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Abstract

In the academic field, the research on human motion pre-
diction tasks mainly focuses on exploiting the observed in-
formation to forecast human movements accurately in the
near future horizon. However, a significant gap appears
when it comes to the application field, as current models
are all trained offline, with fixed parameters that are inher-
ently suboptimal to handle the complex yet ever-changing
nature of human behaviors. To bridge this gap, in this pa-
per, we introduce the task of online meta adaptation for hu-
man motion prediction, based on the insight that finding
“smart weights” capable of swift adjustments to suit dif-
[ferent motion contexts along the time is a key to improving
predictive accuracy. We propose MoML, which ingeniously
borrows the bilevel optimization spirit of model-agnostic
meta-learning, to transform previous predictive mistakes
into strong inductive biases to guide online adaptation. This
is achieved by our MoAdapter blocks that can learn er-
ror information by facilitating efficient adaptation via a few
gradient steps, which fine-tunes our meta-learned “smart”
initialization produced by the generic predictor. Consider-
ing real-time requirements in practice, we further propose
Fast-MoML, a more efficient variant of MoML that features
a closed-form solution instead of conventional gradient up-
date. Experimental results show that our approach can ef-
fectively bring many existing offline motion prediction mod-
els online, and improves their predictive accuracy.

1. Introduction

3D human motion prediction is aimed at forecasting a future
motion sequence accurately based on the historical observa-
tion. As a core technology in computer vision and robotics,
it has been widely used in applications such as human-robot
collaboration [27, 40] and autonomous driving [6, 34].
Academically, current mainstream works on this task are
formulated as an offline problem. They are dedicated to ex-
ploiting spatial correlations of body-joints [9, 26, 30] and
temporal information of sequences [32, 38, 54], with the
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Figure 1. Existing methods predicts a short future given the obser-
vation, with frozen parameters handling all scenarios. We present
a new paradigm for this task, in which: (1) motions are dynami-
cally arriving as streaming data, instead of previous static setting;
(2) we propose online meta adaptation approach, with adaptive pa-
rameters fitting the ever-changing nature of human motions; (3) as
new data appears, we exploit the information in previous predic-
tive mistakes as the driving force for online adaptation.

goal of learning a generic predictor that can handle various
motions over the entire data distribution. Meanwhile, they
only model the prescribed observation-target window with
static data, with samples less than one second. However,
real motions are streaming data that dynamically arrive,
with diverse movements and may keep changing continu-
ously over time, e.g., leading to concept drift [41]. Existing
offline-trained predictors use frozen parameters to tackle the
complexity and variability of human motions, which is in-
herently suboptimal for real-world applications.

To bridge this gap, we draw inspiration from the hu-
man mindsets. Humans have derived basic predictive ability
through their growth and learning, while making mistakes
is still inevitable. A remarkable attribute of human intelli-
gence is the ability to quickly adjust his/her thinking to suit
the new situation and avoid making further mistakes dur-
ing prediction. In contrast, for existing deep learning-based
motion predictors, the dynamic relations between model pa-
rameters and testing errors are never discussed.

In this paper, we introduce the task of online meta adap-
tation for human motion prediction, based on the insight
that finding “smart” weights capable of swift parameter ad-
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justments along the time can effectively benefits the predic-
tive accuracy during inference. We propose an online meta
adaptation approach named MoML, which transforms the
recently-produced predictive mistakes into strong inductive
biases as the driving force for online adaptation, to ensure
a closer alignment with the temporary context and thereby
improved prediction performance then. We customize the
bilevel optimization spirit of model-agnostic meta-learning
(MAML) algorithm [11] to train with inner loops and outer
loops. The inner loops conduct a few gradient steps to learn
the error information, which constrain parameters to opti-
mize into a context-specific configuration w.r.t. the tempo-
rary motion status, while the outer loops enable predictors
with a generic parameter setting over various motion status
via meta-updates.

To achieve this, we design MoAdapter blocks that serve
as the adaptive parameters to realize online adaptation. Dur-
ing meta-training, we introduce the notion of temporary
prediction loss, which reflects the predictive errors that just
happened, and guides the learning of inner loops by super-
vising MoAdapters towards the optimal parameters under
the temporary context. Our meta-loss, however, is a general
prediction loss used to optimize the “smart” initialization
over the entire motion distribution as a generic predictor
in outer loops. Therefore, when performing online adap-
tation along the direction of time, we only update MoAd-
apters based on each temporary prediction loss and keep the
generic parameters fixed, which exactly emulates the flex-
ible adaptability and the basic predictability possessed in
human thinking. The separation of adaptive and generic pa-
rameters in MoML allows us to discard the entire model up-
date strategy in vanilla MAML. This ensures stable training
as well as avoiding excessive time cost for adaptation during
inference. Additionally, considering the real-time require-
ments for human motion prediction in practice, we further
propose a more efficient variant named Fast-MoML, which
features only a one-layer motion embedding as MoAdapter.
Rather than performing gradient update, it conducts adap-
tation with the direct calculation of a closed-form solution,
and appears less time-consuming.

In summary, our contributions are as follows:

* We are the first to address online adaptive human motion
prediction, which introduces recent predictive mistakes as
the driving force for adaptation along the time, to suit the
ever-changing motion contexts.

* We propose MoML, an online meta adaptation approach
that utilizes MoAdapters to capture error information for
adaptation towards context-specific weights, by operating
a few gradient steps from the meta-learned initialization.
Fast-MoML is further developed for efficient adaptation.

* We empirically show that our approach can bring many
existing offline-trained predictors online, and help con-
stantly yield improved prediction performance.

Notably, so far, meta-learning has only been employed in
a few studies on human motion prediction tasks. They are
mainly aimed at few-shot learning for novel/unseen motion
categories [10, 14, 55], which uses small samples from cer-
tain unseen category to adjust parameters for this specific
category. Essentially, all of them are still under the offline
setting to tackle the static distributional discrepancy. Or-
thogonal to them, we argue that cultivating the adaptability
of predictors (1) in the time direction and (2) with an online
manner for streaming data could bring a fresh perspective to
improve both predictive accuracy and model practicability.

2. Related Work
2.1. Human Motion Prediction

Current mainstream academical research on human motion
prediction primarily focuses on two aspects: capturing spa-
tial correlations of body-joints and extracting temporal de-
pendencies of motion sequences, to predict a short, near
future based on observations. Concretely, RNNs [7, 21],
LSTMs [12, 32], GRUs [38, 39], or Discrete Cosine Trans-
formation (DCT) [30, 31] are employed to learn tempo-
ral information. Recently, by exploring the natural graph
structure in human body, GNN-based [25, 26] and GCN-
based [9, 28-31, 42, 58] are proposed to depict spatial
correlations. Meanwhile, recent architectures like Trans-
former [1, 5, 48, 52] and MLP-Mixer [4, 49] are also in-
volved. Additionally, [53] presents a motion prediction net-
work that is theoretically equivariant under Euclidean trans-
formations and can achieve state-of-the-art performance.
The new [52] designs auxiliary denoising branch and mask-
ing prediction branch to assist the main prediction, to ex-
ploit spatio-temporal dependencies more comprehensively.
However, all these models are trained offline. When applied
to real world where motions are of an ever-changing nature,
it is neither possible nor optimal for the fixed parameters to
make accurate predictions constantly. On the other hand,
these works are all restricted to the static data within the
short prescribed research window, and never consider the
dynamic arrival of streaming motion data. Although [43]
takes the latter issue into account, the offline-trained manner
still hinders its ability to fully exploit error patterns during
inference. Motivated by the above, we introduce the online
meta adaptation paradigm for human motion prediction, to
take a step from the academic field towards applications.

2.2. Meta-Learning

Known as learning-to-learn, meta-learning is used to real-
ize quick model adaptation to novel data or tasks. Our work
borrows the bilevel optimization spirit from model-agnostic
meta-learning (MAML) [11], one of the most representative
and influential algorithms in meta-learning, which consists
of inner loops and outer loops of training process, to ob-
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tain a meta-learner that can learn task-specific parameters
via a few gradient updates. [35] proposes Reptile, a simpli-
fied version of MAML by replacing second-order gradient
calculation with first-order.

Online Meta Adaptation. Meta-learning for online adap-
tation has been discussed in various time series-related tasks
in computer vision, such as human mesh recovery in videos
[13], video depth estimation [24, 56, 57], video object seg-
mentation [51] and video semantic segmentation [36, 46].
The adaptation in these works focuses more on the domain
shift problem caused by the distributional discrepancy be-
tween training data and testing data (i.e., between differ-
ent sequences). However, our adaptation focuses more on
an orthogonal perspective, motivated by the inherent ever-
changing nature of 3D human motion in the time direction
(along the sequence). In other words, we address concept
drift, rather than domain shift.

Meta-Learning in Human Motion Prediction. To date,
there are only a few works in this task concerning meta-
learning, which are mainly designed for few-shot learn-
ing over unseen motion categories [10, 14, 55], wherein
[14] employs gradient-based, [55] memory-based and [10]
graph-based meta-learning paradigms. To the best of our
knowledge, the remaining two works [8, 33] aim to han-
dle out-of-distribution problems caused by new/unseen hu-
man subjects with unique properties, such as motion style,
rhythm or personal preferences. All of them are different
from our setting that realizes online meta adaptation along
the time to better fit the various motion contexts.

3. Method

In this section, we provide formal descriptions of human
motion prediction under online meta adaptation setting, and
introduce the working mechanism of our proposed MoML.

3.1. Problem Formulation & Overview

Preliminary. Currently, mainstream human motion predic-
tion works (like [26, 29, 30]) have formed a basic routine as
follows. Let X = [x1,X2,- - ,Xx] be the observed motion
sequence, the goal is to predict the future motion sequence
Y = [¥,.¥5, - , ¥ as accurately as possible towards the
target Y, with each human pose x;, y, or y; € R/*3 de-
noted by 3D body joint position coordinate. J is for joint
number. N and T mean the frame numbers of observation
and prediction target, respectively.

Online Meta Adaptation Setup. As we are aimed at ad-
dressing online meta adaptation along the time, the above
prescribed research time window (N + T') is not fully ap-
plicable. Here we introduce our formulation. We define the
conventional goal of predicting 7" frames based on the ob-
served N frames as a sub-task S, which involves the (0b-
served, target) motion pair (X,Y)s, i.e., (X1.n,¥1.7)s- TO
realize online motion prediction over long-range horizon,

we need to implement all these sub-tasks that are stacked
along the time, i.e., S = [S1, 82, -+, Ss, - - -]. Every sub-
task is intended for predicting the next 7' poses compared
to its adjacent previous sub-task.

Our ultimate goal, i.e., online meta adaptation for mo-
tion prediction, is to learn from the mistakes made in pre-
vious sub-task Ss_1, using this error information to adapt
model parameters for closer alignment with the temporary
context, and therefore improve the prediction performance
of current sub-task S,. Formally, in our setting, each task
is defined as 7, = {D*P*, DY L!""P}_ that contains sup-
port data, query data and our temporary prediction loss. We
draw adjacent sub-task pair (Ss_1, Ss) from S, with the for-
mer S,_; as D*P! and the latter S, as DY"Y. Specifically,
DsP is used to learn the error information guided by £7,
so that model parameters can be adapted to better fit the
temporary context 7; the prediction performance of the up-
dated parameters is then evaluated by D2"Y to ensure the
effectiveness of adaptation towards this context (i.e., task).

During training, we aim to find the “smart” initialization

that close to every task-specific parameter configuration in
the parameter space. Therefore, during inference where
each S; is executed one by one for online motion prediction,
the meta-learned initialization can conduct quick adaptation
according to the context it confronts, and thereby solving
the distributional changing in the time direction.
MoML Overview. Our approach of MoML (online Motion
Meta adaptation) consists of two components: the adaptive
parameter 6 that keeps adjusting to fit each temporary con-
text over time, and the generic parameter ¢ shared across
all prediction scenarios. The consecutive adaptations along
the prediction process can be regarded as performing swift
fine-tuning of # based on recent predictive mistake under ¢
initialization. To achieve this, we propose MoAdapters as 6,
and integrate them into the model hidden layers. By learn-
ing the temporary error information, they adapt to 6. for
context 7 as context-specific weights, and therefore enable
improved predictive accuracy. Our generic ¢ can be con-
structed with many existing end-to-end motion predictors,
in the seek of a smart initialization that determines where is
the best starting point for adaptive operation for every tem-
porary context. We visualize the our overview in Figure 2.

3.2. MoAdapter

To accommodate the ever-changing nature of human mo-
tion, we design MoAdapters to realize online adaptation to
fit diverse motion contexts, which essentially integrate the
recent error information for the subsequent prediction rec-
tification. We propose two types of MoAdapter shown in
Figure 3. The first type FC-MoAdapter is modified from the
adapter architectures in transfer learning works [15, 17] in
NLP, which can produce the adapter representation at each
insertion layer [. Given the input of MoAdapter at this layer
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Figure 2. A sub-task is defined as predicting 7" frames based on /N frames. To keep predicting along the time, we perform the subsequent
sub-tasks, with each T" frames further. In our setting, every adjacent sub-task pair is a task 7, = (Ss—_1, Ss) with a temporary context 7. To
drive MoAdapters (i.e., §) to fit context 7, we feed Ss_1 into the model, and the produced temporary prediction loss L™ contains error
information that depicts how the model deviates from current context. Using it to optimize MoAdapters § towards the context-specific 6,
forms our inner loops. With the updated MoAdapters, the current model can be evaluated by feeding S and calculating the prediction loss
L£met By back-propagating multiple contexts of £™¢** over main pipeline blocks (i.e., ¢), we can ensure the shared parameter to obtain
generic weights for all scenarios that serves as the optimal starting points for different adaptation operations. This forms our outer loops.

as H' € R%*% with d, and d, the spatial and temporal
dimensions, respectively, the adapter representation Z' can
be expressed as:

7' = Wy(o(WiLN(H"))) + H', )

where o is the activation function that is set to gelu(-) [16],
and LN(-) indicates layer normalization [2]. We regard W'
and Wl2 as the adaptive parameters of each MoAdapter. If
L MoAdapters are utilized totally, then § = {W;, Wy };.1.
Meanwhile, we design GC-MoAdapter as the second type
that specially considers the graph structure of human mo-
tion data, which employs the graph convolution operation
[23, 45] among the explicit body-joints or the latent body-
joint features. Similarly, given the MoAdapter input as
H' € R?%*% the adapter representation Z' can be ex-
pressed as:

7' = W (GraphConv(LN(H"))) + H'. (2)

Particularly, GraphConv(-) learns the graph connectivity by
modeling a fully-connected graph with d; nodes, with the
trainable weighted adjacency matrix A' € R% *4s_ Taking
Z! € R4t a5 input, GraphConv(-) outputs:

gcin

quaout = <p(AlZi]c,inngc)7 3)

where the activation function ¢ is tanh(-) attached with
batch normalization [19], and the trainable weights W_lqc S
R4 x4 We define § = {A, W,., W3}1., if L MoAdapters
participate in online adaptation. The separation of 6 from
the generic ¢ allows for adjustments over limited parame-
ters w.r.t. different contexts instead of updating the entire
model, which can ensure stable training and efficient online
adaptation during inference.

3.3. Meta-optimization

To enable online adaptability to suit every motion context
along the time, we should learn a model that can learn

FC Layer

LayerNorm

FC-MoAdapter 6C-MoAdapter

Figure 3. Architectures of the two proposed MoAdapters. Either
of them is integrated into the main pipeline by attaching at the end
of each network block at layer ! with residual connections.

MoAdapters guided by temporary error information, i.e.,
learn-to-learn. We customize the bilevel optimization spirit
in model-agnostic meta-learning (MAML), where the op-
timal @ for context 7 (i.e., 6F) is obtained by MoAdapter
adaptation steps, and the generic parameters ¢ shared across
all scenarios are learned via meta-update. Recall our task
definition 7, = {D*P*, DIV Li"P} = {S;_1,Ss, LI}
in Section 3.1. During the inner loops, 6 is optimized
by implementing sub-task Ss_; via the entire model pa-
rameterized as {6, ¢}, and conducting back-propagation on
LImP (9, $; Ss—1). To be specific, the model predicts Y. :
based on the observed X,_;, and calculate the predictive
mistake

L0, 658.1) = [¥as = Yo}

T
1 . “4)
= T Z ||ysfl,t - ysfl,tH%
t=1

as temporary prediction loss to optimize 6, where Y,_1 €
R7*3xT i5 the prediction target of sub-task S,_; corre-
sponding to the context 7, and y,_; , denotes the ¢-th frame
of the entire target sequence. One or few times of such op-
timization steps can be operated to produce the optimal 6.
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Algorithm 1: MoML training procedure

Require: Meta-dataset D"
Require: Hyper-parameters «, 3,y
Randomly initialize 6 and ¢

while max interation do
Sample batch of tasks 7 composed of adjacent

sub-task pair (S;_1, Ss), where VS, ~ D"

for all 7, do

Initialize 6, = 0

for number of adaptation steps do
Compute temporary prediction loss

L (0, ¢; Ss—1) using Eq (4)

Update MoAdapters:
0, < 0, —aVy LP (0., ¢;Ss—1)

end

Compute L7°'%(§.., ¢; Ss) using Eq (5)

end
Update shared parameters ¢ by performing:
¢ <~ (b - thi) ZT ‘CTEta(GTa ¢§ Ss)

over all the contexts in this batch

BB

end

During outer loops, we implement sub-task Sy that pre-
dicts Y, given observed X, and optimize ¢ guided by:

T
meta ¥ 1 &
L7 Ss) = Yo = Y[ = fz 1956 = ¥s.2ll3 (5
t=1

with the adapted 6 fixed. The meta-update is performed
across different E’Tnem for multiple motion contexts, to ob-
tain an optimal starting point ¢* that can be quickly adapted
to all prediction scenarios. The formal training procedure is
shown in Algorithm I, and the formulation of MoML can
be expressed as:

I argminz L7 (0% b S)
(z) T

st 0F = argmin LP(0, ¢; Ss_1)
0

(6)

As a result, with the meta-learned ¢* as the generic ini-
tialization, we use the temporary prediction loss over the
former S;_1 in every task, to help 6 transit into 67 to suit
its context, and improve the performance of the latter S;.
Note that, both of the two losses are essentially prediction
losses, but the inner Limp drives 6 towards specific context,
and the outer £7¢'® serves as meta-loss to find the optimal
initialization for the entire data distribution.

3.4. Fast-MoML

Apart from the above gradient-based optimization frame-
work, considering the real-time requirements of online mo-
tion prediction, we present a more efficient version of

MoML, named Fast-MoML. We specify that the adaptive
parameters 6 only exist as the last layer of the entire model,
with all the other parameters as ¢, which means that only
the last layer is involved in inner loops. Motivated by
[3, 50], we discover that such last-layer optimization with
MSE loss can be regarded as a simple ridge regression prob-
lem with an analytic solution instead of the complex and
time-consuming gradient-based optimization. Suppose an
L-layer network denoted as ¢, which outputs Hf_l dur-
ing the sub-task S,_;. With § = {W¥}, the solution of
inner loop optimization can be expressed as:

W5 = argmin [HE W = Y, |2 + AW

w

T

(M
= ((HL ) H )T HE ) Y
for each adaptation. When @ is adapted to 6% as Wf*, the
prediction process in the subsequent S, can be improved as
Y, = HSLWf* A serves as the regularization parameter
in ridge regression, which is trainable and belongs to ¢ that
participates meta-update, i.e., ® = {¢net, A}. Similarto [3],
we also involve a bias term by appending a scalar 1 to H”
during the calculation. As the above closed-form solution
is differentiable, gradient-based optimization only happens
to ¢. In inference, we can directly conduct matrix multipli-
cation to realize fast adaptation for every context over time.

4. Experiments

In this section, we evaluate our MoML approach over the
task of human motion prediction with online meta adap-
tation. Following [26, 30], we train on Human3.6M [20],
CMU-Mocap and 3DPW [47] datasets. The experiments
are conducted by modifying three baselines into online meta
adaptive setting, and we provide numerical results, visual-
izations, with ablation studies for full analysis.

4.1. Datasets

Human3.6M is the most influential and representative
dataset for human motion prediction, which contains seven
actors performing 15 types of actions, such as walking, eat-
ing, smoking and discussion. Motion sequences are down-
sampled into 25 Hz to form our motion data. Each human
body is denoted by 32 body-joints pre-processed into 3D
coordinates. We follow the mainstream [4, 26, 30, 32] and
consider 22 of these joints. Subjects 1 (S1), S6, S7-S9 are
for training, S5 and S11 are for testing and validation.
CMU-Mocap denotes each body by 28 joints as 3D coor-
dinates. Following [26, 30], we leave 25 joints for experi-
ments and use the same protocol to split training and testing
sets. Similar to them, we include 8 categories: basketball,
basketball signal, directing traffic, jumping, running, soc-
cer, walking and washing window.
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walking eating smoking discussion directions
millisecond (ms) | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
Res. sup [32] 29.4 50.8 76.0 81.5|16.8 30.6 569 68.7|23.0 42.6 70.1 827|329 61.2 909 962|354 573 763 87.7
DMGNN [25] 17.3 30.7 54.6 652 |11.0 21.4 362 439| 9.0 17.6 32.1 403|173 348 61.0 69.8|13.1 246 64.7 819
MSR [9] 122 227 38.6 452| 84 17.1 33.0 404 | 80 163 31.3 382|120 26.8 57.1 69.7| 8.6 19.7 433 538
LTD [30] 12.3 23.0 398 46.1| 84 169 332 40.7| 80 162 319 389|125 274 585 71.7| 9.0 199 434 537
LTD-FC 109 19.5 373 422 | 7.8 157 31.6 384 | 72 142 285 369|112 250 558 689 | 82 17.5 41.7 51.0
LTD-GC 10.5 19.5 369 42.7| 7.0 151 31.6 38.0 | 6.9 145 29.0 36.6 | 11.0 24.5 554 68.7| 8.0 17.6 39.8 50.6
MotionMixer [4] | 10.8 224 36.5 424 | 7.7 140 273 36.1| 7.1 14.0 29.1 36.8|10.2 22.5 51.0 64.1 | 83 18.1 43.8 534
MotionMixer-FC | 9.9 20.7 34.0 40.1 | 6.8 12.8 254 34.7| 74 14.1 273 345| 94 19.7 48.6 614 | 7.8 17.2 415 51.3
MotionMixer-GC | 9.6 214 347 410 6.2 125 26.1 354 | 7.5 13.8 279 346| 9.3 20.8 495 625| 85 17.6 42.6 51.7
SPGSN [26] 10.1 194 348 415| 7.1 149 305 379 6.7 13.8 28.0 34.6|104 238 53.6 67.1| 74 172 398 50.3
SPGSN-FC 9.2 18.1 329 40.0| 65 14.1 281 36.8| 6.7 12.7 261 329 | 91 21.7 51.0 652 | 7.3 163 37.0 48.0
SPGSN-GC 93 17,5 32.2 398 | 7.3 143 282 364 | 6.3 125 263 33.6| 93 219 519 639 | 7.1 162 374 472

Table 1. Comparisons of MPJPE errors of 5 typical activities in Human3.6M between baselines without/with our MoML approach. The
suffix of FC or GC indicates integrating FC-MoAdapters or GC-MoAdapters, respectively. Lower errors are highlighted in bold, where
our designs gain improvement in most cases. As we perform each sub-task one by one along the time to predict with streaming motion
data, each error of ours is calculated by averaging errors of all sub-tasks at the corresponding timestamp.

3DPW is a more challenging dataset containing 51k frames
of both indoor and outdoor human activities. Each body is
represented by 3D coordinate of 23 joints, and the frame
rate is 30 Hz. We follow [26, 30] to split training, testing
and validation sets as official suggestion.

Evaluation Metric. Following standard human motion pre-
diction works [4, 9, 26, 29, 30], we evaluate our approach
by Mean Per Joint Position Error (MPJPE) on 3D human
joint coordinates. It calculates the average Lo-norm on
the discrepancies between the prediction and corresponding
ground truth over all body-joints.

4.2. Baselines

We provide comparisons with mainstream Res. sup [32],
DMGNN [25], LTD [30], MSR [9], SPGSN [26] and Mo-
tionMixer [4]. As our goal is to use MoML to bring offline-
trained baselines online, we choose the following baselines
for our online meta adaptive modification.

LTD [30] is a typical (also the first) GCN-based model for
human motion prediction, which designs stacked graph con-
volutional blocks with skip connections to model the spatial
correlations of body-joints. Discrete Cosine Transformation
(DCT) is employed to extract temporal information.
SPGSN [26] is a reformative graph-based model with cas-
caded graph scattering blocks to capture fine representation
of both spatial and spectrum features. Within each block,
human body are divided into separated body-parts to con-
duct their respective graph modeling, which are then fused
with the full-body modeling.

MotionMixer [4] is an efficient motion predictor features
the recent MLP-Mixer architecture [44]. It customizes spa-
tial mixing blocks and temporal mixing blocks, and stacks
them with squeeze-and-excitation [18] enhanced.
Implementation Details. Our experiments are conducted
under Pytorch [37] framework with Adam optimizer [22]
on a single NVIDIA RTX 3090. We train all three baselines

with MoML for 50 epochs. As the network architecture and
other experimental details are different for each model, we
leave them in supplementary for further introduce.
Fairness Discussion. Motion data is very long, containing
multiple sequences with hundreds to thousands of frames.
Existing offline-trained predictors are evaluated by short-
term and long-term prediction, which stand for predicting
400ms and 1000ms of motions, respectively. They cut short
samples from the long sequence data regardless of their
streaming structure, and test on every single sample. For
our online adaptive setting, we treat every 400ms-prediction
as a sub-task and predict with adaptive parameters to suit
each motion context along the time. We evaluate the effec-
tiveness of MoML by averaging the predictive errors of all
sub-tasks at certain timestamps. In other words, we all go
through the entire dataset, so the comparison is fair.

4.3. Results

Human3.6M. Table 1 provides the prediction performance
of 5 typical activities in Human3.6M, which shows com-
parison of MPJPE errors between baselines without/with
MoML approach. Values in bold indicate the lowest error
among baseline and two types of baseline+MoML. Results
of the remaining activities in Human3.6M are shown in Ta-
ble 2. Both designs of MoML improve the predictive accu-
racy in most cases. We also observe that failures may hap-
pen to motions with relatively static status, such as sitting
and waiting where the contexts barely changed, and updat-
ing parameters in this scenario may tend to be unnecessary.

In Figure 4, we present visualized comparisons of two
cases on discussion and walking dog. We draw motion con-
tents in eight seconds, where significant errors produced by
baselines are highlighted with red boxes, and the benefits
brought by our MoML are highlighted with green. For ex-
ample, in the bottom sub-figure, the person is walking fast
and appears to be dragged by a dog from the side. The base-
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greeting phoning posing purchases sitting
millisecond (ms) | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
LTD [30] 18.7 387 777 934|102 21.0 425 523[13.7 299 66.6 84.1 |15.6 328 657 79.3|10.6 219 46.3 57.9
LTD-FC 18.0 369 755 91.1|10.8 21.2 42.1 51.4|14.0 285 655 843|152 312 64.0 77.1|11.0 22.6 46.7 59.0
LTD-GC 169 36.1 749 90.6 | 10.6 204 425 51.2|13.3 284 657 81.8|15.1 30.6 63.7 76.8 | 109 21.0 46.5 583
MotionMixer [4] | 12.8 334 623 82.2|10.0 20.1 37.4 51.1 |11.7 233 624 79.5|14.6 31.3 628 76.1|10.0 209 43.7 54.5
MotionMixer-FC | 12.4 33.0 61.1 80.8 | 99 194 36.6 489|122 23.0 60.8 77.5|13.8 30.2 60.4 757|102 20.7 43.3 53.8
MotionMixer-GC | 13.6 33.6 61.7 81.3| 9.7 199 36.1 494 |12.0 233 613 77.7|13.8 309 60.6 754 | 10.6 21.0 43.6 542
SPGSN [26] 14.6 32.6 70.6 86.4 | 8.7 183 38.7 485|10.7 253 599 765|128 28.6 61.0 744| 93 194 423 53.6
SPGSN-FC 13.8 311 69.6 84.1| 85 17.1 37.8 48.0 | 10.8 244 57.1 747|122 27.8 58.8 723|102 21.1 423 532
SPGSN-GC 12.6 31.8 689 84.0| 87 18.0 389 49.1|10.2 252 57.8 742|129 282 595 728 | 9.8 20.8 425 53.8
sittingdown takingphoto waiting walkingdog walkingtogether
millisecond (ms) | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
LTD [30] 16.1 31.1 61.5 755| 9.9 209 450 56.6|11.4 240 50.1 615|234 462 835 96.0| 105 21.0 38.5 452
LTD-FC 15.8 30.7 60.6 74.1| 8.6 19.0 443 54.8 |11.8 24.1 49.2 59.1 |21.9 434 80.7 94.1| 9.6 19.7 36.6 43.0
LTD-GC 15.5 30.3 60.4 73.8| 82 18.7 428 53.2|11.2 23.7 50.0 58.2|20.5 43.0 79.8 93.6 | 8.9 19.2 36.1 424
MotionMixer [4] | 12.0 31.4 61.4 745| 9.0 189 41.0 51.6|10.2 21.1 452 56.4 (205 428 75.6 87.8|10.5 20.6 38.7 43.5
MotionMixer-FC | 11.4 30.9 60.2 72.6 | 7.8 18.0 38.5 49.2 (103 20.2 44.1 55.2 184 40.1 73.0 84.2| 89 183 36.2 409
MotionMixer-GC | 12.8 31.2 60.8 72.7 | 8.1 18.3 38.8 488 | 11.1 20.6 450 56.9 |19.7 41.1 733 85.0| 9.6 187 369 414
SPGSN [26] 142 277 568 70.7| 8.8 189 415 52.7| 92 19.8 43.1 54.1|182 373 713 842| 89 182 33.8 409
SPGSN-FC 141 269 552 683 | 7.7 182 392 50.6| 95 194 422 533|168 358 685 82.0| 81 169 32.0 389
SPGSN-GC 141 27.1 554 68.2| 7.5 178 38.7 489| 96 205 424 528|17.1 36.0 68.0 81.3| 82 16.5 31.6 38.5

Table 2. Comparisons of MPJPE errors of remaining activities in Human3.6M between baselines without/with our MoML approach.
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Figure 4. Two visualized cases on discussion (top) and walking dog (bottom). We choose LTD [30] and SPGSN [26] as baselines for
comparison. In each case, we draw motion contents in eight seconds. With the online adaptation operation by MoML, we can produce
predictions with higher accuracy, indicated by the improved performance marked in green boxes.

line fails to predict accurately as the motions are complex
and quickly changing, while with our MoML, although we
still cannot produce the exact true poses, many predictions
have already obtained the right motion tendencies.

CMU and 3DPW. We also provide experimental results on
this two datasets in Table 3, where the average performance
of MoML-trained models also surpasses baselines. As the
results of MotionMixer [4] are not available here, we only
leave LTD [30] and SPGSN [26] for comparison.
Fast-MoML. Considering the practical needs of predicting
motions instantly, we present the predictive errors of our
Fast-MoML on Human3.6M in Figure 5, and compare them
with the average performance of FC/GC-based MoML. We
choose the 400ms timestamp in each sub-task as testpoint.

From the figure, Fast-MoML indeed obtains a certain de-
gree of adaptability, but the expressions of single-layer em-
bedding are limited when faced with varied motions. Nev-
ertheless, the time-saving property is still undeniable, and
we leave the related experiments in supplementary.

4.4. Ablation Study

Performance on streaming sub-tasks. In Figure 6, we
draw MPJPE error of each sub-task along the time, to eval-
uate the improvement brought by MoML, as well as the sta-
bility of such benefit. Notably, to let the original baselines
to perform with streaming data, we just need to use these
frozen models to predict every sub-task in turn and calcu-
late the corresponding error. Both FC/GC-based MoML
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CMU-Mocap Average || 3DPW Average
millisecond (ms) | 80 160 320 400 || 100 200 400
Res. Sup [32] 242 43.8 72.4 889 1023 113 174
DMGNN [25] 14.1 244 459 56.5| 17.8 37.1 704
MSR [9] 8.7 15.8 30.6 38.1| 157 335 65.0
LTD [30] 9.9 18.0 33.5 409 163 356 67.5
LTD-FC 9.6 169 324 38.7| 155 33.8 66.1
LTD-GC 94 16.6 32.0 38.2| 15.2 33.2 653
SPGSN [26] 83 14.8 28.8 37.0| 154 329 645
SPGSN-FC 8.0 13.7 27.1 351 | 143 30.6 61.2
SPGSN-GC 78 139 274 352 147 30.5 61.6
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Table 3. Comparisons of MPJPE average errors on CMU-Mocap
and 3DPW without/with our MoML approach. With our approach,
the prediction performance is improved.

[ Baseline FC-MoAdapter [l GC-MoAdapter [ Fast

63.5

62.3
61.7
I 61.1 I
LTD

Figure 5. Comparisons of predictive errors at 400ms testpoints
among two types of MoML and Fast-MoML on Human3.6M.

59.3
58.2 58.2
574 57.9 57.4

MotionMixer SPGSN

and Fast-MoML produce lower predictive errors, and can
stably keep this improvement over a long horizon. Note
that there exists no improvement for the first sub-task of
prediction, as no recent errors can be used for adaptation.
MoML vs. MAML. As we conduct adaptation over se-
lective parameters, rather than the entire model like vanilla
MAML, we further investigate the performance of employ-
ing MAML in regard to our task. In Table 4, we present re-
sults of baselines with (1) baseline+ MAML: using MAML
to train the original baselines and update all parameters dur-
ing inference; (2) baseline-FC/GC+MAML: integrating our
FC/GC-MoAdapters into the main backbone, and operating
MAML over the entire network; (3) baseline-LL+MAML:
attaching the last-layer structure to baselines like Fast-
MoML, but operating MAML over the entire network; (4)
only-LL+grad: Using gradient-based optimization instead
of closed-form solution as the inner loops of Fast-MoML.
From the table, MAML also exhibits certain superiority
compared to the offline-trained manner, but there is no ob-
vious advantage compared to our MoML, as the instability
brought by large number of parameter update may limit the
adaptive performance. Moreover, MAML can be cumber-
some and time-consuming when applied to existing predic-
tors, making it less suitable to handle the streaming motion
data. In our supplementary, we provide more discussion
concerning inference time, along with hyperparameter set-
tings and concrete meta design for each baseline in detail.
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Figure 6. Performance on streaming sub-tasks on Human3.6M.
We draw 60 sub-tasks of MPJPE errors at 400ms testpoints, where
our three designs of MoML help improve the predictive accuracy

of baselines constantly.

method LTD [30] | MotionMixer [4] | SPGSN [26]
baseline 63.52 59.33 58.22
baseline+MAML 61.98 58.09 57.34
baseline-FC+MAML 62.51 57.83 56.59
baseline-GC+MAML 61.90 60.04 57.23
baseline-LL+MAML 62.92 58.14 57.30
only-LL+grad 62.37 58.28 57.58

Table 4. Different networks trained with vanilla MAML-based
approach, and gradient-based last-layer optimization.

5. Conclusion

In this paper, we address the problem of online adaptive hu-
man motion prediction with streaming motion data. We in-
troduce an online meta adaptation approach named MoML,
which cultivates model adaptability in the time direction,
to suit the inherent complexity and ever-changing nature of
human behaviors. We propose two types of MoAdapters
that incorporate recent error information as guidance, to
perform swift parameter adjustments towards a closer align-
ment with recent temporary motion context. The bilevel
optimization structure is customized to learn “smart” ini-
tialization as the optimal starting point for online adaptation
across various contexts. Fast-MoML is further developed,
featuring a last-layer motion embedding with closed-form
solution for time saving. Experiments show that our MoML
can bring different existing offline-trained predictors online,
and constantly benefit the predictive accuracy.
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