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Figure 1. Visualization of dense correspondence for state-of-the-art methods namely SCOT [21], CATs [3], and ACTR [38] compared with
our LPMFlow. Thin-plate splines algorithm [1] is used for image warping with instructed by predicted key points.

Abstract

Establishing precise semantic correspondence across
object instances in different images is a fundamental and
challenging task in computer vision. In this task, difficulty
arises often due to three challenges: confusing regions with
similar appearance, inconsistent object scale, and indis-
tinguishable nearby pixels. Recognizing these challenges,
our paper proposes a novel semantic matching pipeline
named LPMFlow toward extracting fine-grained seman-
tics and geometry layouts for building pixel-level seman-
tic correspondences. LPMFlow consists of three modules,
each addressing one of the aforementioned challenges. The
layout-aware representation learning module uniformly en-
codes source and target tokens to distinguish pixels or re-
gions with similar appearances but different geometry se-
mantics. The progressive feature superresolution module
outputs four sets of 4D correlation tensors to generate ac-
curate semantic flow between objects in different scales. Fi-

∗: Contribution Equally †: Corresponding Authors

nally, the matching flow integration and refinement module
is exploited to fuse matching flow in different scales to give
the final flow predictions. The whole pipeline can be trained
end-to-end, with a balance of computational cost and corre-
spondence details. Extensive experiments based on bench-
marks such as SPair-71K, PF-PASCAL, and PF-WILLOW
have proved that the proposed method can well tackle the
three challenges and outperform the previous methods, es-
pecially in more stringent settings. Code is available at
https://github.com/YXSUNMADMAX/LPMFlow.

1. Introduction

Semantic matching methods aim to establish precise visual
correspondences between different objects of the same cat-
egory [3, 32, 48], which needs a deep understanding of spe-
cific pixels, object parts, individual objects, and their spatial
layouts. As a fundamental task in computer vision, seman-
tic matching has been applied in object recognition [17, 37],
co-segmentation [39], image editing [29, 30], 3D recon-
struction [34], and etc. Different from other image under-
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standing tasks [36, 42], semantic matching models need to
have strong abilities in understanding structural geometry
layouts and fine-grained pixel-level semantics, which are
critical to handle large intra-class variations in appearance,
scale, orientation, and non-rigid deformations.

Current state-of-the-art methods, such as SCOT [21],
CHM [25], MMNet [48], CATs [3], and ACTR [38], have
designed geometric matching strategies, extracted discrim-
inative features, enforced one-to-one matching, encouraged
matching consistency to solve the semantic correspondence
problem and achieved impressive performance on popular
benchmarks such as PF-PASCAL, PF-WILLOW [8], and
SPair-71k [26]. However, given image pairs with large
appearance variations, the semantic matching models of-
ten generate unsatisfactory correspondences for the follow-
ing reasons: 1) semantic regions that share similar appear-
ances are often confused, making the matching results vi-
olate their geometric layout; 2) objects in different scales
present a challenge in establishing correlations for details;
3) nearby pixels are hard to be distinguished.

In this paper, we propose a novel semantic corre-
spondence pipeline that contains layout-aware representa-
tion learning (LARL), progressive feature super-resolution
(PFSR), and multi-scale matching flow integration (MMFI)
modules, and call it LPMFlow. Recent research [24] shows
that the geometry layouts of semantic components and the
difference of pixels are the keys to construct fine-grained
matching. For the layout-aware representation learning
module, to obtain the shared layout of regions in a pair
of objects, we exploit a representation learning module as-
sisted by a conditional semantics enhancement task that
combines global semantics and association of local areas.
Meanwhile, in the progressive feature superresolution mod-
ule, we gradually generate feature maps at different scales
to produce 4D matching tensors, which can tolerate large-
scale variations of object instances. Finally, the multi-scale
matching flow integration module is designed to discover
fine-grained differences in the adjacent pixels, thus further
improving the matching robustness in different scenarios.

For detailed designs, cascaded transformer blocks with
region-based position embedding [35, 45] are used to en-
hance representation with shared geometry layouts in the
LARL module. And inspired by works [5, 14], a ref-
erenced patch token correction (RPTC) task is also pro-
posed to guide this learning stage. For the PFSR mod-
ule, we progressively up-scale features of both sides with
feature super-resolution block with the internal relationship
of own patches and interaction of opposing features fused.
Afterward, multi-scaled features from PFSR are summa-
rized to generate cross-scaled 4D matching tensors. For
the MMFI module, we convert these 4D matching tensors
into 2D matching flows via soft-argmax and integrate them
with a coarse-to-fine structure based on 2D swin-attention

blocks [23]. This stage takes advantage of matching rela-
tionships among different neighborhoods to generate spe-
cific matching details. To our knowledge, our proposed
LPMFlow is the first end-to-end method to establish seman-
tic correspondences in units of 2×2 pixels. Extensive ex-
periments on popular matching benchmarks such as SPair-
71K [26], PF-PASCAL, and PF-WILLOW [8] demonstrate
that LPMFlow can accurately identify semantic relevancy,
capturing finer matching between images (shown in Fig-
ure 1). We summarize our contributions as follows:

• We propose a novel LPMFlow framework that combines
LARL, PFSR, and MMFI modules. It focuses on shared
geometries and pixel-level semantics for reliable correspon-
dence, capable of handling large-scale object variations and
improving robustness across various scenarios.

• Novel RPTC task is designed for the LARL module to
guide shared layout representation learning. For PFSR
module, we design a schema that progressively upgrades
feature maps, summarizing multi-scale features to create
cross-scaled matching tensors. For MMFI module, we de-
sign a coarse-to-fine refinement structure for fused cross-
scale 2D flows and acquire pixel-to-pixel correspondence.

• Experiment on popular benchmarks indicates that LPM-
Flow significantly outperforms previous state-of-the-arts,
especially in more strict metrics. Qualitative results demon-
strate the effectiveness of LPMFlow in addressing three im-
portant challenges and generating precise correspondence.

2. Related Work
Representation Learning Cross Elements. As a seman-
tic comprehension task [13], constructing joint representa-
tion is vital for understanding complex relationships across
the elements. Early methods [15, 22, 28] often use interac-
tive structures to capture the relation among separated em-
beddings. The advent of transformer-based encoding struc-
ture [14] like VisualBert [19] has revolutionized the way to
jointly learn representations with implicit relations among
the elements adopted in various applications [2, 45]. Re-
cently, several innovative structures such as OSTrack [45]
and SEEM [50] are proposed. While other methods extend
from the idea of mask-language modeling [4, 14] and de-
sign several enhancement tasks for pretraining [43]. In or-
der to extract the shared relations for semantic matching, we
inherit the transformer-based encoding structure and craft
a novel replace-recovery-based token enhancement tech-
nique. This method can augment visual representation by
leveraging the correlation between global and local seman-
tic tokens to incorporate shared object layouts.

Multi-scale Correspondence Construction. In matching
tasks [31, 33], various methods [3, 25, 48] tried to con-
struct multi-scale correspondence to overcome perspective
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Figure 2. Illustration of LPMFlow structure. The full pipeline is composed by a vision transformer backbone, layout-aware representa-
tion learning (LARL), progressive feature super-resolution (PFSR), and multi-scale matching flow integration (MMFI) modules.

distortion. For example, MMNet [48] and VAT [11] build
up a stair-wised pipeline to fuse lower-scaled matching re-
sults into a larger scale. DHPF [27] and CATs [3] tend to
align multi-scaled features at first and construct correspon-
dences uniformly. These methods help to the construction
of matching details. To handle the problem of inconsistent
scales in an image pair, several methods [25, 47] upscale
features to different scales to construct and refine cross-
scaled matching. However, obtaining semantic detail rep-
resentations while increasing feature resolution remains a
critical challenge. Our research counters this with a pro-
gressive pipeline for high-resolution feature construction.

Refinement of Matching Flow. Matching flow is an effi-
cient format to represent matching compared with 4D ten-
sors which can be refined in higher resolution with less
computation cost [38, 44]. Several methods are designed
for matching flow refinement. PWarpC-SF-Net [41] re-
fines estimated matching with warping consistency. GM-
Flow [44] and STTR [20] estimate the offset of patches ac-
cording to fixed neighborhoods to refine the single-scaled
flow. ACTR [38] fuses the multi-path coarse flows for re-
finement to benefit from different matching tensors. In this
paper, we follow previous works and design a coarse-to-fine
structure to integrate and refine multi-scaled flow, which
can incorporate correspondence in different ranges to dis-
tinguish subtle differences in narrowed pixel regions.

3. Method
In this section, we introduce the LPMFlow framework
(shown in Figure 2) for generating semantic correspondence
in high quality. Given an image pair {Is, It}, the proposed
method: 1) enhances the representation F 1

s ,F
1
t with layout

consistency; 2) up-scales the enhanced feature of both sides
progressively to build up cross-scaled 4D matching tensors
{C}; 3) calculates the multi-scale matching flows from {C},
integrates and refines them into a fine-grained flow ∆d|s7→t.

Following this pipeline, our LPMFlow can generate match-
ing flow ∆d|s 7→t in 1

2 scale using the initial features from
ViT [7] backbone only in the scale of 1

16 which outperforms
the previous state-of-the-art methods.

3.1. Layout-aware Representation Learning

We design the Layout-aware Representation Learning
(LARL) module to build up enhanced representation from
{Fs,Ft}. Our proposed module is composed of cascaded
transformer blocks with 2D relative position embedding in-
troduced. To handle the problem of confusion among se-
mantically irrelevant tokens with similar appearances, we
design a learning task to restrict the representation of a to-
ken closer to its neighborhoods. Besides, the learning task
also guides the model to learn the layout consistency of cor-
respondences via token replacement & correction with ref-
erence. Unlike previous works [5, 19, 43], we set source to-
kens for replacement and recovery supervision (Ts), while
target tokens are defined as references (Tt). We name this
task referenced patch token correction (RPTC).

Structure of LARL Module: Structure of the LARL mod-
ule is based on cascaded transformer blocks. In this module,
isolated features Fs,Ft ∈ R(N+1)×c are first concentrated
as {Fs,Ft}. And embeddings for the segment and posi-
tion are superimposed on tokens to indicate the images to
which the token belongs and provide spatial context. We
also separately introduce the region-based position embed-
ding (PE) [35, 45] in column and row to enhance the relative
position modeling. The process is performed as follows:

ql,kl,vl = Ψ{q,k,v}({Fs,Ft}′l−1 + pl),

Ê′
l = MultiHead(LN(ql),LN(kl),LN(vl)),

{F′
s,F

′
t}l = FFN(LN(Ê′

l)) + Ê′
l,

(1)

where Ψ{q,k,v} stands for the function to generate ql,kl,vl,
pl for region based PE, LN for layer normalization, Multi-
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LARL Module PFSR Module MMFI Module

Figure 3. Visualization for the effectiveness of three designed modules on three challenges. The first row presents results without the
modules, and the second row visualizes our method. Ground truth is indicated in yellow, successes in green, and failures in red.

Head for multi-head self attention [7] and FFN for feed-
forward network. We note {F 1

s ,F
1
t } as output {F′

s,F
′
t}l

of the last layer. Through this structure with relation mod-
eling, the representation of a token can be reconstructed and
refined according to the tokens from both Is and It.

Procedure of RPTC Task: This task is defined as recov-
ering the replaced key tokens according to their neighbor-
hood and reference image tokens. For the replacement pro-
cedure, we select tokens most relevant to the shared objects
between two images as key tokens. Thus, we first generate
a foreground weight map W for Ts based on global seman-
tic ([cls] tokens) relevance. Afterward, top K source patch
tokens T p

s are randomly selected with the rate of θ accord-
ing to W and replaced with averaged [cls] tokens of both
sides. We note the Ts after token replacement as Fs and
Tt after tokenization as Ft. For the recovery procedure, we
feed the {Fs,Ft} into LARL and acquire the reconstructed
representation {F 1

s ,F
1
t }. To complete the learning process

as recovery, two priors are used to design the training ob-
jective. First, the original local semantics of the replaced
tokens are different from each other. Besides, as an image,
a patch is usually more similar to the patches in its neighbor-
hood. We design a self-contrastive loss based on InfoNCE
function [10, 46] according to these priors as:

Lfeat = − 1

R

R∑
β=0

exp(qβ ⊗ k+/τ)∑
k∗∈{k+,k−}

exp(qβ ⊗ k∗)/τ
. (2)

For each of R replaced tokens in Fs (set as q of InfoNCE),
we set the negative embeddings k− as other R− 1 replaced
tokens and we set the positive embedding k+ as the aver-
aged 8 tokens of 3×3 neighborhood of q in F 1

s . We note
that several k− might appear in neighborhood of q. We ex-
plain this as k− within the neighborhood of a query embed-

ding should be more similar to the query embedding than
other replaced tokens. We also design a training process
that gradually weakens the intensity of the RPTC guidance
λ. This design aims to guide the model focusing more on
the finer-grained task of correspondence based on the re-
fined representation as the learning progresses.

3.2. Progressive Feature Super-Resolution

After acquiring the high-quality representation {F 1
s ,F

1
t },

we attempt to establish matching relationships at the high-
est possible resolution. However, limited by the currently
used data structures: similarity matrix [32, 48] and match-
ing flow [3], obtaining high-resolution matching from fea-
tures that undergo significant down-scaling is a difficult
task. Thus, we try to first upscale the resolution of features
before calculating correspondence in a progressive way. Af-
terward, we use multiple scaled features to generate cross-
scale similarity matrices. This design brings two benefits:
1) Compared with directly up-scaling the similarity matrix,
the feature preserved richer semantic information to guide
resolution improvement; 2) Fusing matching relationships
at different scales can enhance the adaptability to the prob-
lem of the inconsistent scale of objects (shown in Figure 3).

Structure of PFSR Module: In our PFSR module, we en-
hance and upscale F 1

s and F 1
t in three stages. The first stage

employs a self-attention block followed by a feature super-
resolution (FSR) block, upgrading the features to F 2

s and
F 2
t . In this process, F

1
represents the output of F 1 post

self-attention, offering refined feature representations. The
FSR block utilizes cascaded window and shifted window
attention to further enhance these representations after bi-
linear interpolation. Subsequently, scale-asymmetric cross-
attention layers facilitate semantic interaction between the
features, yielding the hybrid enhanced F 3

s and F 3
t . Here,

F
1

s and F
1

t are used for query embeddings, while F 2
t
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and F 2
s serve as key and value embeddings, incorporat-

ing both cross-scale information and opposite path seman-
tics. The final stage integrates these self-feature-guided
and interaction-enhanced super-resolution features into F 4

s

and F 4
t through an additional self-attention block, ensuring

thorough and effective feature integration.

Cross-scaled Similarity Matrices: After the PFSR, we
acquire up-scaled features {F 4

s ,F
4
t } two times as the reso-

lution of F 1
s and F 1

t . We combine the two scale features F 1

and F 4 of source and target in pairs to construct a similarity
matrix of four scale relationships. Here we use the multi-
head attention scheme to generate the 4-dimensional matrix
of hs×ws×ht×wt with weights ΘQ

h and ΘK
h as work [3, 11]

using a pair of features with [cls] token removed. We show
the formula of similarity matrix generation as:

Ca,b =
1

H

∑
h

Softmax

(
(F a

s Θ
Q
h )(F

b
t Θ

K
h )T√

c

)
, (3)

where H is a number of heads. The scale of F 1 is 1
16 of the

original resolution, and the scale of F 4 is 1
8 of the original

resolution, which makes F 4 twice the resolution of F 1. We
record {a, b} as 1 for the feature F 1, and as 2 for F 4. This
resulted in corss-scaled similarity matrices at four resolu-
tions: C1,1: 1

16×
1
16 , C1,2: 1

16×
1
8 , C2,1: 18×

1
16 , and C2,2: 18×

1
8 .

3.3. Multi-scale Matching Flow Integration

With the multi-scaled similarity matrices provided by the
PFSR module, the next step of our LPMFlow is to fuse
these matrices and generate correspondence in higher res-
olution such as 1

2 . To avoid the O(n2) space complexity
associated with direct optimization using the similarity ma-
trix, we follow work [38, 40] to represent and refine the
correlation with semantic flow ∆s 7→t. For this purpose, we
define the Multi-scale Matching Flow Integration (MMFI)
module composed of the procedure of multi-scale semantic
flow calculation and the matching flow refinement block.

Calculation of Multi-scaled Flows: We first up-scale
{Ca,b} to the scale as C2,2. For each source patch, index of
the best corresponding target patch can be found by apply-
ing argmax function over ht×wt dimension of Ca,b. How-
ever, this non-differentiable operation prohibited us from
adopting it for our end-to-end pipeline. Thus, we adopt soft-
argmax [18] to generate flows from C as follows:

∆x(i, j) =
∑
m,n

eτC(i,j,m,n)∑
s,t e

τC(i,j,s,t) (i−m)

∆y(i, j) =
∑
m,n

eτC(i,j,m,n)∑
s,t e

τC(i,j,s,t) (j − n)

(4)

where ∆x and ∆y are the offset value of hs 7→ ht and ws 7→
wt mappings. We concatenate the {∆x,∆y} and generate
the initial semantic flow ∆c|s7→t.

Matching Flow Refinement Block: In order to gener-
ate the fine-grained correspondence in 1

2 scale for further
refinement, we propose the Matching Flow Refinement
Block. In this structure, cross-scale flows {∆a,b

c|s7→t} and
source token features after channel projection with [cls] to-
ken removed are used for this block. For all the inputs, we
use bilinear interpolation to up-sample them to 1

2 scale and
concatenate them as Z1. In order to make full use of the
matching consistency within different neighborhood ranges,
we design a coarse-to-fine fusion structure based on swin-
attention block [23] for flow refinement as follows:

Zi+1 = SwinAttni(LN(Zi)) + Zi | i ∈ {1, 2, 3}
Υd|s 7→t = Conv3×3(Z

1 + Z2 + Z3 + Z4),
(5)

where SwinAttni(.) stands for three swin-attention blocks
with window size as 16×16, 8×8 and 4×4, Conv3×3(.)
stands for 3×3 convolution layer to fuse embeddings from
all the grains and provide dense offset Υd|s7→t. We use the
above offset Υd|s 7→t to refine upscaled flow and obtain the
dense correspondence ∆d|s7→t in scale of 1

2×
1
2 .

3.4. Training

We follow the work [3, 11, 38] to convert the sparse ground
truth key point pairs Mgt into pseudo semantic flow to su-
pervise the training of our method. For the visible regions
controlled by a mask Ss as that in [38], except for the
patches corresponding to the ground truth keypoints, flow
values of other patches are impacted by all the ground truth
key points in a 35×35 receptive field. We resize the match-
ing flow to the scale of 1

2×
1
2 identical to the output of LPM-

Flow and generate ∆gt|s 7→t. Then our learning goal is to
refine the parameter Φ to minimize the endpoint error [40]
loss function Lflow as follows:

Lflow =
1

N

D∑
(Is,It)

ϑs ∥Φ (Is, It)−∆gt (I
s, It)∥2

|ϑs|
, (6)

where |ϑs| is the visible patches, N is the number of sam-
ples in training set D, ϑs and ∆gt(.) are the matching flows
generated by Mgt. Combined with the loss Lfeat for rep-
resentation learning, we set our training loss L as the sum
of Lfeat and λLflow.

4. Experiment
Datasets. Several semantic matching datasets, namely
SPair-71K [26], PF-PASCAL, and PF-WILLOW [8], are
selected for our experiment. We use SPair-71K and PF-
PASCAL for the evaluation of performance. The model
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Table 1. Quantitative results on benchmarks. Higher PCK is better. The best results are in bold, and second-best results are underlined.
∗: Method with iBOT backbone (others using ResNet-101 as backbone). Multi Scale: whether to employ multi-scale refinement. Corr
Format: Format of output correspondence. 4D Mtrx is 4D similarity matrix and TransMatcher is TransforMatcher [16] for short.

Method

Description Performance Generalizability Efficiency

Multi Scale Corr Format
Spair-71K PF-PASCAL PF-WILLOW TITAN RTX: 24GB
α: bbox α: img α: bbox α: bkp Params(M) Mem Time

0.05 0.1 0.05 0.1 0.15 0.1 0.1 Head Total (GB) (ms)

NC-Net[32] ✗ 4D Mtrx - 20.1 54.3 78.9 86.0 - 67.0 0.2 27.6 1.2 222.9
SCOT[21] ✗ 4D Mtrx 20.0 35.6 63.1 85.4 92.7 - 76.0 - 44.5 4.6 133.5
DHPF[27] ✓ 4D Mtrx - 37.3 75.7 90.7 95.0 77.6 71.0 5.8 50.3 1.6 58.2
CHM[25] ✗ 4D Mtrx 22.7 46.3 80.1 91.6 94.9 79.4 69.6 7.1 94.1 1.7 55.3
CATs[3] ✓ 2D Flow 27.7 49.9 75.4 92.6 96.4 79.2 69.0 4.7 49.2 2.0 45.4
MMNet-FCN[48] ✓ 4D Mtrx 33.3 50.4 81.1 91.6 95.9 - - 10.3 64.7 5.4 258.6
TransMatcher[16] ✓ 4D Mtrx - 53.7 80.8 91.8 - 65.3 76.0 0.9 87.9 2.7 54.2

CATs∗ [3] ✓ 2D Flow 30.7 55.2 77.8 93.1 96.8 86.3 79.5 5.7 90.7 2.8 54.2
TransMatcher∗ [16] ✓ 4D Mtrx 33.1 57.9 77.3 93.3 96.6 84.3 78.3 1.6 86.6 2.4 48.5
ACTR∗ [38] ✗ 2D Flow 42.0 62.1 81.2 94.0 97.0 87.2 79.9 87.8 172.8 3.9 84.1
LPMFlow∗ ✓ 2D Flow 46.7 65.6 82.4 94.3 97.2 87.6 81.0 93.9 178.9 3.8 85.7

trained on PF-PASCAL is evaluated with PF-WILLOW
to assess the generalizability of our method. Regarding
quantitative statistics, SPair-71K contains 53,340 training,
5,384 validation, and 12,234 testing image pairs in 18 cat-
egories. This dataset often includes challenging cases such
as scale differences, occlusion, and truncation. According
to work [48], we partition PF-PASCAL [8] into splits of
700, 300, and 300 pairs as training, validation, and testing
sets, respectively. All 900 image pairs from 10 classes of
PF-WILLOW [8] are used to test generalizability.

Evaluation Metric. We use the percentage of correct key
points within an acceptance threshold α (PCK@α) [3, 21]
to evaluate performance. In this metric, a maximum match-
ing range d is introduced for the circular acceptance area
with a radius of α×d. A predicted key point falling into this
area is considered correctly matched. For PF-PASCAL, d
is the longer side of an image, and we denote the metric
as αimg . For SPair-71K and PF-WILLOW, d is the longer
side of the object bounding box, denoted as αbbox. In PF-
WILLOW, the maximum distance of annotated key points
is also used as d, with the metric noted as αbkp.

Implementation Details. Our model employs ViT-B/16,
pretrained using the iBOT [49] method on ImageNet-1K [6]
as the backbone. The LARL module contains 6 transformer
blocks, randomly utilizing 25% foreground tokens (K=64)
for the RPTC task, with an initial guidance intensity λ of 0.2
and decreasing gradually at a rate of 10% until λ=0. In the
PFSR module, we set the FSR block window size to 4×4
with two cascaded attention layers in each block. For the
MMFI module, swin attention is dimensioned at 96 with 8
heads. Training is conducted with a 256×256 input resolu-
tion, utilizing the AdamW optimizer with a weight decay of

Figure 4. The polyline of PCK@α for our method and previous
works on SPair-71K [26] in multiple α. Our method outperforms
other methods especially with smaller error thresholds (smaller α).

0.05. The learning rates for the backbone and subsequent
structures are set at 4e-5 and 3e-6 for both SPair-71K [26]
and PF-PASCAL [8], to ensure a balance between detailed
feature learning and optimizing non-pretrained structures.
We implement the model with PyTorch [12] and train on
one NVidia TITAN RTX GPU. The batch size is set to 8,
and training converged within 12 and 50 epochs for SPair-
71K [26] and PF-PASCAL [8].

4.1. Comparison with State-of-The-Art

Performance Comparison. This study presents a com-
parison between our approach and the latest state-of-the-
art (SOTA) on the SPair-71K [26] and PF-PASCAL [8]
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Table 2. Ablations on designed modules.

LARL PFSR MMFI SPair-71K
αbbox = 0.1

✓ ✓ ✓ 65.6
✗ ✓ ✓ 63.2 (2.4↓)
✓ ✗ ✓ 62.0 (3.6↓)
✓ ✓ ✗ 63.9 (1.7↓)

Table 3. Ablations on components in LARL module.

Methods SPair-71K
αbbox = 0.1

LPMFlow 65.6
w/o Gradual Guidance of RPTC 64.5 (1.1↓)
w/o Self Contrastive Loss 63.9 (1.7↓)
w/o Region-based PE 64.8 (0.8↓)

Table 4. Ablations on components in PFSR module.

Methods SPair-71K
αbbox = 0.1

LPMFlow 65.6
w/o Interactive Super-Resolution 64.1 (1.5↓)
w/o Internal Super-Resolution 63.8 (1.8↓)
w/o Feature Super-Resolution block 63.4 (2.2↓)

Table 5. Ablations on components in MMFI module.

Methods SPair-71K
αbbox = 0.1

LPMFlow 65.6
w/o Multi-Scale Flow Integration 64.3 (1.3↓)
w/o C2F Refinement (16×16) 64.6 (1.0↓)
w/o C2F Refinement (4×4) 64.0 (1.6↓)

datasets, detailed in Table 1. The evaluation first catego-
rizes the methods based on the usage of multi-scale refine-
ment and the format to represent correspondence. To ensure
an equitable comparison, we further differentiate the meth-
ods based on their backbone frameworks, such as ResNet-
101 [9] and iBOT [49]. Our approach demonstrates signif-
icant improvements over previous state-of-the-art methods,
achieving an accuracy of 65.6% using the PCK metric on
SPair-71K at the α:0.1 threshold, which is 3.5% higher than
the second best method. This advantage extends to 4.7%
under the more stringent α:0.05 threshold. A similar im-
provement trend is observed on the PF-PASCAL dataset at
α:0.05, with a 1.2% enhancement.

These results underscore the enhanced precision and de-
tail of our proposed LPMFlow in matching, particularly in
more challenging scenarios. To further substantiate this
claim, we present additional comparisons across a range of
diverse reception thresholds in Figure 4. Moreover, when
comparing methods that originally used the ResNet-101
backbone and switched to the iBOT-B backbone, our ap-
proach still shows superior performance, leading by at least
7.7% at the α:0.1 threshold. This demonstrates the effec-
tiveness of our method in achieving accurate correspon-
dences with equivalent image feature quality.

Analysis of Efficiency and Generalizability. We also
provide a comparison of generalizability and efficiency in
Table 1. For generalization ability, we evaluate LPM-
Flow and state-of-the-arts on PF-WILLOW trained on PF-
PASCAL [8]. The results for both metric PCK@αbbox:0.1
and PCK@αbbkp:0.1 have proved the better generalizabil-
ity of LPMFlow. For the more strict PCK@αbbkp = 0.1
metric, our method also shows more significant improve-
ment as 1.1%. We also compare the efficiency in Table 1
which shows our method has comparable computation cost
with previous full transformer pipelines such as ACTR [38].

(a) Output resolution after PFSR & MMFI (b) Rate of Token Replacement

Figure 5. Ablations on the hyper-parameters:(a) performance of
our method with output resolution of PFSR from 16 to 64 and res-
olution of MMFI from 16 to 256; (b) performance of our method
with different rates of token selected for replacement and recovery.

Besides, Our LPMFlow can provide more fine-grained cor-
respondence with obvious performance improvement.

4.2. Ablation Study and Analysis

Ablation on Designed Modules. We conduct several ex-
periments to validate the effectiveness of the three modules
in Table 2. We set the ablation models as the models re-
placing the designed components with basic structures pre-
served. The performance of the method without LARL de-
clined by 2.4%, without PFSR declined by 3.6%, and with-
out MMFI declined by 1.7%. This result is mutually con-
firmed with the visualization comparison in Figure 3 as the
designed modules can handle three proposed challenges for
semantic correspondence and contribute to the detailed op-
timization of matching results in higher resolution.

Ablation on Designed Components. We also prove the ef-
fectiveness of inside components of three modules in Ta-
ble 3, 4 and 5. For three components of LARL, when
we remove the design of gradual guidance of RPTC (using
the consistent λ=0.2), designed self-contrastive loss and the
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SCOT CATs MMNet ACTR LPMFlow(ours) Groundtruth
Figure 6. Visualization of matching result. The upper image is the source image and below image is the target image, and crosses are the
ground truth labels. We compared the results of SCOT [21], CATs [11], MMNet [48], ACTR [38] and our LPMFlow.

Region-based PE performance dropped for 1.1%, 1.7% and
0.8%. We also evaluate the performance when removing
the interactive/internal super-resolution, design of feature
super-resolution block (replaced with bilinear interpolation)
for PFSR and multi-scale flow fusion, coarse-to-fine flow
refinement structure (using constant 16×16 and 4×4 win-
dow size) for MMFI. Performance of all these components
also dropped by 1.0%-2.2%. This proves all these designs
contribute to the performance of LPMFlow.

Ablation on Hyper-Parameters. We also prove the effec-
tiveness of hyper-parameters as resolution magnification in
feature level (PFSR) and flow level (MMFI) as well as the
rate of token replacement in Figure 5. For resolution mag-
nification, 2 times up-scaling for PFSR module and 4 times
for MMFI module can provide the best result. The perfor-
mance decline for output flows in original 256×256 reso-
lution is attributed to the sparse annotations for correspon-
dence supervision. We obverse that a token replacement
rate of 0.25 in the RPTC task is highly effective in promot-
ing the learning of distinct representations among tokens.

Qualitative Results and Visual Analysis. In order to pro-
vide an intuitive comparison of our method and SOTAs,
we visualize the matching result in both sparse and dense
format. We visualize the linked predicted key point pairs
compared with SCOT [21], CATs [3], and MMNet [48] and
ACTR [38] in Figure 6. The labeled crosses are the ground-
truth matching pairs. The given image pair contains sev-
eral issues as perspective distortion, inconsistent directions,
large differences in posture, and large differences in color
and texture, making it challenging to semantic correspon-
dence methods. In this condition, our LPMFlow can still
provide accurate matching details. We attribute this to our
better representation of consistent relations and the more
accurate correspondence decoding. We also provide dense

warping results in Figure 1 as an overview of matching. The
result shows that our LPMFlow can better overcome the oc-
clusion, appearance variation, and perspective distortion.

5. Conclusions and Limitations
In this work, we introduce LPMFlow, a novel pipeline
that achieves high-resolution, fine-grained correspondence.
This is accomplished by addressing three core challenges:
1) We mitigate confusion caused by similar object re-
gions through a layout-aware representation learning mod-
ule, bolstered by our designed global semantic replacement-
restoration task. 2) We address the scale inconsistency for
instances in image pairs with a progressive feature super-
resolution module that enhances multi-scale correlation.
3) We tackle weak discriminability among neighborhoods
with a multi-scale matching flow integration module that
combines cross-scale flows, enabling us to refine the high-
resolution flow with precise offsets. Our experimental re-
sults demonstrate that LPMFlow surpasses existing meth-
ods, particularly in fine-grained metrics. Ablation studies
and detailed visualizations further validate the effectiveness
of our approach in resolving key challenges and producing
accurate correspondence across detailed regions. We list the
limitations of our method as heavy usage of [CLS] token,
sparse key points annotation, and not fit for multi-instance
correspondence tasks as that defined in work [37].
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