight-line projec-
tion in Figure 5. We choose the same group of κs in our seg-
mentation tasks, i.e., 0, 1, 2. It is clear that with the help of
our mirage projection, the originally occluded objects can
be viewed without changing view-points. For example, in
the first row of Figure 5, the red sofa is originally occluded
by front tables and chairs, while with the help of our mi-
rage projection, we can clearly see sofa without changing
the position and direction of view plane. Meanwhile, as we
increase κ, more occluded details can be further projected,
such as the chair legs in the second row of Figure 5. Besides
the visualization of originally occluded objects, our densify
strategy also provide a more realistic projection image with
less incoherence.

It is worth noting that although the visualization results
of mirage projection are similar to the straight-line projec-
tion ones where view-points are changed, the basic physical
modeling is different since varying view-points still follows
straight-line projection under homogeneous medium. The
new modeling brings two significant advantages to our pro-

jection strategy: 1) Convenience. Mirage projection pro-
duces various images with modifying only one parameter,
while varying view-points requires elegant choice of many
parameters to control the position and direction of view
plane. 2) Generalization capability. Mirage projection is
flexible to fit various scenes. In contrast, it is hard to de-
velop a unified algorithm which generates appropriate view-
points for variable indoor scenes.

Occupancy of 3D points. We further analyze the occu-
pancy of 3D points by different projection strategies. The
occupancy refers to the proportion of 3D points effectively
covered by projection images (i.e., not occluded by other
points) out of all points. We perform multi-view straight-
line projection and mirage projection in rooms, respectively.
The occupancy visualization is illustrated in Figure 6, and
numeric results are shown in Table 3, respectively. We can
clearly see from Figure 6 that massive points can not be
mapped onto projection plane due to occlusion of straight-
line projection, while our mirage projection covers most of
the points without changing projection planes. The results
in Table 3 further reveal the fact that our projection strategy
is able to cover more points.

4.4. Ablation Study

In this section, we conduct extensive ablation studies to ver-
ify the effectiveness of each component in our method. We
report the results on S3DIS dataset.

2D Pre-trained Model and Group Mirage Projection.
We first evaluate the effectiveness of the guidance from 2D
pre-trained model and group mirage projection. The results
are illustrated in Table 4. In Experiment I, we do not use any
2D models, which is the baseline of our model. The model
in Experiment II adopts 2D models to generate features
from straight-line projection images. However, the perfor-
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Figure 5. The projection visualization results of different projec-
tion strategies. With the help of mirage projection, we can generate
realistic projections with more originally occluded details.
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Figure 6. The occupancy visualization of 3D points by different
projection strategies. Left: original point cloud. Middle: 3D
points covered by mirage projection. Right: 3D points covered
by straight-line projection.

mance drops due to the incoherence in vanilla straight-line
projection. In Experiment III, we add densify process over
straight-line projection. Due to the realistic projection im-
ages, the 2D model is able to extract features to promote
the performance. Experiment II to VII reveal the promotion
in employing group mirage projection with more points in-
cluded, and an excessive κ value hurts the performance due
to the overflow of edge pixels of projection images.

Effectiveness of Masked Reprojection Module. We
then conduct the experiments over masked reprojection
module to verify the importance of the precise mask and
the number of 2D neighbour k which decides the length of
key vectors for each point query vector. The results are il-
lustrated in Table 5. We can clearly observe that the per-
formance have a significant improvement with the help of
our precise mask compared with experiment (1) to (2). We

Table 4. Ablation study over 2D pre-trained model and group mi-
rage projection on S3DIS. “S” and “M” in Projection Strategy rep-
resents straight-line projection and mirage projection, respectively.

ID
2D

Model
Projection
Strategy

κ
mIoU
(%)

I % - - 70.4
II ! S - 69.5
III ! M 0 70.9
IV ! M 0, 1 71.5
V ! M 0, 0.5, 1 71.8
VI ! M 0, 1, 2 72.0
VII ! M 0, 1, 3 71.6

Table 5. Ablation study over masked reprojection module on
S3DIS dataset.

ID Mask k mIoU (%)

(1) w/o mask 1 70.7
(2) w/ mask 1 71.8
(3) w/ mask 5 72.0
(4) w/ mask 9 71.9

choose k = 5 as the number of candidate neighbour keys in
our module due to the higher performance.

5. Conclusion
In this paper, we propose MirageRoom, a point cloud archi-
tecture with 2D pre-trained models for segmentation task
based on projection. Different from existing projection-
based methods where straight-line projection causes many
occlusions, we propose mirage projection based on the
premise of heterogeneous medium, thereby the previously
occluded objects can be exposed by distorted rays. In this
way, the projection images can cover more points and there-
fore provide sufficient 2D features for fine-grained segmen-
tation tasks. The network is further constructed based on
our projection strategy, and we show that our proposed Mi-
rageRoom is effective in learning point-wise features.

Limitations and Future work. Despite MirageRoom
successes in generating and combining comprehensive
point-wise features from 2D projections, the complete solu-
tion of occlusion is still non-trivial and elusive. Meanwhile,
the potential of mirage projection has not been fully discov-
ered, and we believe it can further inspire future works.
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