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Abstract

State-of-the-art single-view 360◦ room layout recon-
struction methods formulate the problem as a high-level
1D (per-column) regression task. On the other hand, tradi-
tional low-level 2D layout segmentation is simpler to learn
and can represent occluded regions, but it requires complex
post-processing for the targeting layout polygon and sacri-
fices accuracy. We present Seg2Reg to render 1D layout
depth regression from the 2D segmentation map in a dif-
ferentiable and occlusion-aware way, marrying the merits
of both sides. Specifically, our model predicts floor-plan
density for the input equirectangular 360◦ image. Formu-
lating the 2D layout representation as a density field en-
ables us to employ ‘flattened’ volume rendering to form
1D layout depth regression. In addition, we propose a
novel 3D warping augmentation on layout to improve gen-
eralization. Finally, we re-implement recent room layout
reconstruction methods into our codebase for benchmark-
ing and explore modern backbones and training techniques
to serve as the strong baseline. The code is at https:
//PanoLayoutStudio.github.io .

1. Introduction

Room layout estimation is one of the fundamental vision
problems toward scene understanding. The goal is to re-
construct the outermost room structure, usually compris-
ing the floor, ceiling, walls, and sometimes columns and
beams. Room layout is crucial in various indoor tasks, such
as holistic 3D reconstruction [22, 45, 47, 49], image synthe-
sis [10, 41], floor-plan estimation [4, 33], and extreme base-
line SfM [14, 32]. Automatic layout annotation for panora-
mas is also a sought-after feature in real estate portals.

Traditional deep-learning methods view room-layout es-
timation as semantic segmentation tasks for perspective im-
ages [15, 21, 50] or panoramas [31, 43, 52, 53]. The down-
side of previous segmentation-based methods is that they
need heuristic post-processing steps, which introduce errors
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Figure 1. Regression methods directly predict layout geome-
try. A powerful 2D-to-1D decoder is essential to capture high-
level cues within an image column. The regressed layout per-
tains solely to the visible region from the camera origin (dubbed
primary-view layout). Segmentation methods predict lower-level
per-pixel probabilities of layout facades, corners, and boundaries.
While capable of modeling occluded regions, they require a non-
differentiable post-heuristic to convert segmentation to layout ge-
ometry. Our proposed Seg2Reg aims to synergize the strengths
of both. We re-formulate 2D layout representation as 2D density
field via projecting pixels onto the floor or ceiling. We use the
classical volume rendering technique to render depth on the den-
sity map, which is differentiable and occlusion-aware. The 1D
depth maps rendered from the primary view and the sampled sec-
ondary views directly outline the layout polygons.

and gaps between the training objective and the targeted
layout outcomes. Recent advancements in 360◦ room-
layout estimation involve training deep models to regress
the boundary [34, 35] or distance to layout wall [18, 37] for
each image column (i.e., 1D regression). The regressed ge-
ometry information can then be directly projected onto the
floor to form a layout floor-plan polygon. Despite achieving
state-of-the-art accuracy, regression-based methods require
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a robust and large decoder to learn to capture global-scale
information. Moreover, these methods still rely on post-
processing heuristics to infer occluded regions.

Our method, Seg2Reg, enables the differentiable ren-
dering of 1D layout depth (i.e., distance to wall) to form
floor-plan polygon from 2D segmentation-based represen-
tation on a 360◦ image (Fig. 1). The key insight is to re-
formulate the 2D layout representation as 2D floor-plan
density field, allowing us to employ the classical volume
rendering technique [19, 26], which has recently gained
great success in 3D NeRF [27] modeling, to compute geom-
etry information in a soft and differentiable manner. Like
NeRF, our method involves volume rendering of rays, but
in our case, the ‘ray’ trajectory is on the predicted 2D den-
sity logit map rather than in 3D space, and the ray should
be bent as per the 360◦ imaging.

Notably, we show that it is crucial to train our
segmentation-based representation with the regression ob-
jective, which aligns more directly with our intended task
goals. Solely training with the segmentation objective
results in lower accuracy, suggesting that our Seg2Reg
is the missing piece in earlier segmentation-based meth-
ods [31, 43, 52, 53] to achieve state-of-the-art performance.
Beyond the visible layout, the volume rendering algorithm
and our predicted density map are occlusion-aware, so we
can also directly render the floor-plan polygon vertices for
the occluded region.

Our codebase, dubbed PanoLayoutStudio, implements
various modern backbones and training techniques. Addi-
tionally, we extend the widely-used PanoStretch [34] data
augmentation to allow for more flexible random adjust-
ments on layout corners. Finally, we reproduce most of
the recent methods in our codebase, establishing a stronger
baseline for fair comparisons and providing a resource for
future works to reuse or recombine various components.

In summary, our contributions are as follows: i) The
proposed Seg2Reg differentiably renders 1D regression
from 2D segmentation, marrying the merits of both formu-
lations and resulting in a smaller yet stronger model. ii)
Our method directly estimates occluded layouts without re-
lying on heuristic post-processing. iii) We introduce a new
data-augmentation scheme that allows for flexible layout
3D adjustments. iv) We make a system-level contribution
by modernizing the backbones and the training recipes for
layout estimation and reproducing previous methods in our
codebase—PanoLayoutStudio, which boosts all methods
and eases future efforts with reusable modules.

2. Related work
Panorama layout estimation. Early layout estimation
takes perspective images as input [15, 21, 50], while recent
approaches increasingly focus on panoramic images and of-
ten rely on predicting distinct scene structures, such as ceil-

ing, floor boundaries, or wall corners [8, 34, 35, 49, 52, 53].
LayoutNet [52] is the first to predict boundaries and corners
on a single panoramic image using deep neural networks.

HorizonNet [34] is the pioneering method to reformu-
late this task as a per-column regression problem, utilizing a
powerful deep model to regress boundary positions instead
of the conventional low-level heatmap layout encoding.
Succeeding enhancements are made from both the model
architecture [35] and the layout representation [37]. LGT-
Net [18] takes a step further by employing a transformer-
based architecture with an improved layout formulation,
which consists of layout depth and layout height, ultimately
achieving state-of-the-art quality.

Since LayoutNet [52], segmentation-based works also
seek to boost quality by improving layout encoding [43]
and network architecture [31, 53]. In contrast to regression-
based methods, where model predictions can be directly
projected into 3D, segmentation-based methods heavily de-
pend on post-heuristic to convert heatmap predictions into
layout geometry. We find that the disconnection between
the training objective and the final outcome is a bottleneck
in achieving superior results, and we propose to reformu-
late the probability heatmap as a 2D density field so that
we can employ differentiable rendering for the geometric
regression properties as well.

Neural radiance field. NeRF [27] is the de facto method
for multiview 3D reconstruction research in recent years.
It combines MLP and volume rendering [19, 26] to model
the density field and color field of a scene. Subsequent
works [3, 9, 28, 36] show that MLP is not necessary while
some grid-based representations can also work well. In-
spired by their success, we train an ultra-light model to
predict a low-level 2D density field and leverage volume
rendering to accumulate density into high-level geometric
properties, forming 2D polygons directly and differentiably.

Data augmentation. The progress of data augmenta-
tions for perspective images [5–7, 12, 23, 46, 48, 51]
is rapid in recent years as it plays a crucial role in
achieving better results. Among these augmentations,
geometric-based data augmentation is found to be espe-
cially beneficial [6]. Unfortunately, geometric-based data
augmentation for 360◦ layout estimation is rather limited.
PanoStretch [34] randomly adjusts layout aspect ratio.
PanoMixSwap [13] uses a generative model to mix fur-
niture, backgrounds, and layout structures from different
360◦ images, which is, however, time-consuming. The
challenge is that existing geometric augmentation, such as
image y-translation, breaks the underlying ground-truth lay-
out sanity, which makes them inapplicable. We present a
principled solution to perform geometric data augmentation
for 360◦ layout, enabling the generation of a more diverse
data distribution beyond existing techniques.
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3. Approach

The input is a 360◦ panoramic image I ∈ RH×W×3 un-
der equirectangular projection. The target room layout can
be represented by a sequence of 2D coordinates {v∗

i }Ki=1,
which forms a K-edge polygon outlining the floor plan,
with a scalar h∗ for the layout height. To fix the scale am-
biguity, we follow the literature to rescale the camera-to-
floor distance to 1.6 meters. In Sec. 3.1, we introduce our
novel layout representation and floor-plan polygon render-
ing. Sec. 3.2 details our model design. Sec. 3.3 presents
a new principle to perform geometric augmentation for
360◦ layout tasks. Finally, Sec. 3.4 presents our codebase.

3.1. Seg2Reg

Our layout representation is a pixel-level density logit map
D̃ ∈ RH×W×1. We can use Softplus to convert the density
logit into non-negative density:

D = log
(
1 + exp

(
D̃
))

. (1)

When projected to the floor or ceiling, the density Dq indi-
cates a pixel q is ‘outside’ (i.e., high density) or ‘inside’
(i.e., low density) to the room layout. Unlike segment-
ing layout walls, the density map needs to ‘see through’
walls that might be blocking the view for an ‘inside’ region
(Fig. 2).

Overview. We set the floor plane position at z(floor)=1.6
and a temporary ceiling plane position at z(ceiling)=−1 (we
use z-down positive world coordinate system). The upper-
and bottom-half of D (i.e., first and last H

2 image rows) es-
timate the density on the ceiling and floor planes, respec-
tively. In the following, we introduce our algorithm to ren-
der the 2D layout polygon on the floor plane. The same al-
gorithm can be applied to render the ceiling-projected poly-
gon. Following standard practice [34, 35, 37], we take the
polygon on the floor as the main 2D layout outline, while
the ceiling polygon is only used to infer the layout height h.

‘Flattened’ volume rendering on the 2D floor plan. We
illustrate the rendering of a ray in Fig. 3. Given a camera
position ro and a unit vector of the ray direction rd on the
2D layout of the floor plan, we want to render the expected
distance d to the layout exterior based on the estimated D̃.
We first sample a series of K points on the ray, denoted
by {ro + tird}Ki=1, ordered from nearest to farthest. The
opacity αi ∈ [0, 1] of the i-th sampled point is

αi = 1− exp (−ρi∆i) , (2a)
ρi = Softplus(ρ̃i) , (2b)

ρ̃i = Interp
(
ui, D̃

)
, (2c)

ui = EqProj
([

ro + tird, z
(floor)

])
, (2d)

Input (a) Layout wall (b) Density logit

Input (a) Layout wall (b) Density logit

Figure 2. Layout wall vs. our density logit. (a) Layout wall
segmentation delineates the room layout in the image space. (b)
We train the model to predict a pixel density map when projected
to the floor or ceiling planes. The density map enables us to render
depth in a soft and differentiable way (Sec. 3.1).

ro
ro + tird EqProj (Eq. (2d))

Eq. (2)
αiα

T

Alpha blending (Eq. (3)) for layout depth

Figure 3. Visualization of the ‘flattened’ volume rendering
from a given ray. Please refer to Sec. 3.1 for the details.

where EqProj(·) projects the 3D point to equirectangu-
lar image coordinate u, Interp(u, D̃) bilinearly interpolates
the density ρ of point u on D̃, and ∆i is the spherical dis-
tance of the i-th ray segment projected to a unit sphere.
Please refer to the supplementary for the details of the coor-
dinate system and transformation in this work. We apply the
Softplus activation after the interpolation (post-activation)
for sharper decision boundary [36]. Finally, the distance to
layout boundary d is computed by alpha blending:

d =
∑K

i=1
Tiαiti ,where Ti =

∏i−1

j=1
(1− αj) . (3)

The differentiable term (Tiαi) is the probability of the ray
stopping at point (ro + tird). Hereinafter, we use

Hit(ro, rd)=ro + drd (4)

to denote the expected ray-polygon intersection by render-
ing depth. The dependent density logit map D̃ and the plane
position z of the function are omitted for brevity.

Primary layout polygon. With the flattened volume ren-
dering algorithm, we can now directly render an M -edge
polygon from a given camera center ro:

RendPolyM (ro) =
{
Hit

(
ro, r

(M)
d [i]

)}M

i=1
, (5)

where r
(M)
d is a set of M unit-vectors uniformly spacing

around a circle. We synthesize a W -edge primary polygon
by placing a camera at (0, 0):{

v
(primary)
i

}W

i=1
= RendPolyW ((0, 0)) , (6)
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so the distance to each of the W vertices corresponds to the
layout depth of the source image column. In case of no self-
occlusion, the rendered primary layout polygon is capable
of representing the whole room. We illustrate the layout
polygon rendering in Fig. 4.

Secondary layout polygons. To inference the occlusion
region, we sample additional cameras r′o from the ‘inside’
region to render a set of N (secondary) layout polygons

{RendPolyW (r′o[i])}N
(secondary)

i=1 . (7)

The inside region is determined from the primary layout
polygon during testing, while we sample from the ground-
truth inside region during training. We can compute the
union over polygons to merge the secondary polygons into
the primary ones. We also implement a rendering noise (due
to numerical integration) robust algorithm based on mini-
mum spanning tree and tree diameter, which is detailed in
the supplementary material.

Layout height inference. The value of z(floor) is fixed,
so we only have to estimate the ceiling plane’s z position.
First, the ceiling polygon {v(ceiling)}Wi=1 is rendered in the
same way as the floor in Eq. (6) but on the temporary ceiling
plane position z(ceiling) instead. We then find the scale

s∗ = min
s

W∑
i=1

(∥∥∥v(primary)
i

∥∥∥− s
∥∥∥v(ceiling)

i

∥∥∥)2

(8)

that aligns the ceiling polygon to the primary floor polygon.
The formula of the layout height by solving least-squares is

h = z(floor) − z(ceiling)

∑W
i=1

∥∥∥v(primary)
i

∥∥∥∥∥∥v(ceiling)
i

∥∥∥∑W
i=1

∥∥∥v(ceiling)
i

∥∥∥2 .

(9)

Relation to binary segmentation. We can merge the
Eqs. (2a) and (2b) as

α = 1− exp (−Softplus(ρ̃)∆)

= 1− exp (− log (1 + exp (ρ̃))∆)

= 1− (1 + exp (ρ̃))
−∆

= 1− Sigmoid (−ρ̃)
∆

,

(10)

where the subscripts are omitted for brevity. The spherical
distance of a pixel height on the equirectangular image is
π
H . We re-scale ∆ by H

π so the opacity of a vertical ray
segment centered at a pixel q can be simplified to

αq = 1− Sigmoid
(
−D̃q

)
= Sigmoid

(
D̃q

)
. (11)

We can see that the predicted density logit map D̃ can be
reduced to the binary segmentation logit if we do not apply
rendering, which enables us to apply segmentation loss as a
training auxiliary.

⋯

      Primary Eq6 Secondary Eq7Eq. (6) Eq. (7)
RendPoly ((0, 0)) RendPoly

(
r′o[1]

)
RendPoly

(
r′o[N ]

)

Figure 4. Primary and secondary layout polygons rendering.
Our model predicts the density logit (Eq. (1)). Given a camera po-
sition ro on the floor plan, we employ ‘flattened’ volume render-
ing (Eqs. (2) and (3)) to render a layout polygon, RendPoly (ro),
based on the predicted density logit map.

Training objective. For each ray to render the primary
and secondary layout polygons, we also compute their
depth to the ground-truth polygon. Minimizing the dif-
ference between the rendered and ground-truth depth di-
rectly introduces ambiguity, as there exists an infinite num-
ber of weight distributions in the alpha blending (Eq. (3))
that can yield the same result. Instead, we derive a compact
weight distribution w∗ that renders the ground-truth depth
with only the two nearest points having weight (detailed in
the supplementary). We directly guide the alpha blending
weight distribution of a ray in Eq. (3) via cross-entropy loss:

−w∗
K+1 log (TK+1)−

∑K

i=1
w∗

i log (Tiαi) . (12)

We apply the cross-entropy loss to the rendered primary and
secondary layouts, and the losses are denoted as L(pri.) and
L(2nd), respectively. The cross-entropy loss for the alpha
blending weight mainly focuses on the inside and boundary
regions. To prevent random results in the far exterior re-
gion, we also apply binary segmentation loss L(seg.) to the
predicted density logit. Our final training objective is

L = w1 L(pri.) + w2 L(2nd) + w3 L(seg.) . (13)

3.2. Network architecture

We first detail our network architecture for predicting the
density logit map and then compare our approach with
closely related work.

Backbone. The backbone predicts a feature pyramid in
four levels for the input image:

{Fi ∈ RHi×Wi×Ci}4i=1 = Enc(I) , (14)

where Hi=
H

2i+1 , Wi=
W

2i+1 , and Ci is the backbone’s chan-
nel dimension.

Segmentation-based 2D decoder. We adopt an all-MLP
decoder design [40] to predict density logit map:

F̂i = Upsample(H,W ) (LinearCi→D(Fi)) , (15a)

D̃ = LinearD→1

(
GELU

(∑4

i=1
F̂i

))
, (15b)
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where LinearCi→Co(·) is a linear layer mapping the number
of latent channels from Ci to Co, and Upsample(H,W )(·)
bilinearly interpolates the spatial size to (H,W ).

Discussions about top-down view models. Our
Seg2Reg can also be applied to top-down view (i.e., ceil-
ing view, floor-plan view, or bird’s-eye view) segmentation-
based models [31, 43]. However, we find it hard to choose
an appropriate perspective field-of-view as small FoVs miss
farther walls while large FoVs limit the space for closer
regions. We mainly follow recent state-of-the-art to use
equirectangular view and leave our method’s application to
perspective view for potential future explorations.

3.3. Layout 3D warping

A recent finding [6] suggests that geometric transforma-
tions are especially helpful in improving model generaliz-
ability among various data augmentations. Unfortunately,
many commonly used perspective image transformations
do not apply to 360◦ layout estimation. For instance, when
we apply image y-translation (Fig. 5’s (b)), the projected
polygons of ceiling and floor boundaries get distorted and
do not match in shape, while we rely on their alignment
scaling factor to compute the ground-truth layout height.
This prompts us to design a principled way to perform
geometric-based augmentations for 360◦ room layout.

Our core concept is simple—applying geometric trans-
formations in 3D space rather than on 2D images. We di-
rectly transform the ground-truth polygon and layout height
and use backward warping to form the augmented view:

I ′ = LayoutWarp
(
I, {vi}Ki=1, h,Tv,Th

)
, (16)

where Tv transforms a polygon coordinate from source
to destination and Th transforms layout height. Exist-
ing 360◦ geometric augmentations—left-right flip, circu-
lar shifting, and PanoStretch [34]—can all be realized via
LayoutWarp. We can also produce more diverse augmen-
tations by crafting the transformation function Tv and Th.
For instance, we can adjust camera height or randomly per-
turb the polygon vertices (Fig. 5’s (c) & (d)) which is be-
yond what existing 360◦ data augmentations can achieve.
Please refer to the supplementary for the implementation
detail of the backward warping and more visualizations.

3.4. Pano layout studio

Our codebase, PanoLayoutStudio, decomposes a layout-
estimation system into different aspects—training recipes,
backbones, decoders, and post-processing—each with mod-
ular design to facilitate future reuse and recombination.

Training recipes. Stochastic weight averaging [16] is im-
plemented, which stabilizes our training. We also adopt
RandAug [6], a commonly used data augmentation for
modern backbone models, and observe improved results.

(d) Rand. perturb.(a) Original (c) Cam. height(b) Img y-trans.

Figure 5. Visualization of layout warping. (b) Some commonly
used geometric data augmentations, like image y-translation, lead
to a misalignment between the floor-plan outline of the ceiling and
floor, causing ground-truth layout height to be ill-defined. (c) &
(d) Our LayoutWarp (Eq. (16)) enhances data diversity beyond
existing arts while preserving the sanity of the ground-truth layout.

We remove all geometric data augmentations from Ran-
dAug, as they are inapplicable to the 360 layout task. In-
stead, we use the proposed LayoutWarp (Sec. 3.3) as our
geometric data augmentation.

Backbones. In addition to the commonly used
ResNet [11], we also benchmark several modern backbones
for this task—HRNet [38], SwinTransformer [24], and
ConvNeXt [25].

Decoders. In addition to our segmentation-based 2D de-
coder, we also implement recent regression-based 1D de-
coder baselines, which formulate the task as a per-column
regression problem. The per-column regressed values can
then be directly projected to the floor to form a W -edge
polygon. We reproduce the 1D decoders from Horizon-
Net [34], HoHoNet [35], LED2Net [37], and LGTNet [18]
into our codebase. We also tune these models with the new
backbones and training recipes to establish a stronger base-
line. We couple the training losses with the decoders, as
many losses are specific to layout representations. Please
refer to the supplementary for more details.

Post-processing. The estimated layout polygons typically
contain more edges than the ground truth, which can be
simplified by polygon simplification heuristics [18, 34, 43],
which are also implemented in our codebase.

4. Experiments
We conduct extensive experiments to demonstrate the ad-
vantages of the proposed Seg2Reg, the effectiveness of our
data augmentations, and the merit of using our PanoLay-
outStudio codebase.

4.1. Evaluation protocol

We use the standard layout intersection over union (IoU)
as the evaluation metric, with 2D IoU assessing the preci-
sion of the reconstructed layout floor plan and 3D IoU con-
sidering both layout floor plan and layout height accuracy.
We consider polygon simplification a decoupled task, so we
mainly focus on the raw predicted geometry quality without
applying post polygon simplification. The post-processing
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may cause the numeral results to drift slightly, which is de-
tailed in the supplementary. We find the variance of run-
to-run results with different random seeds could be large,
so we report the median results of four different training
seeds instead. We evaluate and compare our methods on
four datasets, which are introduced in the following.

MatterportLayout dataset. Zou et al. [53] annotates
ground-truth layout for a subset of the Matterport3D [2]
dataset, comprising 1,647/190/458 labeled images for train-
ing, validation, and testing, respectively. The captured
rooms feature heavy object occlusion, and all the labeled
layouts adhere to the Manhattan-world assumption.

Zillow Indoor dataset. ZInd [4] is the largest real-world
dataset for 360◦ layout estimation. We follow Jiang et
al. [18]’s setup to use the filtered ‘simple’ and ‘raw’ annota-
tion subsets for all our experiments, and the train/valid/test
split consisting of 24,882/3,081/3,170 images, respectively.
The rooms are mostly unfurnished but cover more diverse
layout topology, including non-Manhattan layouts.

PanoContext and Stanford2D3D datasets. PanoCon-
text [49] and Stanford2D3D [1] are two small-scale datasets
with only 514 and 552 images. We follow Zou et al. [53]’s
and Jiang et al. [18]’s setup to combine all data from
the other dataset when training on one of the datasets.
PanoContext is captured in the living environment, while
Stanford2D3D is captured in the office rooms. Both
datasets only contain cuboid layout annotations.

4.2. Implementation details

We adopt the training schedule of LGT-Net [18], where
Adam [20] optimizer with learning rate 1e−4 is employed.
Models are trained for 1,000 epochs for all datasets, except
for the largest ZInd dataset, which is trained for 200 epochs.

We further employ SWA [16] at the last 20% of the
epochs to stabilize training. For the backbone and data aug-
mentations, the basic setup involves ResNet-34 [11] with
standard left-right flip, circular shifting, PanoStretch [34],
and luminance jittering. In the advanced setup, we em-
ploy HRNet-18 [38] as the backbone and replace luminance
jittering with the modified RandAug [6] as image degra-
dation augmentation. We also employ random camera-
height adjustment implemented by LayoutWarp in the ad-
vanced setup. The random layout perturbation is not in-
cluded as it only improves cross-dataset generalizability.
The same training setups are applied to all reproduced base-
lines. Please refer to the supplementary for the hyperparam-
eter details of our method.

4.3. Codebase benchmark

Our PanoLayoutStudio also reproduces many of the re-
cent state-of-the-art methods, allowing us to have a fair
evaluation with unified training schedules and configura-

Backbone Method # decoder params↓ 3DIoU(%)↑

ResNet-34
(20M)

HorizonNet 52M 80.48
HoHoNet 30M 80.45
LED2-Net 52M 80.48
LGT-Net 92M 81.55

Ours 0.020M 81.08
HRNet-18

(9M)
LGT-Net 13M 82.26

Ours 0.015M 82.83

Table 1. PanoLayoutStudio benchmark. We summarize the
quantitative comparison with the reproduced baselines on Matter-
portLayout [53] test set. Our all-MLP decoder is ultra-lightweight
while still achieving comparable quality. The best result is
achieved by our method with HRNet-18 as the backbone.

tions. Specifically, we implement HorizonNet [34], Ho-
HoNet [35], LED2-Net [37], and LGT-Net [18], which are
all regression-based models. We also conduct hyperparam-
eter tuning for these baselines, which are detailed in the sup-
plementary.

The quantitative comparison is summarized in Ta-
ble 1. Despite being ultra-lightweight, our all-MLP decoder
achieves better or comparable accuracy. The lightweight
MLP-only design is shown to be inferior when functioning
as a regression-based 1D decoder [34, 35]. We argue that
powerful 1D decoders are necessary to capture the global
scale for high-level per-column geometric property regres-
sion. Conversely, our model is only responsible for pre-
dicting a low-level per-pixel floor plan density, which our
‘flattened’ differentiable rendering algorithm in Seg2Reg
(Sec. 3.1) takes care of the transformation into the higher-
level layout depth regression. Essentially, our rendering
algorithm acts as a similar purpose as the “decoder” in
the regression-based models, while the rendering does not
have any additional parameters to learn and is already well-
defined from the start.

Note that our rendering algorithm is very different from
LED2-Net [37] depth rendering. LED2-Net still employs
1D per-column regression for high-level layout geometry,
with depth computed through ray-primitive intersection. In
contrast, our model predicts a 2D low-level per-pixel den-
sity, and our volume rendering entails ray marching on the
estimated density field. Our method achieves better accu-
racy with a thousand times fewer decoder parameters with
the same backbone.

Interestingly, we observe that our method achieves su-
perior results when paired with HRNet-18, whereas the
regression-based LGT-Net performs better with ResNet-34.
Our experiments in the supplementary show that adding
more backbone layers (e.g., HRNet-32 or ResNet-50) of-
fers limited advantages. The results suggest that different
methods may prefer different types of backbones but rely
less on increasing the backbone size.
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Method Backbone 2DIoU(%)↑ 3DIoU(%)↑
LayoutNet v2 [53] ResNet-34 78.73 75.82
DuLaNet v2 [53] ResNet-50 78.82 75.05
HorizonNet [34] ResNet-50 81.71 79.11
HorizonNet♦ ResNet-34 82.85 80.48
HoHoNet [35] ResNet-34 82.32 79.88
HoHoNet♦ ResNet-34 82.71 80.45
AtlantaNet [31] ResNet-50 82.09 80.02
LED2-Net [37] ResNet-50 82.61 80.14
LED2-Net♦ ResNet-34 82.93 80.48
LGT-Net [18] ResNet-50 83.52 81.11
LGT-Net♦ ResNet-34 84.05 81.55
Ours♦ ResNet-34 83.39 81.08
LGT-Net♦ HRNet-18 84.61 82.26
Ours♦ HRNet-18 85.27 82.83

(a) MatterportLayout [53] test set results.

Method Backbone 2DIoU(%)↑ 3DIoU(%)↑
HorizonNet [34] ResNet-50 90.44 88.59
HorizonNet♦ ResNet-34 91.37 89.56
HoHoNet♦ ResNet-34 91.69 89.96
LED2-Net [37] ResNet-50 90.36 88.49
LED2-Net♦ ResNet-34 91.59 89.78
LGT-Net [18] ResNet-50 91.77 89.95
LGT-Net♦ ResNet-34 92.08 90.28
LGT-Net♦ HRNet-18 92.39 90.61
Ours♦ HRNet-18 92.50 90.73

(b) ZInd [4] test set results.

Method Backbone
PanoC.

3DIoU(%)↑
S2D3D

3DIoU(%)↑
LayoutNet v2 [53] ResNet-34 85.02 82.66
DuLaNet v2 [53] ResNet-50 83.77 86.60
HorizonNet [34] ResNet-50 82.63 82.72
AtlantaNet [31] ResNet-50 - 83.94
LGT-Net [18] ResNet-50 85.16 86.03
LGT-Net♦ HRNet-18 87.53 85.83
Ours♦ HRNet-18 87.23 87.24

(c) PanoContext [49] and Stanford2D3D [1] test set results.

Table 2. Comparing our codebase results with other reports.
The “♦” indicates our PanoLayoutStudio reproduction, and we
report the median of four training seeds. The underline marks
the best performant method in previous reports. The bold num-
ber is the best result of the basic or the advanced setup, while the
highlighted result is the best across the entire column.

4.4. Results

We also compare our codebase results with the previous re-
ports of other methods in Table 2. All our results are the
median of four training runs with different random seeds to
mitigate the impact of run-to-run variance.

Result of the reproduced baselines. The entries with “♦”
in Table 2 are reproduced by our PanoLayoutStudio. No-
tably, our reproductions demonstrate consistent improve-
ments compared to the original paper reports. We attribute
this enhancement to several implementation differences: i)
We incorporate SWA [16] in our training. ii) The different
number of ResNet layers. iii) The minor adjustments to the
architecture and training losses according to our baseline
tuning, which we describe in the supplementary. Other ex-
perimental settings may also matter, e.g., some earlier meth-
ods [34, 35] are trained with much fewer epochs.

Result on complex layout. Tables 2a and 2b summa-
rizes the comparisons on datasets with complex room lay-
out shapes. Our method with HRNet backbone achieves
the best accuracy, i.e., +1.72 and +0.78 3D IoU improve-
ments on MatterportLayout and ZInd datasets compared to
the previous state-of-the-art report [18].

Result on cuboid layout. The comparisons on the two
cuboid layout datasets are presented in Table 2c. The cuboid
layout is not the main focus of our study, so we only train
our advanced setup with the reproduced LGT-Net and our
method. The best entries are all established by our code-
base. Our method is slightly behind the reproduced LGT-
Net on PanoContext dataset, while we improve more on
Stanford2D3D dataset.

Qualitative results. We defer the qualitative comparisons
in the supplementary due to the page limit.

4.5. Ablation study

We show the effectiveness of the proposed Seg2Reg and
LayoutWarp via ablation studies. The median results of
four training runs are reported in all ablations as in previous
experiments.

Formulation of the 2D layout prediction. We compare
the results of formulating the 2D prediction as binary seg-
mentation and floor-plan density in Table 3. In the case of
binary segmentation, we treat the 2D prediction as a sig-
moid logit map and apply the standard binary cross-entropy
loss. We borrow DuLa-Net’s algorithm [43] to convert the
binary segmentation into a layout polygon. The results sug-
gest that reformulating the 2D prediction as a floor plan den-
sity field can improve the results by +0.41 and +0.84 2D
IoU on MatterportLayout [53] and ZInd [4] valid split, re-
spectively.

Layout 3D warping data augmentation. We use the pro-
posed LayoutWarp to instantiate random camera height
adjustment and random layout perturbation (visualized in
Fig. 5). We train the re-produced baseline, LGT-Net, on
MatterportLayout [53] dataset and evaluate the results on
MatterportLayout and ZInd [4] valid split. The results
are shown in Table 4. Random camera height adjustment
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Dataset 2D formulation 2DIoU(%)↑ 3DIoU(%)↑

MpLayout binary seg. 86.92 84.65
density field 87.33 85.00

ZInd binary seg. 91.21 89.46
density field 92.05 90.39

Table 3. Ablation of the Seg2Reg. The results are reported on
MatterportLayout [53] and ZInd [4] valid split. The experiment
shows the effectiveness of formulating the 2D per-pixel layout pre-
diction as floor-plan density over the traditional segmentation.

Augmentation
MpLayout MpLayout→ZInd

overall irregular
3DIoU(%)↑ 3DIoU(%)↑ 3DIoU(%)↑

Basic 83.32 78.30 76.14
w/ rand. perturb. 82.93 78.77 77.02
w/ cam. height 83.68 79.17 76.78

Table 4. Ablation study of the new data augmentations. The
results are measured on MatterportLayout [53] and ZInd [4] valid
split. We employ the reproduced LGT-Net with ResNet-34 back-
bone in this experiment. See Fig. 5 for visualizations of the ran-
dom perturbation and camera height augmentations.

achieves observable improvements on the same dataset and
cross-dataset generalization. Random layout perturbation
sacrifices overall accuracy but generalizes better when non-
Manhattan input is presented (the ‘irregular’ column in Ta-
ble 4). The improvement may not seem apparent numeri-
cally, while the qualitative improvement is more obvious,
as shown in Fig. 6. As MatterportLayout dataset only la-
bels the Manhattan-aligned layout, we can clearly see that
the baseline model learns the Manhattan bias, which may
be helpful to infer an axis-aligned layout but is perform-
ing worse or even trying to approximate the irregular room
with right-angled outlines. In contrast, the model trained
with random perturbation works more robustly in this case.
We provide more visual evidence in the supplementary.

Consistent displacement pattern. Another interesting
finding from Fig. 6 is that all variation of the models (the
blue and the red dots) consistently converge to a similar re-
sult, albeit slightly drifting from the ground truth (the green
lines). One possible reason may arise from human labeling
inconsistency, so the predictions may actually align with al-
ternative human annotations. Investigating and solving this
issue would be an interesting future topic.

5. Conclusion and discussions

We present Seg2Reg, a novel approach to 360◦ room lay-
out reconstruction that integrates the strengths of both seg-
mentation and regression methods. By formulating the per-
pixel 2D prediction as a floor-plan density field, we can ap-

• Ground-truth • Basic aug. • With rand. perturb.
† The result variations are due to the four different training seeds.

Figure 6. Manhattan bias. The training set only consists of right-
angled room layouts. The model, without random layout perturba-
tion, ‘panics’ when the input is not Manhattan-aligned.

ply our ‘flattened’ volume rendering to render layout depth
regression from the density field in a differentiable and
occlusion-aware manner. Furthermore, we propose a prin-
cipled method for geometric data augment on 360◦ layout
task. We also contribute PanoLayoutStudio, a codebase
that implements several modern deep learning techniques
and reproduces recent layout estimators, establishing a fair
benchmark and a stronger starting point for future research.
Experimental results demonstrate that our method outper-
forms the previous state-of-the-art.

The success of Seg2Reg highlights the potential syn-
ergy between segmentation and regression tasks in room
layout estimation. However, we have not identified the rea-
sons why the proposed method (or maybe all segmentation-
based methods) seems to favor certain backbones. We hope
to see more studies investigating segmentation-based layout
estimators in the future. Regarding data augmentation, we
instantiate two new data augmentations out of the proposed
LayoutWarp, but the potential for customization through
different layout transformation functions remains largely
unexplored. We encourage future extensions to a more di-
verse set of 360◦ layout data augmentations.

Our method introduces volume rendering into the realm
of 360◦ layout estimation, paving the way for future re-
search to leverage and adapt techniques from the NeRF [27]
community. Promising avenues include exploring concepts
from NeRF-based mesh reconstruction [30, 39, 44] or incor-
porating regularizations from few-shot NeRF [17, 29, 42].
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